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ABSTRACT. A study is made of the steady-state Alfvn-gravity waves in an inviscid

incompressible electrically conducting fluid with an interface due to a harmonically

oscillating pressure distribution acting on the interface. The generalized function

method is employed to solve the problem in the fluid of infinite, finite and shallow

depth. A unique solution of physical interest is derived by imposing the Sommerfeld

radiation condition at infinity. Several limiting cases of physical interest are ob-

tained from the present analysis. The physical significance of the solutions and

their limiting cases are discussed.
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i. INTRODUCTION.

Steady-state surface wave problem in which the wave motion is simple harmonic in

time is one of the most fundamental problems in the theory of surface wave phenomena

in oceans. This is, indeed, a key problem for discussion of a variety of results and

observations in water waves. However, it is, in general, not possible to derive a

unique solution of the problem by imposing only bounded condition at infinity. In

fact, sharper conditions such as the Sommerfeld radiation condition are required to

obtain a unique solution of physical interest.

Several methods have been employed to solve the steady-state wave problem in order

to obtain a unique solution of physical interest. These methods include (i) Lamb’s

fictitious damping force method rl, (ii) Stoker’s complicated complex variable

method [2], (iii) Lighthill’s method [37 concerning an alternative way of applying

the radiation condition and (iv) Debnath’s generalized function method [47. All

these methods have been aimed at deriving a unique solution of physical interest, and

in fact, led to the same solution.

An extensive usage of classical Fourier transform methods in water wave problems

and other wave problems are well known and readily available in the existing
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literature (Stoker [27, Sneddon (57) on the subiects. However, Debnath F47 has

clearly pointed out certain inherent difficulties involved in the steady-state water

wave problems and in their method of solution by the classical Fourier analysis.

These difficulties are mainly related to the existence, uniqueness, and the real

singularies of the inverse Fourier integral solution of the problems. A careful

study indicates that a new treatment of the steady-state surface wave problem by the

generalized function method [47 can not only eliminate the inherent difficulties of

the classical Fourier transform analysis, but also enable us to obtain unique solution

of physical interest. Thus it seems to be an extremely useful device from the view

point of sufficient generality. Another convincing point about this method is that

there is neither any need for modification of the basic equations (Lamb I7 nor any

justification of the limit operation involved in the solution obtained by Lighthill’s

method [37.

In spite of the tremendous progress on the steady-state surface wave problems in

non-conducting fluids, hardly any attention has been given to the steady-state

Alfvn-gravity wave problem in an electrically conductin fluid. The main purpose of

this paper is to make a steady-state investigation of the Alfvn-gravity waves in an

inviscid, incompressible electrically conducting liquid with an interface due to a

harmonically oscillating pressure acting on the interface. A new generalized function

method will be employed to solve this problem in the fluid of infinite, finite and

shallow depth. A unique solution of physical interest is derived by imposing the

Sommerfeld radiation condition at infinity. Several limiting cases of interest have

been obtained from the present analysis. The physical significance of the solutions

and their limiting cases are discussed.

2. MATHEMATICAL FORMULATION.

We consider the two-dimensional linearized steady-state Alfvn-gravity wave

problem in an inviscid, incompressible electrically conducting fluid of uniform den-

sity 0 with a free surface. In its undisturbed state, the field-free conducting

fluid of constant depth h occupies the region -h _< z -< 0 in the rectangular

Cartisian coordinate system with the origin at the free surface, and the region

z > 0 is a vacuum under the action of constant magnetic field B
0 (B0,0,0)

We investigate the generation and p$opagation of magnetohydrodynamic surface

waves in the fluid system due to a harmonically-oscillating pressure distribution

acting at the interface z 0 in the form

imtp(x,t) Pf(x)e (2.1)

where P is a constant, f(x) is a physically realistic arbitrary function of x

and m is the fixed frequency.

In view of the fact that the motion is irrotational, there exists a velocity

potential (x,z;t) which satisfies the Laplace equation

V2 + 0 (2.2)

in -h _< z -< 0 and < x <



ALFVEN-GRAVITY WAVE PROBLEM 397

Outside the fluid the vacuum magnetic field must be a potential field so that the

magnetic potential also satisfies the Laplace equation

)2 )zV2 x + 0 (2.3)

in z > 0 and < x <, with the boundary condition at infinity

Ivl 0 as z+ . (2.4)

The free su#face dynamic and kinematic conditions in the linearized form are

B0
4)t + gn + z p(x,t)

at z 0 (2.5 ab)

nt 4)z
where n(x,t) is the vertical free surface elevation, and g is the acceleration

due to gravity.

