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ABSTRACT. A brief survey of recent results on distributional and entire solutlosof

ordinary differential equations (ODE) and functional differential equations (FDE) is

given. Emphasis is made on lnear equations with polynomial coefficients. Some work
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I. INTRODUCTION AND PRELIMINARIES.

This paper may be considered as a continuation of [I] which contains, in partf-

cular, a survey of recent results on entire solutions of ODE with polynomial

coefffclents. Integral transformations establish close links between entire and

generalized functions [2]. Therefore, a unified approach may be used fn the study

of both dlstrfb-utional and entire solutions to some classes of linear ODE and,

especially, FDE with linear transformations of the argument [3]. It fs well known

[4] that normal linear homogeneous systems of ODE with fnffnltely dffferentlable

coefficients have no generalized-function solutions other than the classical
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solutions. In contrast to this case, for equations with singularities in the

coefficients, new solutions in generalized functions may appear as well as some

classical solutions may disappear. In Section 2 results on distributional and entire

solutions of ODE are discussed. In Section 3 we study analogous problems for FDE.

Research in this direction, still developed insufficiently, discovers new aspects

and properties in the theory of ODE and FDE. In fact, there are some striking

dissimilarities between the behavior of ODE and FDE which deserve further investi-

gat ion.

I. Distributional solutions to linear homogeneous FDE may be originated either

by singularities of their coefficients or by deviations of argument. In [5] it has

been proved that the system

x’(t) Ax(t) + tBx(%t), -I % < I

has a solution in the class of distributions an impossible phenomenon for ODE

without singularities.

2. In [6] it was shown that a first-order algebraic ODE has no entire

transcendental solutions of order less than 1/2, whereas even linear first-order FDE

may possess such solutions of zero order [3], [7].

3. It is well known [8] that the solution of the initial-value problem for a

normal linear ODE wlth entire coefficients is an entire function. Let in the linear

FDE

w’Cz) a(z)wClCz)) + BCz), w(0) w
0

the functions a(z), b(z), %(z) Be regular in the disk Izl < I, and %(0) O,

I%(z) < i for Izl < i. Then there is a unique solution of the problem regular in

Izl < i[9]. In general, this solution cannot be extended beyond the circle Izl i,

if even a(z), b(z), and %(z) are entire functions. Thus, the solution of the eqa_tiOn

w’(z) a(z)w(z2),
where a(z) is an entire function wlth positive coefficients, has the circle Izl I

as the natural boundary [i0], [II].

2. DISTRIBUTIONAL AND ENTIRE SOLUTIONS OF ODE

The number m is called the order of the distribution
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m
x r. x() (t), x ’ o,

1-0
(2.1)

where (k) denotes the kth derivative of the Dirac measure, and the variable t is

real. Finite order solutions of linear ODE have been studied mainly for equations

with regular singular points [12 16]. In [16] for the first time an existence

criterion of solutions (2.1) to any linear ODE was established.

THEOREM 2.1. (Wiener [16]). If the equation

n (n-i)Y. ai(t)x (t) 0
i--O

(re+n-i
with coefficients ai(t)_ C

m concentrated on t 0, then:

(2.2)

in a neighborhood of t 0 has a solution of order

(I) a0(0) 0,

’(0) + al(O) O,(2) m satisfies the relation -(m + n)a
0

3) there exists a nontrlvial solution (x0, xm) of the system

m+n mln (j ,n)(-l)J-laj-i)(0)(k + J i)! 0E 0Xk+j -nj-- i=o
(k 0, 1, m + n).

THEOREM 2.2. (Wiener [16]). Eq. (2.2) has an m order solution with support

t 0, if the following hypotheses are satisfied:

(i) For some natural N(0 < N < m + n),

a (0) O, i 0, rain(N, n);

(il) m is the smallest nonnegative integer root of the relation

M
):. (-I)

I--0

N+l-i (N+l-i)
aj (O)(m + n i)! 0, M mln(N + i, n),

where N denotes the greatest number for which (i) holds;

there exists a nonzero solution of system (3) in Th. 2.1.

From these theorems it follows that if the equation

n
E ttatCt)x (i) (t) 0
t=0

(2.3)

with coefficients ai(t) E C
m

and an(0) @ 0 has a solution (2.1) of order m, then
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n
r. (-1)iai(O) (m + i) O.
i=O

(2.4)

Conversely, if m is the smallest nonnegative integer root of (2.4), there exists an

m order solution of (2.3) concentrated on t 0 [16]. This proposition constitutes

the basis for the study of finite order solutions to equations with regular singular

points. The stated results can be used also in the search of polynomial and rational

solutions to linear ODE with polynomial coefficients.

