ON THE STRUCTURE OF A TRIANGLE-FREE INFINITE-CHROMATIC GRAPH OF GYARFAS

LARRY EGGAN

Mathematical Reviews Ann Arbor, MI 48109 Illinois State University Normal, IL 61761

FRANK HARARY

Churchill College Cambridge CV3 ODS, England University of Michigan Ann Arbor, MI 48109, USA

(Received June 22, 1981 and in revised form September 13, 1982)

<u>ABSTRACT</u>. Gyárfás has recently constructed an elegant new example of a trianglefree infinite graph G with infinite chromatic number. We analyze its structure by studying the properties of a nested family of subgraphs G_n whose union is G. <u>KEY WORDS AND PHRASES</u>: Triangle-free, infinite-chromatic 1980 MATHEMATICAL SUBJECT CLASSIFICATION CODE: 05C15

1. INTRODUCTION.

Gyárfás [1] described a new example of a triangle-free infinite-chromatic graph G as follows: the vertices of G form an $\infty \times \infty$ matrix, i.e., $V = \{v_{i,j}; i, j = 1,2,...\}$, and the vertex $v_{i,j}$ is adjacent to every vertex of the (i + j)-th column, i.e., the set E of edges of G is given by $E = \{v_{i,j}v_{k,i+j}; i,j,k = 1,2,...\}$. It is easy to see that G is triangle-free for if u,v,w, were vertices of a triangle with u having the smallest column index, then the fact that uv and uw are edges would mean

v and w are adjacent vertices in the same column, which is impossible. That G requires infinitely many colors follows from Theorem 2 below, although it also follows directly from the fact that, for j > i, the i-th column contains a vertex adjacent to all vertices of the j-th column.

In what follows we will accomplish two things. We first describe an augmenting sequence of finite graphs, which has G as its limit, and determine the structure of these graphs. This gives a deeper insight into the actual structure of G. Unless otherwise specified, we follow the graph theoretic notation and terminology of Harary [2].

2. AN ANALYSIS OF G.

In this section we will define a sequence G_n of graphs converging to G. We will give some results on the structure of each G_n , and an alternative way of constructing G_n which gives a different perspective on its structure. Finally, we will note that the desired properties of G_n can be demonstrated by considering subgraphs H_n (which are roughly half of G_n).

DEFINITION. For any positive integer n, let G_n be the subgraph of G obtained by removing all vertices $v_{i,j}$ with i and j greater than n, i.e., G_n is the induced subgraph $\langle v_{i,j}; 1 \leq i, j \leq n \rangle$ of G.

First we prove a theorem on the degrees of the vertices of G_n .

THEOREM 1. For $0 \le k \le 2n - 2$, the number of vertices of G_n of degree k is n - |n - k - 1|, while there are no vertices of degree greater than 2n - 2.

PROOF. Consider G_n as an $n \times n$ matrix. Then it is easy to see that $deg(v_{i,j}) = \begin{cases} n+j-1, & \text{if } 1 \leq i \leq n-j \\ \\ j-1, & \text{if } n-j+1 \leq i \leq n. \end{cases}$

Thus by setting k = n + j - l or k = j - l, we see there are either 2n - k - l or k + l vertices, respectively, of order k, as claimed.

In the next theorem we give the chromatic number $\chi(G_n)$ of each G_n .

THEOREM 2. For $k \ge 1$, G_n is k-colorable if $n < 2^k$, while G_{2k} has chromatic number k + 1, that is, $\chi(G_n) = 1 + \lfloor \log_2 n \rfloor$.

PROOF. Since G_{n-1} is a subgraph of G_n , it suffices to show that $G_{2^{k-1}}$ is k colorable whereas G_{2^k} is not. To show the latter, suppose on the contrary that G_{2^k} is colored in k colors, and let N_j denote the set of colors used on the vertices in the j-th column of G_{2^k} . Now for i < j, $v_{j-i,i}$ is adjacent to every vertex in column j so $N_i \not \subset N_j$. The sets N_j thus form a collection of 2^k distinct nonempty subsets of a k-element set, which is impossible.

