AN AMENABILITY PROPERTY OF ALGEBRAS OF FUNCTIONS ON SEMIDIRECT PRODUCTS OF SEMIGROUPS

BAO-TING LERNER

Department of Mathematics U. S. Naval Academy Annapolis, MD 21402

(Received March 2, 1982 and in revised form June 28, 1982)

ABSTRACT. Let S_1 and S_2 be semitopological semigroups, $S_1 \bigoplus S_2$ a semidirect product. An amenability property is established for algebras of functions on $S_1 \bigoplus S_2$. This result is used to decompose the kernel of the weakly almost periodic compactification of $S_1 \bigoplus S_2$ into a semidirect product.

- KEY WORDS AND PHRASES. Semitopological semigroup, semidirect product, compactification, amenability, strongly almost periodic, weakly almost periodic, kernel.
- AMS (MOS) subject classifications (1970). Primary 22A15, 22A20, 43A07; Secondary 43A60

1. <u>INTRODUCTION</u>. Let S_1 , S_2 be semitopological semigroups (in the terminology of Berglund and Hofmann (1)) with identities, each denoted by 1. That is S_1 and S_2 have (Hausdorff) topologies relative to which multiplication in S_1 and S_2 is separately continuous.

Let τ : $S_2 \times S_1 \rightarrow S_1$ be a separately continuous map satisfying for each s_1 , $t_1 \in S_1$, s_2 , $t_2 \in S_2$, $\tau(s_2, s_1 t_1) = \tau(s_2, s_1)\tau(s_2, t_1)$, $\tau(s_2 t_2, t_1) = \tau(s_2, \tau(t_2, t_1))$, $\tau(s_2, 1) = 1$, and $\tau(1, \cdot)$ is the identity map. We shall assume the map $(s_1, s_2) \rightarrow s_1 \tau(s_2, t_1) : S_1 \times S_2 \rightarrow S_1$ is continuous for each $t_1 \in S_1$. The semidirect product $S_1 \oplus S_2$ of S_1 and S_2 is the topological space $S_1 \times S_2$ equipped with multiplication $(s_1, s_2)(t_1, t_2) = (s_1 \tau(s_2, t_1), s_2 t_2)$. The above conditions on τ imply that $S_1 \bigoplus S_2$ is a semitopological semigroup with identity (1,1).

Let F be a closed translation invariant sub-C*-algebra of $C(S_1 \oplus S_2)$ (see §2 below) containing the constant functions. In previous papers (2) and (3), the author has formulated the necessary and sufficient conditions for the decomposition of the F-compactification of $(S_1 \oplus S_2)$, into a semidirect product. The decomposition may be written symbolically as

$$(s_1 (t) s_2)^F = s_1^G (t) s_2^H$$

$$(1.1)$$

where $G = \{f(\cdot, 1) : f \in F\}$ and $H = \{f(1, \cdot): f \in F\}$ and equality denotes canonical isomorphism (ρ being another semidirect product).

Applications of this decomposition were then made to the almost periodic (AP), strongly almost periodic (SAP) and left-uniformly continuous (LUC) cases. The situation is less well-behaved in the weakly almost periodic (WAP) case. For example, if $S_1 = S_2$ is any commutative topological semigroup with identity for which WAP(S_1) = AP(S_1), then (1.1) fails even if $S_1 \oplus S_2$ is taken to be the special case of a direct product (Junghenn (4)).

However, in the present paper we shall prove an amenability property of algebras of functions on $S_1 \oplus S_2$ which generalizes a result of Junghenn (5) and provides conditions under which the kernel of the WAP-compactification of $S_1 \oplus S_2$ can be decomposed into a semidirect product.

2. <u>PRELIMINARIES</u>. Throughout this section S denotes a semitopological semigroup and C(S) the C*-algebra of bounded continuous complex-valued functions on S. We define operators R_t and L_s on C(S) by

 $R_{t} f(s) = f(st) = L_{s} f(t) \qquad (s,t \in S ; f \in C(S))$

Let F be a conjugate closed, norm closed linear subspace of C(S) containing the constant function 1. Then F is right (resp. left) translation invariant if $R_S \in F \in F$ (resp. $L_S \in F \in F$); translation invariant if it is both left and right translation invariant.