Thus, we formulate

THEOREM 2.3. The equation

n
Z (air + bi)x(n-i)(t) 0
i=O

with constant coefficients al, b
i

and a
0 i, b

0
0 has a finiteorder solution if

all poles s
i

of the function

n n
n-i

R(s) Z (.is (n- i)ai)sn-i-I/ I ais
i=0 i=0

are real distinct and all residues r
i

res R(s) are nonnegative integral.
S--S

i
This solution is given by the formula

n

x C -I (d /dr sl)ri(t), C const
i-i

md its order is

n
m= Er

i.I--I

If a 0 there exists also a solution
n

rI
x- C H (d!dt s:t) t-1.

t--I

Polynomial and rational solutions of ODE have been studied extensively [17

25]. In [17] the author deals with the equation

r. alx (.t) 0
i-O

where a
S ai{t) have mth order derivatives in [a, b]. Let aio a

i
/ a

0
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(provided a
0 # 0) and aij (a+l,j_I + ai,j_l) / (al,j_I + a0,j_l)

(provided al,j_I + a0,j_I @ 0).

THEOREM 2.4. (Sapkarev [17]). Eq. (2.5) has a polynomial solution of degree

m if and only if

a{,m_I + a0,m_I 0.

THEOREM 2.5. (apkarev [17]). Eq. (2.5) has polynomial solutions of degrees m,

m + i, m + n i if and only if

+ aai+l,m-1 i,m-1
0 for i 0, I, n i.

Necessary and sufficient conditions for the existence of a maximal number of

polynomial solutions to algebraic differential equations are given in [18] and [19].

Existence of polynomial solutions of an equation of Linard type is studied in [20].

The equation w’ a0(z) + al(z)w + + a (z)wn with n polynomials as solutions is
n

considered in [21]. In a number of papers additions to Kamke’s treatise are made.

Thus, in [22] it is proved that for the generalization

n
x 7. (-l)i-itix(i) / i! + f(x(n))

i=l

of Clairaut’s equation the following are two solutions:

X E citi / i! + f(Cn)
i=l

where CI, Cn are arbitrary constants, and

n-I
x y + I Aiti,

i=l

where AI, An_I are arbitrary constants and f,(y(n)) (_t)n/n!. In [23] and

[24] rational solutions of Palnlev’s third and fifth equations are studied.

THEOREM 2.6. (Gromak, [23]). There exists a rational solution of the equation

2
YZw

4zww" zw’ ww + w3 + 8w + + z,
where 0, y 0 or 87 # 0, 0, if 8 2k, k 0, +-I +-2 ...; this rational

solution has 82/4 poles and -+ 1 zeros.

The work [25] concerns the study of properties of solutions to the complex

equation (I) Pf g, where
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m
P(z, 8 /z) E Pk(Z)

k;O

1k
i zk, / z ( / x i / y)

and g is a given holomorphlc or rational function. Various conditions guaranteeing

that the solutions of (i) are polynomial or rational functions of a certain type are

obtained. In the last part, differential equations of ’Euler type are considered.

THEROEM 2.7. (Nova[25]). Let be a simply connected open set in and u E .
If u is a regular singular point of P and every solution of Pf g in 0( {}),

with g e Ru(), is rational in with a pole at u, then P is normal.

Significant contributions to the study of asymptotic properties of the analytic

solutions of algebraic ordinary and partial differential equations are made in [6].

The main properties are the growth of an entire solution, the order of a meromorphic

solution and its exceptional values. In a certain sense, thls book completes the

fundamental monograph [26]. In the second chapter of [6], the author studies the

algebraic DE

P(z, w, w’) 0.

It is reduced to the form

P0(z w, --) -= r. QI(z ---) 0
W

(2.7)

where Qi(z, n) are polynomials In z and n. Let w(z) be an entire transcendental

solution of (2.6) and let be a point on the circle Izl r such that

Substituting w w(z), z in (2.7) and, dividing its terms by wn() gives, with

regard to Maclntyre’s formula [27]

f’ ()/f() rM’ (r)/M(r) K(r),

the equation
n

Q0({, K(r)) E Qi({, K(r))ji({).

From here it follows that

Q0(’ Z(r)) o(.i). (2.8)

The polynomial Q0(, K) is called the principal polynomial of Eq. (2.7), and (2.8)

is called the determining equation.
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THEOREM 2.8. (Strelitz[6]). The order and type of an entire transcendental

solution of (2.6) are equal, respectively, to the positive order Oj > 0 and type

of one of the solutions of the determining equation (2.8). Furthermore,

rllm K(r) /r ojpj, rllm In M(r) /r j.

The following proposition shows that not all of the numbers 01 indicated in Th. 2.8

may be the orders of the entire solutions of first order algebraic DE.