To show that $G_{2^{k}-1}$ is k-colorable, let C be a set of k colors and let N_{j} , $j = 1, 2, ..., 2^{k}-1$, be an enumeration of the nonempty subsets of C which is nonincreasing in order of size. For example, such an enumeration when k = 3 and C = $\{c_1, c_2, c_3\}$ is: $\{c_1, c_2, c_3\}$, $\{c_1, c_2\}$, $\{c_1, c_3\}$, $\{c_2, c_3\}$, $\{c_1\}$, $\{c_2\}$ $\{c_3\}$. This enumeration provides that if j > i, then there is a color in N_i which is not in N_j . Therefore, color the vertex $v_{r,i}$ with a color in N_i which is not in N_{r+i} ; if $r + i > 2^k - 1$, then use any color in N_i . This clearly yields a kcoloring of G_{2^k-1} .

To conclude this section, we describe an alternative way to construct G_n which we feel gives some insight into its structure and chromatic number. In accordance with established terminology, we will say that a point covers a set S of points if it is adjacent to every point of S. A set T of points <u>smothers</u> S if exactly one point in T covers S, and T <u>smothers</u> a finite sequence S_1, S_2, \ldots, S_k of sets of points if there are distinct points t_1, t_2, \ldots, t_k in T such that t_j covers S_j for j =1,2,...,k.

We now describe how to construct G_n using this idea and the join operation +, where H + H' is the graph obtained from the union of H and H' by joining every point of H to every point of H'; see [2, p. 21]. We describe how to build G_n in three stages. Here the notation H + H' + H" stands for the union of two joins H + H' and H' + H", and similarly for more summands each of which will be a complete graph K_n or its complement, the totally disconnected graph $\overline{K_n}$.

STAGE 1: Build $\overline{K}_2 + K_1 + \overline{K}_{n-2}$. (Label the vertex K_1 by r.)

STAGE 2: Replace the j-th point in \overline{K}_{n-2} , numbering from bottom to top, by $S_j = K_1 + \overline{K}_n + K_1$, for j = 1, 2, ..., n-2. (Label the left K_1 by a_j and the right K_1 by b_j .)

STAGE 3: Replace the \overline{K}_n in S_j by the set of n points T^j where the adjacency in S_j is preserved, but T_n^j smothers T_n^1 , T_n^2 , ..., T_n^{j-1} , for j = 1, 2, ..., n-2. (Suppose that t_{jk} in T_n^j covers T_n^{j-k} for k = 1, 2, ..., j-1.)

Figure 1 shows how the construction progresses when n = 5. This resulting graph, when a single isolated point (corresponding to $v_{n,1}$) is added, is isomorphic to G_n . We will not formally prove this, though it is easy to see that an isomorphism is obtained by mapping r to $v_{1,1}$, b_j to $v_{n-j,1}$, a_j to $v_{n-1-j,2}$ (and the two vertices of degree 1 to $v_{i,2}$, i = n-1,n), and T_n^j to the vertices in column n+1-j with $t_{j,k}$ mapping to $v_{k,n+1-j}$. It is also easy to see that another minimal coloring (besides the one given in the proof of Theorem 2) is obtained by only using colors c_1, c_2, \ldots, c_i to color T_n^j for $i \leq j < 2^i$ and $i = 1, 2, \ldots, k$.

Figure 1.

Finally, let H be the subgraph of G with the $\frac{1}{2}(n^2-3n+6)$ vertices

 $\{v_{1,1}, v_{1,n}\} \bigcup \{v_{i,j}; j = 2, \dots, n-1, i = 1, \dots, n-j\}$

It is clear that H_n is triangle-free and for $n = 2^k$ applying the argument in the proof of Theorem 2 to columns 2 through n shows that H_n is not k colorable. Although H_n is simpler then G_n while still retaining the cascading appearance illustrated by Figure 1, H_n is still not critical.

We wish to thank the referee who is responsible for an improvement in our exposition and for the above proof of Theorem 2.

REFERENCES

- Gyárfás, A. Still another triangle-free infinite-chromatic graph, Discrete Math. <u>30</u> (1980), 185.
- 2. Harary, F. Graph Theory, Addison-Wesley, Reading, 1969.