The interfacial condition describes the constraint of frozen-in lines of force

in the fluid on the vacuum magnetic field so that the interface remains a magnetic

field line even in the disturbed state and is given by

BO
Bn

z x on z 0 (2.6)

In the case of infinitely deep fluid, the bottom boundary condition is given by

4) 0 as z (2.7)

For the case of fluid of finite depth, the boundary condition at the rigid bot-

tom is

4)z 0 on z -h (2.8)

In addition, an appropriate radiation condition has to be imposed to ensure the

uniqueness of the solution of the steady-state wave problem. This will be done later

at appropriate places.

3. SOLUTION OF THE PROBLEM IN A FLUID OF INFINITE DEPTH.

As a trial, we assume that functions 4) # and possess ordinary Fourier

transform with respect to x defined by the integral

1 [ -ikx4)(k,z;t) e 4)(x,z:t)dx (3.I)

Application of the Fourier transform method to equations (2.1)-(2.7) gives solu-

tion for 4) @ and n as

imt + Iklzpim (k) e

(k,z;t)
0 D(m,k)

(3.2)

PilklB (k) e
O(k,z;t)

0 D(m,k)
(3.3)
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(k t) P lkl (k)eimt
0 D(m,k) (3.4)

where

D(m,k) m2 glk a2k2 (3.5)

and a B /410 is the Alfvn wave velocity.
O

The use of the inverse ourier transformation gives the integral solutions for

and in the form

ikx
e dk (3.6 abc)

It is noted that these inversion integrals are divergent because of the fact that

the integrands of (3.6 abc) have polar singularities at the zeros of D(m,k) on the

axis of integration. Consequently, the original assumDtion that functions

and possess the Fourier transform in the ordinary sense was invalid. This is

logical because a function which has a Fourier transform must tend to infinity, but

we expect and to have wave-like behaviour, that is, bounded at infinity

but not tending to zero at infinity.

To overcome this inherent difficulty, we treat the functions and as

generalized functions in the sense of Lihthill 6] in which case they do have the

Fourier transform. Thus (3.6 abc) represent valid inversion integrals in the gener-

alized sense. So one can use the generalized function method to evaluate the inte-

gral (3.6 abc). It would be sufficient for determination of the principal features

of the wave motions to evaluate the integral for (x,t).. We next evaluate (3.6c)

by using result (24) of Debnath and Resenblat [77 based on the generalized function

method, that is, if P(k) has a simple pole at k kI in a < kI
< b then as

b

iklXP (k) e
ikx

dk i Sgn x e (residue of F (k) at k kI) + 0(iI). (3.7)

a

Making use of the result, we evaluate integral (3.6c) written explicitly in the

form

imt
(x,t)

P e kl (k) e
ikx

dk

0
D(m,k) (3.81

to obtain the solution for (x,t) as Ixl in the form

imt [ _ik2xn(x,t)
P i e

2
sgn x

k
I (kl e-iklX k2(k2)e

0 N/2 a (k2-k11
+ kl(kl)eiklX- k2(k2)eik2xl + 0[,,] (3.9)
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where k
I

and k
2

are the real roots of the dispersion equation

D(,k) --- 2 glk a2k2 0 (3.10)

The solution (3.9) for the free surface elevation n(x,t) contains four

exponential terms two of them correspond to outgoing dispersive Alfvn-gravity waves

from the source of disturbance and the other two represent incoming waves from in-

finity.

In order to achieve unique solution of physical interest, we impose the Sommerfeld

radiation condition to eliminate the incominE wave terms present in the solution (3.9).

This leads to the unique solution for (x,t) in the form

it [k k2(k2)eik2’x’] lllj (3 11)
P i e (kl)e-ikllxl + 0n(x,t)
0a2- (k2_kl)

I

This result corresponds to dispersive Alfvn-gravity waves characterized by the

dispersion relation (3.10) which gives the phase velocity, C
pm

city c as

and the group velo-

Cpm km (k + a2)1/2 (3.12)

C --- I + 2a2k
gm 3k 2 /gk + a2k2

(3.13)

In the absence of the external magnetic field B all these results reduce to

those for pure gravity wave solution due to Debnath [4 . In particular, when

f(x) E (x) the Dirac delta distribution so that (k) --- we also recover

Debnath’s result for the steady-sace gravity waves from (3.11) in the limit a 0

4. SOLUTION OF THE PROBLEM IN A FLUID OF FINITE DEPTH.

Application of the generalized Fourier transform to (2.1)-(2.6) combined with

bottom boundary condition (2.8) gives solutions for $ and as

imt C_osh[_k_l (z +h)(k z’t)
e +/-m f(k)e

0 D,k) Cosh|klh
(4.1)

Pi Ikl B0 (k) tanhlklh exp(imt- Iklz)
(k,z;t) (4.2)