THEOREM 2.9. (Strelltz[6]). Algebraic DE(2.6) cannot have entire transcenden-

i i
tal solutions of order O < In general, cannot be replaced by a larger number:

there are equations of the form (2.6) that have entire transcendental solutions of

I
order

EXAMPLE 2.1. (Strelltz[6]). The equation

2 2
w + 4zw’ i

i
has an entire transcendental solution w cos / of order 0

The following result is of interest in this connection.

THEOREM 2.10. (Wittlch [26]). Let R(z, w) be a rational function of z and w.

1
A meromorphlc solution of the equation w’ R(z, w) which is of" order < is a

rational function.

In the second chapter of [6] it is also proved that the order of any meromorphlc

solution of a first order algebraic DE is finite. The orders of the transcendental

entire solutions of second order linear DE with polynomial coefficients have been

investigated in [28], [29], [30]. Suppose that P(z) and O(z) are polynomials of

degree p and q, respectively. Set gO i + max(p, q). Let p _> q + I. Then all

transcendental solutions of the equation

w" + P(z)w’ + Q(z)w-- 0 (2.9)

I
are of the order I + p go" If p _< q, all transcendental solutions are of the

i i
order i + q go" Deviation from this pattern can occur only if q < p _< q.

Here go I + p, and there are always solutions of this order; under certain

circumstances, however, a lower order q p + I may also be present.

THEOREM 2.11. (Hille [30]). If in (2.9) either P or Q is an entire



250 S .M. SHAH and J. WIENER

transcendental function while the other is a polynomial, then every transcendental

solution of (2.9) is an entire function of Inflnlteorder. This is not necessarily

true, however, if both P and Q are entire.

THEOREM 2.12. (Wittich [30]). In (2.9) suppose that P and Q are entire

functions and suppose that the equation has a fundamental system Wl(Z), w2(z), where

wI and w
2

are entire functions of order 01 and 02, respectively. Then P and Q are

polynomials.

Th. 2.12 may be regarded as a converse of Th. 2.11.

THEOREM 2.13. (Frei [31]). Suppose that in the equation

n (n-i)
w
(n) + 7. Pi(Z)W 0

i=l

the coefficients pi(z)(i i, 2, k) are polynomials, and Pk+l(Z) is an entire

transcendental function. Under these conditions the equation can have no more than

k linear independent entire transcendental solutions of finite order, whereas all

other solutions of the fundamental system are of infinite order.

The results by Frei, Pschl, and Wlttich on the growth of solutions of linear

DE are generalized in the third chapter of [6]. The main tool is the Wlman-Vallron

method, but the case when this method fails is also studied. Nonlinear algebraic

DE of the form P(z, w, w’ (n)
w 0 are investigated, too. A necessary con-

dition for some complex number a to be a defect value of a meromorphic solution of

finite order is P(z, a, 0, 0) 0. We already know that first order algebraic

DE have no entire transcendental solutions of zero order. In [32] it is shown that

there are algebraic DE of third order that have entire transcendental solutions of

zero order.

THEOREM 2.14. (Zimogliad [33]). A second order algebraic differential equation

P(z, w, w’, w") 0

(P is a polynomial of all its variables) cannot have entire transcendental solutions

of zero order.

THEOREM 2.15. (Shah [34]). Let f(z) be an entire solution of an nth order

linear homogeneous equation



ORDINARY AND FUNCTIONAL DIFFERENTIAL EQUATIONS 251

P0 (z)w(n) + + Pn(Z)W(Z) 0

where P. (0 < j < n) are all polynomials. Write max deg P. d and suppose that
3 0<j<n 3

deg PO deg Pn > max deg Pj, (1 _< j _< n 1). Thenf(.) is of order 1 and

exponential type T where

T lan / a
0

I/n

d
and a lira P (z) /z p 0, n. For cases when the condition on the degree of P

P z-o P
is not satisfied, see ([34, Th. 1.6]).

The Bessel function of integer order n, Jn(Z), satisfies the ODE

2w,, 2 2z + zw’ + (z n )w 0, and the Coulomb wave function FL(D z) satisfies the

ODE z2w + (z2- 2Nz L(L + l))w 0 (N a real constant, L a nonnegative integer).

For these functions we have log M(r, Jn r log M(r, FL) as r + .
Consider now vector-vM.ued functions F: 1/ I;m. Suppose that the components

fk(l <_ k <_ m) are all entire functions. Write

max !! F(z) lJ-llFCz) [l max {Ifk(z) J, I < k <m}, MCr, F)
IzJ=r

DEFINITION. A vector-valued entire function F is said to be of bounded index

(BI) if there exists an integer N such that

max II F (i) (z) I[ > !1 F(k)(z) Ii
i! k!O<i<N

for all z e I and k O, i, The least such integer N is called the index of F.