A mean on F is a positive linear functional μ in F^* , the dual of F, such that $\mu(1) = 1 = ||\mu||$. We denote by M(F) the set of all means on F. A mean μ

on F is multiplicative if $\mu(fg) = \mu(f)\mu(g)$, f, g ε F. We denote the set of all multiplicative means on F by MM(F).

If F is left (resp. right) translation invariant, then a mean μ is left (resp. right) invariant if, for each f ε F, s ε S, we have $\mu(L_sf) = \mu(f)$ (resp. $\mu(R_sf) = \mu(f)$). The set of all left (resp. right) invariant means on F shall be denoted by LIM(F) (resp. RIM(F)). F is left (resp. right) amenable if LIM(F) $\neq \emptyset$ (resp. RIM(F) $\neq \emptyset$). If F is translation invariant and both left and right amenable, F is called amenable.

Now suppose F is left translation invariant. For each $v \in F^*$ define $T_v : F \neq C(S)$ by $(T_v f)(s) = v(L_s f)$, $f \in F$, $s \in S$. Then F is left introverted if $T_v F \in F$ for each $v \in M(F)$. If F is an algebra, then F is left-m-introverted if $T_v F \in F$ for each $v \in MM(F)$. Right introversion and right-m-introversion are defined in an analogous manner.

If F is a sub-C^{*} - algebra of C(S) then S^F denotes the spectrum (=space of nonzero continuous complex homomorphisms) of F equipped with the relativized weak^{*} topology, and e: S \rightarrow S^F the evaluation mapping.

If F is admissible (i.e. F is translation invariant, left-m- introverted, containing the constant functions) then a binary operation $(x,y) \rightarrow xy$ may be defined on S^F relative to which the pair (S^F,e) has the following properties:

- (i) S^{F} is a compact Hausdorff topological space and a semigroup such that for each $y \in S^{F}$, the mapping $x \rightarrow xy$: $S^{F} \rightarrow S^{F}$ is continuous;
- (ii) e : S → S^F is a continuous homomorphism with range dense in S^F such that for each s ε S, the mapping x → e(s)x : S^F → S^F is continuous; and
 (iii) e^{*}C(S^F) = F.

The pair (S^{F}, e) is the canonical F-compactification of S.

Let K(S), called the *kernel* of S, denote the minimal ideal of S. We shall use the amenability property in the next section to decompose the kernel of the WAPcompactification of $S_1 \bigcirc S_2$ into a semidirect product.

3. <u>THE AMENABILITY THEOREM</u>. Let S_1 and S_2 denote semitopological semigroups with identities and $S_1 \odot S_2$ a semidirect product as defined in §1. We shall denote by

 $q_1 : S_1 \rightarrow S_1 \bigoplus S_2$ and $q_2 : S_2 \rightarrow S_1 \bigoplus S_2$ the injection mappings $(q_1(s_1) = (s_1, 1), q_2(s_2) = (1, s_2)$, for $s_1 \in S_1$, $s_2 \in S_2$). Let $q_i^* : C(S_1 \bigoplus S_2) \rightarrow C(S_i)$ denote the dual mapping of q_i , i = 1, 2.

THEOREM 3.1

(a) Suppose F is a left translation invariant, left introverted closed subspace of $C(S_1 \bigcirc S_2)$ containing the constant functions, and the semigroup $D = \{s_2 \in S_2 : \overline{\tau(s_2, S_1)} = S_1\}$ is dense in S_2 . Then F is left amenable if q_1^*F and q_2^*F are left amenable.

(b) Suppose F is a right translation invariant, right introverted closed subspace of $C(S_1 \bigoplus S_2)$ containing the constant functions. Then F is right amenable if q_1^*F and q_2^*F are right amenable.