0 D, (re,k)

(k,t) P eimt (k) Ik! tanhlk, lh (4.3)
0 D,(m, k)

where

D,(m,k) 2 (glk + a2k2) tanhlklh (4.4)

The inverse Fourier transformation enables us to obtain an explicit integral

solution for (x,t) as
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imt
(x,t) P e ikltanhlkl h (. I_ )(k)eikxdk (4.5)

2 O o
+ -

where a (k) is given by

2(k) (glkl + a2k2)tanhlklh

Making use of result (3.7), we can evaluate the wave integral (4.5). It turns

out that the significant contribution to the solution for n(x,t) as Ixl / comes

from the poles of the integrand of (4.5). These poles are the roots of the equation

a(k) +/- m 0 and are readily found from the points of intersection of the curves

a(k) with the straight lines +/- m From the graphical representation of

these curves, it turns out that real roots of the above equations are at k +/- k
+ *k

2
Using the same formula (3.7), the wave integral (4.5) can easily be evaluated

to obtain the solution as

imtP i e sg.n x(x, t)
2po/’2T

ikl,x -ikl*x(kl*) {e + e

where

ik2*x -ik2*x ]F(k2*) {e + e + 0 171 (4.7)

P(k) =[(k) k tanh kh]/[k (4.8)

As in the case of infinitely deep fluid, the solution (4.7) consists of both

outgoing waves from the source of the disturbance and incoming waves from infinity.

In order to eliminate the incoming solution, we require to impose the Sommerfeld

radiation condition. This leads to the unique solution of physical interest in the

form

it [ _ikl,x (k2,) eik2,x]n(x,t)
P i e

(kl*)e (4.9)

This solution also represents dispersive Alfvn-gravity waves characterized by

the dispersion relation a2(k m2 which gives the phase and te group velocities

of the wave motions. In the limiting case of infinitely deep fluid (kh =)

solution (4.9) reduces to result (3.11). On the other hand, when there is no external

magnetic field (B
0

O) these findings are in agreement with those obtained earlier

by Debnath [4].
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5. -IISPERSIVE WAVES IN A VERY SHALLOW CONDUCTING FLUID.

In this case (kh 0) tanhlklh Iklh so that e2(k) c2k2 + a2hlklk2

c 2 gh Consequently, the integral solution (4.5) can easily be simplified to

obtain an explicit representation for (x,t)

(x, t) P0a22eimt ! kk23+Bk2+D(k) (eikx + e-ikx) dk (5. i)

where
c 2

oj2
B ha--/ > 0 and D ha--/ < 0 (5.2 ab)

The significant contribution to the solution for n(x,t) comes from real polar

singularities of the integrand in (5.1). The singularities of the integrand in (5.1)

are the roots of the cubic equation for k in the form

k + Bk2 + D 0 (5.3)

Since the constant form in (5.3) is negative, this cubic equation must, there-

fore, allow at least one positive real root, k k0 This lead to factorize (5.3)

in the form

(k- k0)(k2 + 2sk + 8) 0

By comparison with equation (5.3), it turns out that

(5.4)

D D

2k0 > 0 and 8 -;---K0 > 0 (5.5 ab)

It can then readily be shown that the two remaining roots of (5.4) are either real

and negative or complex conjugate with negative real parts.

A simple inspection reveals that the significant contribution to the solution

for (x,t) comes from the positive real poles of the cubic (5.4). Following the

same procedure used earlier, the integral (5.1) can easily be evaluated to obtain the

solution in_the form
it k02(k0)P e (i sgn x) .eik0x e-ik0x(x, t

0 a2k/- (k02 + 2ek0 + 8) + (5.6)

By imposing the radiation condition, a unique solution of physical interest has
the form

k02(k0)(x,t) Pni sgn i(mt-k01xl)
0 a2k/ (k02 + 2ak0 + 8) e (5.7)

This solution represents the dispersive Alfve’n-gravity waves characterized by the

dispersion equation (5.3). Hence, the phase and the group velocities of the waves can

readily be calculated. In the absence of the magnetic field (B
0

0 and a 0)
the abmve result (5.7) reduces to the corresponding solution in a shallow non-condmcth/g
liquid, and shows a striking contrast to the non-dispersive shallow water waves.
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6. CLOSING REMARKS.

The above entire analysis has been carried out for an arbitrary function f(x)

involved in the applied pressure given by (2.1). Some simple functional form for

f(x) can easily be chosen to illustrate the general theory presented in this paper.

However, the present study has revealed the principal features of the dispersive

Alfven-gravlty wave motions in a conducting liquid.
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