THEOREM 2.16. (Roy and Shah [35]). Let F: i / m he a vector-valued entire

function of BIN. Then

llF(z) II < A exp((N + i) Izl)

where A max 11 F(k)(0) !1 The result is sharp.k
0<k<N (N + 1)

The function F may be of BI but the components fk may not be of BI. In the next

theorem, it is shon that if F satisfies an ODE then F and each fk are of BI. Let

R denote the class of all rational functions r(z) bounded at infinity and Qi(z)
(1 < i < m) denote an m m matrix with entries in R. Write
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and

Qi(z) (a (z)), lira lapqpq,i i
(z) ]Apq l]

Z-Oo

sup (IApq,i], 1 <_ p, q

THEOREM 2.17. (Roy and Shah [35]) Let F: + be a ve-tor-valued function

whose components fl’ f are all entire functions Suppose that F satisfies the
m

ODE

(n) (n-l)Ln(W, z, Q) --w (z) + Ql(Z)- (z) + + Qn(Z)W(Z) g(z)

where g(z) is a vector-valued entire function of BI. Then each fk satisfies an ODE

areof this form (with possibly different n and coefficients), and F, fl’ fm
all of BI. If the entries of Qi are not in R then F may not be of BI.

THEOREM 2.18. (Roy and Shah [35]). Let w(z) 0 be a vector-valued entire

function satisfying the ODE

L (w, z Q) 0
n

Then we have:
n

(i) lim sup log M(r w) < max { i, m
ro r

iffil

where the numbers A
i

are defined above

(ii) If the elements of Qi(l <_ i < m) are constant, and p _> 0 is any integer

such that Fm In+P (n + p) (n +’p i) (.n+p Cp+ <_ i,

then the index N, of F(z), is less than or equal to n + p I. The bound on N is

best possible.

Next we compare these growth results with the corresponding ones for solutions

of algebraic difference equations.

THEOREM 2.19. (Shah [36]). Let P(t, u, v) be a polynomial with real coeffi-

cients. Let u(t) be a real continuous solution of a frst order algebraic difference

equation P(t, u(t), u(t + i)) 0 for t _> to Then there exists a positive number

A which depends only on the polynomial P such that

lira inf [u(t O.
t

e
2 (At)
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If u(t) is monotonic for t _> to, then

im ,,[u(t) 0.
t-+=o e2 (At)

Here e2(x) denotes exp(exp x).

The function e
2
(At) cannot be replaced by a function of slower rate of growth,

in general.

THEOREM 2.20. (Shah [36]). Let (t) be an arbitrary increasing function which

tends to + as t /+=o There exists an equation P(t, u(t), u(t + i)) 0 with a

real solution u(t) which is continuous for t _> tO and which exceeds (t) at each

point of a sequence {t such that t -+oo as n /.
n n

For further results see [37], [38], [39] and [40].

Let f(z) be an entire transcendental function. The (, x) index is defined as

J(xre f) max I =rg(xre f)

where (r, f) is the central index of the Taylor expansion

f(z) I f(i)()(z )i 1 !.

The author of [41] evaluates the (e, x) indices of entire transcendental solutions

of linear ODE with polynomial coefficients. On the basis of these results some

theorems concerning the distribution of values of these solutions are proved.

2.21. (Knab [41]). Let w(z) be an entire transcendental solution of

order 0 and type of an ordinary linear differential equation with polynomials as

coefficients. Let n(r, w c) be the counting function of the zeros of the function

w c (c const). Then

L llm SUPr_=n(r w c) /rp < Up.

In [42] the author considers the equation

p0(z)w" + pl(z)w’ + p2(z)w 0, (2.10)

where p0(z) # 0, pl(z) and p2(z) are entire and have real Taylor coefficients about

ny real point.

THEOREM 2.22. (Lopusans’kll [42]). Oscillatory real solutions of (2.10) have
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only real zeros.

H
THEOREM 2.23. (Lopusans kli [42]). Solutions of (2.10) are oscillatory if and

only if the function (z) w(z) /(z) maps the upper half-plane conformally onto the

unit disk, where w(z) Wl(Z) + iw2(z) and wj (z)(j I, 2) are two indenpendent real

solutions of (2.10), and their Wronskian is positive on the real axis.

The following characterization of the class HB(Hermlte-Biehler) of entire

functions having all their zeros within the upper half-plane is given in

THEOREM 2.24. (Lopusans’kii [42]). An entire function F(z) is of class HB if

and only if on the real axis it is a complex solution of an oscillatory equation of

the form (2.10).