PROOF. To prove (a) choose any $\mu_1 \in LIM(q_1^*F)$, and for each $f \in F$ define $(Uf)(s_2) = \mu_1(q_1^*(L_{(1,s_2)}f)), s_2 \in S_2.$ Then $U : F \rightarrow q_2^*F$: For let $f \in F$. Since F is left introverted,

 $T_{v} F \leq F, \forall v \in M(F) \text{ where } (T_{v}f)(s_{1},s_{2}) = v(L_{(s_{1},s_{2})}f), f \in F, (s_{1},s_{2})\varepsilon(S_{1} \oplus S_{2}).$ Observe that

$$(Uf)(s_{2}) = \mu_{1}(q_{1}^{*}(L_{(1,s_{2})}f)) = T_{(\mu_{1}}q_{1}^{*})f(1,s_{2})$$

= $q_{2}^{*}(T_{(\mu_{1}}q_{1}^{*})f)(s_{2})$, for any $s_{2} \in S_{2}$.
Then UF $\in q_{2}^{*}F$ since $T_{(0,0)}$, $f \in F$. Furthermore, U:

Then UF εq_2^*F since $T_{(\mu_1 \circ q_1^*)}$ f ε F. Furthermore, U : F $\rightarrow q_2^*F$ is a positive linear operator of norm 1 since μ_1 is a mean on q_1^*F .

Let $\mu_2 \in \text{LIM}(q_2^*F)$ and put $\mu = \mu_2 \circ U$. Then $\mu \in F^*$, $\mu(f) \ge 0$ for each $f \ge 0$ in F, and $\mu(1) = 1$. Thus μ is a mean on F.

We must show $\mu \in LIM(F)$. Observe that for $s_1 \in S_1$, $s_2 \in S_2$,

$$q_{1}^{*}(L_{(s_{1},1)}L_{(1,s_{2})}f) = q_{1}^{*}(L_{(1,s_{2})}(s_{1},1)f)$$

$$= q_{1}^{*}(L_{(\tau(s_{2},s_{1}), s_{2})}f).$$
(3.1)

Furthermore, for any $g \in F$, s_1 , t_1 , ϵS_1 ,

$$q_{1}^{*}(L_{(s_{1},1)}g)(t_{1}) = L_{(s_{1},1)}g(t_{1},1) = g(s_{1}t_{1},1)$$
$$= (q_{1}^{*}g)(s_{1}t_{1}) = L_{s_{1}}(q_{1}^{*}g)(t_{1})).$$

Thus,

$$q_1^{*}(L_{(s_1,1)}L_{(1,s_2)}^{f}) = L_{s_1}(q_1^{*}L_{(1,s_2)}^{f}).$$
 (3.2)

By (3.1) and (3.2) we obtain for d ε D, s₁ ε S₁, f ε F,

$$\mu_{1}(q_{1}^{*}(L_{(\tau(d,s_{1}), d)}f)) = \mu_{1}(q_{1}^{*}(L_{(s_{1},1)}L_{(1,d)}f))$$

$$= \mu(L_{s_{1}}q_{1}^{*}(L_{(1,d)}f)) = \mu_{1}(q_{1}^{*}(L_{(1,d)}f))$$

$$= (Uf)(d).$$
(3.3)

By the definition of D and the continuity in the variable s of the extreme left side of (3.3), we obtain,

$$\mu_1(q_1^{*}(L(s_1,d)^{f})) = (Uf)(d) (d \in D, s_1 \in S_1)$$

Since $\overline{D} = S_2$ we therefore have

$$\mu_1(q_1^{*}(L_{(s_1,s_2)})) = (Uf)(s_2) (s_1 \in S_1, s_2 \in S_2).$$

That is,

$$UL(s_1,1)^{f} = Uf, \forall s_1 \in S_1.$$
(3.4)