The ODE w(n) (z) + Pn-2(z)w
(n-2) (z) + + p0(z)w(z) %nw(z) is studied in

[43], where p0(z), Pn-2(z) are polynomials of degrees m
0 ran_2, respecti-

vely, and % is a complex parameter. It is proved that the fundamental system of

solutions of the equation, determined by the identity matrix as initial conditions

at z 0, satlsifles the estimates

lw+/-(z, )I < ]I Iz lOexp=l’Xzi,
for all sufficiently large values of I%1 and Iz I. The value of 0 is defined by

max (m. i +n) /(n i),
u<l<n-Z

and c is some positive constant.

Asymptotic properties of the solutions of linear ODE with entire coefficients

are studied in [44]. Consider the equation

(n) (n-l)
w + an_lW + + a0w 0, (2.11)

where all the coefficients a
i ai(z)(i 0, I, n i) are entire functions.

Let f(z) be a meromorphic function in the z-plane. Denote: L(r, a, f)

Z+(If(z) al -I) if a @ L(r a f) maXlzl=rZn+If(z) if a oo.

The function 8(a, f) is defined as

8(a, f) lira infr_oL(r a, f)/T(r, f),

T(r, f) is the usual Nevanlinna characteristic function of f. The authors call

solution w(z) of (2.11) a standard solution if 8(a, f) 0 for all complex a # 0,
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TIEOREM 2.25. (Boiko and Petrenko [44]). Each fundamental system of solutions

of Eq. (2.11) contains at least one standard solution.

In [45] the author considers the first Palnlev equation w" 6w
2 + z whose

2 2
solutions are meromorphic of the form w i/ (z z0) (z

0
/10)(z z0)

i 3 z0)2 ,, ,, zo)n"(z z0) + I / (z (z), where (z) Yn--O n+2 (z

She represents w as a quotient of two entire functions:

2
w-- (u’2 uu") /u

where u exp (- I dz Jw dz), and then obtalns recursion relations for the coeffl-

clents of the power series expansions of the numerator and denominator.

(2.12)

In conclusion, we note that in some recent works [46-50] entire solutions to

DE of infinite order are discussed as well as properties of differential operators

in spaces of entire functions. In [46] the author studies the existence of a

solution to the equation 7n=0 anw(n)(z) f(z) whose growth equals that of the right-

hand side, in the case when f(z) belongs to the class B, of entire functions g(z)

such that Ig(x + iy) < cexp [(x) + (y)], for any x, y; here the functions (x),

(y) satisfy Hider conditions. Let (z) be an entire function on of exponential

type without multiple roots. Let My be the operator of convolution with (), where

is a -functlon. The following result is proved in [47].

THEOREM 2.26. (Napalkov [47]). Each entire solution w(z) of the equation

k-I

MkW=0 is representable in the form w(z) z Wl(Z + + w(z), where

Mwi
0 (i i, k), if and only if I(z) + I(1)(z) > cle

z e % with some constants c I, c
2

> 0.

In [48] the author studies the operator

P k
L w 7 p i(z)w(1)(z), pi(z) 7 aikz p > 0.
P i=0 k=0

for all

The operator L is said to be
P

(I) applicable to the set H of entire functions at the point z
0 if the series

7. 0pi(Zo)W(1)(z0) converges for any function w from H;
i=

applicable to H in the domain Iz < if L is applicable to H at(2)
P

finite point
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(3) strongly regularly applicable to H inside the domain Iz < if, for any

w e H and R < oo,

I M(Pi R)M(w(i),R) < ,
i=0

where M(f, R) sup { [fez)I: Iz I< R).

Let Q be a bounded simply connected region. In this remarkable paper the

author gives necessary and sufficient conditions for L to be applicable to the set
P

R(Q) of exponential functions whose Borel transforms are regular on C(Q). He proves

that if the operator L is applicable to R(Q) at p + i distinct points then
P

lim nla-k < i/asup
O<k<p n (2.12)

where a--sup { Izl: z e Q}. Conversely, if (2.12) holds, then L is strongly regularly
P

applicable to R(Q) inside Iz < =o, and maps R(Q) into itself.

In [49] the authors investigate the solvability of a class of functional

equations, containing as a particular case differential equations of finite and of

infinite order with constant coefficients, in the Banach space with weight of entire

functions

B(x,y {w(z) g Aoo llw II sup lw(z lexp(_(x, y)) < o.
z=x+iye

Here #(x,y) is a locally bounded function in R
2
with a certain growth for Izl

The author [50] treats an equation Lw f with L Z i>0Pi(z)di/dz i, where

the pi(z) are polynomials, deg Pi ni’ lim sup(n
i

/ i) < I, in a space [0, g(8)]

of all entire functions satisfying lim SUPr_ (Znlw(reiS) /ro) < g(8). Here g(8)

is a trigonometrically 0-convex function, 0 > 0. It is proved that L is a Noetherian

operator, its index is found and the space of solutions of the corresponding homo-

geneous equation is investigated.

3. DISTRIBUTIONAL AND ENTIRE SOLUTIONS OF FDE

Finite order distributional solutions (2.1) of linear FDE have been studied in

[15] and [51].

THEOREM 3.1. (Wiener [15]). The criterion for the existence of solutions (2.1)

to the system
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n
tx’(t) Ai(t)x(%it)

i=0

C
TM

with matrices A (t) in a neighborhood of t 0 and constants %i # 0 is that some

roots of the equation

n
det I I%iI-1% Ai(0 + ( + I)E) 0

i=0
(3.1)

be nonpositive integers. If m is the smallest of their absolute values there exists

a solution of order m.

From here it follows that the system

tx’(t) A(t)x(t) +
n

A (t)x(%it)
i=l

i

has a solution of order m with support t 0, if Ai(0) 0(i _> I) and m + is the

smallest modulus of the negative integer eigenvalues of the matrix A(0). This and

similar results were used in [15] to investigate finite order solutions of some im-

portant equations of mathematical physics. For equations with more general argument

delays we have

THEOR 3.2. (Wiener 15] ). The system

tx’(t) A (t)x( (t))
i=0

i i

C
m

in which A (t) c (t) g C has a solution (2.1) or order m, if the following
i i

hypotheses are satisfied: (i) the real zeros tij of the functions i(t) are simple

and form a finite or countable set; (2) A(k)(tij) 0(k 0 m), for tij # 0;

(3) m is the smallest modulus of the nonDositive integer roots of Eq. (3.1) with

’(0).

In [52] it was shown that, under certain conditions, the system

x’(t) Z A.(t)x(%.t)
n=0

has a solution

x(t) Z x tn)(t)
n

n=0
(3.2)

in the generalized-function space (S)’ conjugate to the space S of testing functions
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(t) that satisfy the restriction [2]

n n’’l(n)(t)l < ac n > i.

To ensure the convergence of series (3.2), it is sufficient to require that for n/

the vectors x satisfy the inequalities
n

since

II x
n II < bdn n-n0, 0 >

Z < x (n)(t), (t)>ll II Z (-l)n (n)

n=O n n=O
(0)x [1 <

n

< l l(n)(o)l 11 x
n I] < ab Z (cdn-O) n <

n=O n=O

for < 0. If series (3.2) converges, its sum represents the general form of a linear

(So)’ with the support t 0 [53]. Solutions in (So)’ of some linearfunctional in

ODE with polynomial coefficients were studied in [54], [55], [56]. The particular

importance of the system

m
l I (Aij + tB..)x(J)(%it tx(%t)
i=0 j=0 13

which was considered in [15] is that depending on the coefficients it combines either

equations with a singular or regular point at t 0 and in both cases there exists a

solution of the form (3.2). The equation

tx’ (t) Ax(t) + tBx(%t) (3.3)

provides an interesting example of a system that may have two essentially different

solutions in (SOB) concentrated on t 0. If the matrix A assumes negative integer

eigenvalues, (3.3) has a finite order solution (2.1). At the same time there exists

an infinite order solution (3.2), if A @ -nE for all n > I. In [3], [16], [57], and

[58] the foregoing conclusions were extended to comprehensive systems of any order

with countable sets of variable argument deviations. The basic ideas in the method of

proof are applied to investigate entire solutions of linear FDE.

THEOREM 3.3. (Cooke and Wiener [3]). Let the system

m
l I A. (t)x (j) (t)) 0
i j=O lj (%ij (3.4)
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with a finite number of argument deviations, in which x is an r-vector and Aij are

r r matrices, satisfy the following hypotheses.

(i) The coefficients A..(t) are polynomials in t of degree not exceeding p:

P

Aij(t Y. A
.k
tk A00(t) At

p
p > i.

k=0 i

(ii) The real-valued functions %.. (t) E C in a neighborhood of the origin,

%ij(O) 0 and

(0).o< Ioo < t, al >_, + >_t, a
(iii) The matrix A is nonsingular and

c IO0 I-p-1 ]l AII Iol-P-Xll Aiop I! > O.
i>l

Then in the space of generalized functions (S)’ with arbitrary > there exists

a solution x(t) supported on t 0.