Observe that for s_2 , $t_2 \in S_2$,

$$U(L_{(1,s_2)}^{f)(t_2)} = \mu_1(q_1^{*(L_{(1,t_2)}^{L}(1,s_2)^{f})})$$

= $\mu_1(q_1^{*(L_{(1,s_2t_2)}^{f})} = (Uf)(s_2t_2)$
= $(L_{s_2}^{Uf})(t_2).$

Thus,

$$U(L_{(1,s_2)}f) = L_{s_2}Uf, s_2 \in S_2.$$
 (3.5)

By (3.4) and (3.5) we obtain for any $\mathbf{s}_1 ~\varepsilon~ \mathbf{S}_1,~\mathbf{s}_2 ~\varepsilon~ \mathbf{S}_2$

$$\begin{split} \mu(L_{(s_1,s_2)}f) &= \mu(L_{(1,s_2)}L_{(s_1,1)}f) \\ &= \mu_2[U(L_{(1,s_2)}L_{(s_1,1)}f)] \\ &= \mu_2[L_{s_2}U(L_{(s_1,1)}f)] \\ &= \mu_2(L_{s_2}Uf) = \mu_2(Uf) = \mu(f). \end{split}$$

Thus $\mu \in LIM(F)$ and we are done.

The proof of (b) is done in an analogous manner and is, in fact, much easier. Choose any $\mu_1 \in \text{RIM}(q_1^*F)$ and for each $f \in F$, define $(\text{Uf})(s_2) = \mu_1(q_1^*(R_{(1,s_2)}f)), s_2 \in S_2$. Then U : $F \neq q_2^*F$ since F is right introverted. Furthermore, U: $F \neq q_2^*F$ is a

positive linear operator of norm 1 since μ_1 is a mean on q_1^*F . Let $\mu_2 \in RIM(q_2^*F)$

and put $\mu = \mu_2 \cdot U$. Then μ is a mean on F and we must show $\mu \in RIM(F)$.

Observe that for any s_1 , $t_1 \in S_1$, s_2 , $t_2 \in S_2$, $f \in F$,

$$q_{1}^{*R}(1,t_{2})^{R}(s_{1},s_{2})^{f}(t_{1}) = f[(t_{1},1)(1,t_{2})(s_{1},s_{2})]$$

$$= f[(t_{1}^{\tau}(t_{2},s_{1}), t_{2}s_{2})]$$

$$= f[(t_{1}^{\tau}(t_{2},s_{1}),1)(1,t_{2}s_{2})]$$

$$= q_{1}^{*R}(1,t_{2}s_{2})^{f}(t_{1}^{\tau}(t_{2},s_{1}))$$

$$= R_{\tau}(t_{2},s_{1})^{q}1^{*R}(1,t_{2}s_{2})^{f}(t_{1}).$$

Thus, $q_1 * R(1, t_2)^R(s_1, s_2)^f = R_\tau(t_2, s_1)^{q_1} * R(1, t_2 s_2)^f$, and therefore since $\mu_1 \in RIM(q_1 * F)$,

$$U(R(s_1,s_2)^{f)}(t_2) = \mu_1(q_1*R(1,t_2)^{R}(s_1,s_2)^{f})$$

= $\mu_1(R_{\tau}(t_2,s_1)^{q_1*R}(1,t_2s_2)^{f}) = \mu_1(q_1*R(1,t_2s_2)^{f})$
= R_{s_2} Uf(t_2).

Then,

$$\mu(R_{(s_1,s_2)}f) = \mu_2[U(R_{(s_1,s_2)}f)] = \mu_2(R_{s_2}Uf)$$
$$= \mu_2(Uf) = \mu(f).$$

Hence $\mu \in RIM(F)$ and we are done.

4. Application to $K(S_1 \bigcirc S_2)^{WAP}$

Let S be a semitopological semigroup and let SAP(S) denote the closed linear span in C(S) of the coefficients of all finite-dimensional continuous unitary representation of S. SAP(S) is called the space of *strongly almost periodic* functions on S. Let WAP(S) = {f ε C(S) : R_Sf is relatively weakly compact}. WAP(S) is called the space of *weakly almost periodic* functions on S. (See Berglund, Junghenn and Milnes (6) for properties of SAP(S), WAP(S)).

In (3) it was shown that if S_1, S_2 are semitopological semigroups with identities then

$$s_1 (t) s_2)^{SAP} = x (t) s_2^{SAP}$$
(4.1)

where $(S_1 \bigoplus S_2)^{SAP}$ and S_2^{SAP} are the canonical SAP-compactifications of $S_1 \bigoplus S_2$ and S_2 respectively, X is a compact topological group which is a homomorphic image of the canonical SAP-compactification of S_1 , and equality denotes canonical isomorphism.

We now prove the following lemma which shall be used in the decomposition of the kernel.

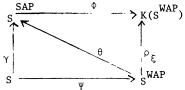
LEMMA. 4.1 Let S be a semitopological semigroup such that WAP(S) is amenable. Let (S^{WAP}, Ψ) be a WAP-compactification of S, ξ the identity of $K(S^{WAP})$, ρ_{ξ} : $S^{WAP} \rightarrow K(S^{WAP})$ be right multiplication. Then $(K(S^{WAP}), \rho_{\xi}\Psi)$ is an SAP-compactification of S.

PROOF. Since WAP(S) is amenable, $K(S^{WAP}) = S^{WAP}\xi$ and is a compact topological group (deLeeuw and Glicksberg (7)). Then ρ_{ξ} maps S^{WAP} onto $K(S^{WAP})$ and $\rho_{\xi}\Psi$: $S \rightarrow K(S^{WAP}) = S^{WAP}\xi$ is a continuous homomorphism with range dense in $S^{WAP}\xi$. Observe that $\rho_{\xi}|_{K}(S^{WAP})$ is the identity mapping on $K(S^{WAP})$.

Let (S^{SAP}, γ) be the canonical SAP-compactification of S. By the universal mapping property of SAP and WAP compactifications, there exist continuous homomorphisms ϕ and θ such that $\phi: S^{SAP} \rightarrow K(S^{WAP})$, $\theta: S^{WAP} \rightarrow S^{SAP}$ and $\phi\gamma = \rho_F \Psi, \theta \Psi = \gamma$.

Observe further that since $\Phi \Theta \Psi = \rho_{\xi} \Psi$, then $\Phi \Theta = \rho_{\xi}$ by the continuity of $\Phi \Theta$, ρ_{ξ} and the fact that $\overline{\Psi(S)} = S^{WAP}$.

All of the above relations are illustrated in the following commutative diagram:



It suffices to show that Φ is one-to-one so that $K(S^{WAP})$ will be an SAPcompactification of S. Let y_1 , $y_2 \in S^{SAP}$. Then there exist x_1 , $x_2 \in S^{WAP}$ such that $\theta(x_1) = y_1$ and $\theta(x_2) = y_2$. Suppose $\Phi(y_1) = \Phi(y_2)$. Then $\Phi(\theta(x_1)) = \Phi(\theta(x_2))$. Since S^{SAP} is a compact topological group and $\theta(\xi)$ is an idempotent in S^{SAP} , $\theta(\xi)$ is the identity of S^{SAP} . Thus $\theta(x_1) = \theta(x_1)\theta(\xi) = \theta(x_1\xi)(i=1,2)$, so $\Phi(\theta(x_1\xi)) = \Phi(\theta(x_2\xi))$. On the other hand,

$$\Phi(\theta(\mathbf{x}_{i}\xi)) = \rho_{\xi}(\mathbf{x}_{i}\xi) = \mathbf{x}_{i}\xi \ (i = 1, 2),$$

so, $x_1\xi = x_2\xi$, and hence $y_1 = \theta(x_1\xi) = \theta(x_2\xi) = y_2 \cdot //$

We shall use the relation (4.1), the above lemma and the results in the following discussion to establish conditions under which we may express $K[(S_1 \oplus S_2)^{WAP}]$ as a semidirect product

$$\kappa[(s_1 \oplus s_2)^{WAP}] = x \bigoplus \kappa(s_2^{WAP})$$

where equality denotes canonical isomorphism and X is a compact topological group.