In [3] it is also proved that system (3.4) with a countable set of argument

deviations has a solution (3.2) if, in addition to the conditions of Th. 3.3, there

exists a neighborhood of the origin in which each function %ij (t) has the only zero

-I
t 0 and the series Y. A

i
converges, where

i=
i

A. max II Aij k II inf ij i + j > I.
j,k

i
j

The choice of the coefficients in (3.4) enables us to consider both equations with a

singular or regular point and to show that distributional solutions of FDE may be

originated by deviations of the argument. The authors of [3] also investigate the

system
m

tPx ’(t) E EoAij(t)x(j)(%ij(t))i=0 ]=
(3.5)

the particular cases of which

tPx ’(t) A(t)x(t)

and

tPx ’(t) I A (t)x(%it)
i=O

i

have been studied in [56] and [57], respectively.

THEOREM 3.4. (Cooke and Wiener [3]). Suppose that system (3.5), in which x is
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an r-vector and Aij are r r -matrices, satisfies the following conditions.

(i) The A..(t) are polynomials in t of degree not exceeding p + j 2:

p+j -2

Ai-’3(t) Z Aijktk p __> 2.
k=0

(ii) There exists a neighborhood of the origin in which the real-valued functions

%ij g C1 have the only zero t 0 and lio _> I, inf lij > i, for i _> 0, j _> i,

ij ij (0).

-i
(ili) The series Z . A. converges, where

i=O

a. inf [aijl’ A
i Aij kl

j j,k

Then there is a solution of (3.5) in (So)’ with some > supported on t O.

The deep study of narrow classes of FDE, and even individual FDE, continues to

remain one of the main problems. First of all, such equations can have some special,

for example applied, interest. In addition, we can work out on them in the first

instance methods of studying properties that are similar to properties of equations

without deviation of the argument and are essentially new for equations with devia-

tlon, and then try to extend these methods, and the results obtained, to a broader

class of FDE. In a number of papers [60-66] various authors have continued the study

(originated in [59]) of the solutions, especially their asymptotic behavior as t 0

or t / , of the equation x’ (t) ax(%t) + bx(t), which arises in certain technical

problems, and also of systems and some more eneral equations of similar form. These

works concern principally real solutions.

The author of [’67] attacks complicated equations with elegant analytical tools.

He investigates analytic solutions of the FDE

r s (j) (zqk)Z Z a kW 0 0 < q < I,
j--O k=O j

with constant coefficients ajk. Its formal solutions are obtained in the form of

Mellin or Laplace integrals. The functions occuring in the inte.rands satisfy linear

Znof the form
v--0 P (qt)G(t + v) 0 (P(y) polynomials).difference equations

Properties of solutions of such difference equations, in particular the location oF
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singularities and the asymptotic behavior for absolutely large values of t, are

studied. Conditions are derived for formal solutions of Mellin integral type to be

actual solutions and these are shown to be often expressible as power or Laurent

series. Solutions of Laplace integral type are shown to be representable as

Dirichlet series under certain conditions. Finally, questions as to when the llne

of convergence of the Dirichlet series is the natural boundary of the function re-

presented are discussed. The author asserts that the methods used can be extended

to the case when the coefficients ajk are polynomials in z, and to some more general

equations.

In [68] the growth of entire solutions of the FDE

m
I akDkw(%m-kz) 0, D d/dz

k--0

is estimated by means of a suitably constructed comparison function. 9urthermore, an

expllcie representation of all entire solutions is given which in certain cases

leads to conclusions concerning loations and multiplicity of the zeros of particu-

lar solutions. Finally, the growth of the maximum and minimum modulus of the

solutions is compared which implies an estimate of the number of zeros. The FDE

m
Lw(z) I akDkw(%m-kz f(z), (3.6)

k=O

where a
k

are complex numbers, is a fixed parameter, 0 < < i, and the unknown w

and the right member f are entire functions, is considered in [69]. Introducing a

generating function

G(z) I G z
n

G %n(n-l)/2/n!
n nn=O

the author shows that the general solution of (3.6) for f 0 is given by

w(z) 2z--- G(tz)(t) dt,

with (t) q(t)/A(t), where

A(t)
m

ak%k(2m_k_I)/2 k
l t

k=0

q is a polynomial of degree <_ m and F is a contour enclosing all the zeros of A.
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A similar integral representation is given for a solution of (3.6) with f # 0 in

terms of the generalized Borel transform

when

n+l
(t) 7. f / G t

n nn=O

f(z) Y f z
nn=O

In [70] the author discusses the system w’(z) Aw(lz), 0 < I < i, where A is a corn-

plex constant matrix. First, the form of all entire solutions is given. Subsequently,

for z # 0 a special system of particular analytic solutions is constructedhymeans of

which all other solutions may be represented. The asymptotic properties as z of

all solutions are investigated. Furthermore, it is shown that given a specific

asymptotic behavior, there is one and only one solution which possesses that asymp-

totic behavior.