We shall assume that $WAP(S_1)$ and $WAP(S_2)$ are amenable. By (deLeeuw and Glicksberg (7), Lemma 5.2) since $q_i : S_i \neq S_1 \oplus S_2$ is a continuous homomorphism for i = 1, 2, then $F_1 = q_1^*WAP(S_1 \oplus S_2) \in WAP(S_1)$, and $F_2 = q_2^*WAP(S_1 \oplus S_2) \in WAP(S_2)$. (In fact, equality holds in the latter.) Thus, $q_1^*WAP(S_1 \oplus S_2)$ and $q_2^*WAP(S_1 \oplus S_2)$ are amenable and if we assume $D = \{s_2 \in S_2: \tau \ (s_2, S_1) = S_2\}$ is dense in S_1 , then $WAP(S_1 \oplus S_2)$ is amenable by Theorem 3.1.

By ((7), Theorem 4.11) $K[(S_1 \oplus S_2)^{WAP}]$ and $K(S_2^{WAP})$ are compact topological groups. Furthermore, by Lemma 4.1, $K[(S_1 \oplus S_2)^{WAP}]$ is a SAP-compactification of $S_1 \oplus S_2$, and $K(S_2^{WAP})$ is a SAP-compactification of S_2 (symbollically denoted by $K[(S_1 \oplus S_2)^{WAP}] = (S_1 \oplus S_2)^{SAP}$, and $K(S_2^{WAP}) = S_2^{SAP}$, respectively, where equality denotes canonical isomorphism). Thus, we have proved the following

PROPOSITION 4.2 Let S_1 , S_2 be semitopological semigroups with identities and S_1 (\widehat{r} S_2 a semidirect product. Suppose WAP(S_1), WAP(S_2) are amenable, and $D = \{s_2 \ \varepsilon \ S_2 : \overline{\tau(s_2, S_1)} = S_1\}$ is dense in S_2 . Then WAP(S_1 (\widehat{r} S_2) is amenable. Furthermore, we may represent K[(S_1 (\widehat{r} S_2)^{WAP}] as a semidirect product K[(S_1 (\widehat{r} S_2)^{WAP}] = X(\widehat{o} K(S_2^{WAP}), where equality denotes canonical isomorphism, (S_1 (\widehat{r} S_2)^{WAP} and S_2^{WAP} are canonical WAP-compactifications of S_1 (\widehat{r} S_2 and S_2 respectively, and X is a compact topological group which is a continuous homomorphic image of the canonical SAP-compactification of S_1 .// ACKNOWLEDGEMENT. This work was supported by a U. S. Naval Academy Research Council

Grant.

The author wishes to thank the referee for suggesting several improvements to the exposition of the paper.

REFERENCES

- BERGLUND, J. F. and HOFMANN, K. H., Compact Semitopological Semigroups and Weakly Almost Periodic Functions, Lecture Notes in Math., vol. 42, Springer-Verlag, Berlin, 1967.
- LERNER, B.T., C* Algebra Compactifications of Semidirect Products of Semitopological Semigroups, Dissertation, Geo. Wash. Univ., Wash., D.C., 1979.
- 3. JUNGHENN, H. D. and LERNER, B.T., Semigroup Compactifications of Semidirect Products, Trans. Amer. Math. Soc., 265 (1981), 393-404.
- JUNGHENN, H.D., C* Algebras of Functions on Direct Products of Semigroups, Rocky Mountain J. of Math., 10(3) (1980), 589-597.
- 5. JUNGHENN, H.D., Topological Left Amenability of Semidirect Products, Canad. Math. Bull., 24(1) (1981), 79-85.
- BERGLUND, J.F., JUNGHENN, H.D., and MILNES, P., Compact Right Topological Semigroups and Generalization of Almost Periodicity, Lecture Notes in Math., vol. 663, Springer-Verlag, Berlin, 1978.
- 7. deLEEUW, K., and GLICKSBERG, I., Applications of Almost Periodic Compactifications Acca. Math., 105(1961), 63-97.