Given the equation

m
w" (z) + E a

kk=l

n

(z)w’(IkZ) + 7. b (z)w(jz) 0,
j=l

j

where ak(z), bj(z) are entire functions of finite order < 0 and the constants Ik, j
are in the set 0 < zl < I, the author [71] shows that any solution w(z) is also of

finite order < 0. As a special case he discusses the equation w"(z) + p(z)w(Iz) O,

where 0 < I < and p(z) is an entire function of finite order taking real values on

the real axis, and derives an estimate on the type of a solution w(z).

The author of [72] studies properties of solutions to equations of the form

m
w’(Iz) 7. ak(z)wk(z), (3.7)

k=O

where ak(z) are entire functions such that T(r, ak) o(T(r, w)) as r , and I is a

complex number, Ill o, where T(r, w) is the Nevanlinna function. He establishes

the following

THEOREM 3.5. (Mohon’ko [72]). Let w(z) be an entire solution of (3.7). If

m= i, then w(z) is of zero order, and if m > then In T(r, w) (Zn m/ In o) Zn r

asr .
The problem
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n n
I a.w (i)(z) exp(ez) Y b.w (i)(%z),

1 1
i=O i=O

(i)
w (0) wi, i 0 n- i,

in which ai, bi, e and I are complex numbers, has been studied with various

assumptions concerning parameters [73-77]. It is proved in [75] that, if III I,

I # and anl > b its solution is an entire function. If III < i, #n

and II C II < I, the solution of the matrix problem

W’(z) AW(z) + exp (z)[BW(lz) + CW’(lz)], W(0) --W
0

is an entire function of exponential type [76]. These results were extended to lin-

ear FDE with polynomial coefficients and countable sets of argument delays in [7],

[3] and [58]. The method of proof employs the ideas developed in the theory of

distributional solutions.

THEOREM 3.6. (Wiener[58]). Suppose the system

p
W (p)(z) Y. Y. Qij(z)W(J)(lijz)’

i=0 j=0

W (j)(0) Wj, j 0 p

in which O and W are r r matrices, satisfies the following conditions:

(i) QiJ (z) are polynomials of degree not exceeding m;

(ii) lij are complex numbers such that

(3.8)

0 < ql < llijl < i, (j 0 p i), 0 < q2 < llipl < q3 < I;

(iii) the series I o(i) converges, where Q(i) max II Qijk II and Qijk are the
j,k

coefficients of Qij(z), and E II Qip(O) II < i.
i=O

Then the problem has a unique holomorphic solution, which is an entire function

of order not exceeding m + p.

THEOREM 3.7. (Cooke and Wiener [3]). If, in addition to the hypotheses of Th.

3.6 the parameters lij(0 _< j _< p- I) are separated from unity:

0 < ql < --llijl --< q4 < i, the solution of (3.8) is an entire function of zero order.

THEOREM 3.8. (Cooke and Wiener [3]). Under the assumptions of Th. 3.3 there

exists a polynomial Q(z) of degree p such that the system

k m
E I A (z)W (j)

i=O j=O ij (ij z) Q(z)
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-I
with positive constants .. has a solution W(z) regular at z and W(z is an

entire function of zero order.

THEOREM 3.9. (Wiener [51 ]). The problem

W’(z) i=OZAi(z)W(z ai) + Z Bi(z)W’(z bi)’
i=O

lim W(z) W
0

Rez/-oo

#ith r x r matrices A, B, W has a unique holomorphic solution which is an entire

function if
m m

(1) A
i
(z) 7. AikekZ kz

Bi(z) Y. B e
k=O

ikk=l

(ii) ai, b
i
are complex numbers such that

0 _< Rea.l < MI < oo, 0 < M
2 _< Rebi _< M3< oo;

(iii) the series I A
(i) -Rebo

1(i)
and Z B e converge where A(1)

_Rebi
B
(i)

max II Bik II, and Y. II Bi(0) I[ e < I.
k i=O

max II Aik II,
k

The authors [78] propose a method for finding polynomial solutions of the

linear neutral FDE
n

x’(t) bx(t) + 7. a.x’(t- ri),
i=l

where b, ao and r. > 0 are given constants. Meromorphic solutions of a class of
1

linear differential-difference equations with constant coefficients are investigated

in [79]. Numerous examples of FDE admitting entire solutions may be found in [40]

and [80].

In conclusion, we mention papers [81] and [82], where singular integral equa-

tions have been studied in spaces of generalized functions. However, it should be

noted that, perhaps, the first work of this kind was [83].
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