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ABSTRACT. This paper presents a numerical method for finding the solution of

Plateau’s problem in parametric form. Using the properties of minimal surfaces we

succeded in transfering the problem of finding the minimal surface to a problem of

minimizing a functional over a class of scalar functions. A numerical method of

minimizing a functional using the first variation is presented and convergence is

proven. A numerical example is given.
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1. INTRODUCTION.

In this paper, we present a method for the numerical solution of the Plateau

problem in parametric form. Sp.ecifically, we seek a minimal surface spanning a simple
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closed curve in 3-dimensional space. If the curve is planar then the problem reduces

to that of finding a conformal mapping onto its interior.

To the numerical analyst the Plateau problem presents a formidable challenge. In

the non-parametric case, when the surface and bounding curve admit of a single-valued

projection onto an x,y plane, the problem reduces to solving the minimal surface

equation

2 2
(i + z )z 2z z xy + (i + z )z 0

y xx x y x yy
(.i)

for the height z(x,y) of the surface above the x,y plane, and for boundary values

defining the given bounding curve. Finite difference iterative schemes for(l.l)have

been examined by Concus [2] and Greenspan [3], [4 ].

In the parametric case, where the surface is not assumed to admit a single valued

planar projection, a vector function representation x(u,v) (x(u,v),y(u,v),z(u,v))

is used. Here x(u,v) is defined on a domain P in the (u,v) plane whose

structure determines that of the surface. By a theorem of Weierstrass [5] the problem

becomes one of finding x(u,v) such that

A. kx= O, on

-+2 -+2
B. x x x x 0 on

U V U V

C. x maps the boundary of onto the bounding curve(s) of the surface in a

monotonic fashion.

A numerical scheme for simultaneously attaining A,B,C cannot be easily derived, for

although B is in fact a boundary condition for A [I], it is not clear how one may

work with C

In the following we introduce a method for computing the solution of this

problem. The method depends on our recognizing the solution as a function minimizing

the Dirichlet integral over all functions satisfying C Similar to the method of

safe descent of R. Courant [I], we define the Dirichlet integral as a functional d(g)

on a class G of scalar functions g which determine the manner in which the surface

is "sewed" onto its bounding curve. The percise definition of this functional is

given in section 2. In section 3 the derivation of the first variation of d(g) is

performed, and as an obvious consequence we see that a stationary value for d(g)
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defines a minimal surface. In section 4 we define a method for minimizing d(g)

based on the use of the first variation; we then prove the convergence of the method

and discuss its computational implementation, which is described in section 5.

2. DEFINITION OF d(g).

Let C be a simple closed curve in (x,y,z) space of length 2 given by

C: x h() 0 < < 2 (2.1)

for arc length o. We assume that h is twice continuously differentiable with

h’(O) h’(2), h"(O)= h"(2) Let t(o) b(o) n(o) () be the tangent,

binormal, normal, curvature and torsion of C respectively. Let P be the unit

circle in the (u, v) plane

(2.2)

with boundary

2
v
2

F: u + i (2.3)

and closure U F

A vector function of u,v on is denoted by a lower case letter such as

x(u,v) while the same function referred to polar coordinates on , u r cos ,
v r sin is denoted by the corresponding upper case letter:

(x(u,v) r,) 0 <_ r <_ i 0 <_ 8 <_ 2 (2.4)

For any sufficiently smooth functions x,y, the Dirichlet integral D of x

over P is

2 + x )du dv (2.5)D [x] (^u
while the Dirichlet inner product is

D[x,y] (XuYu + XvYv)du dv (2.6)

It is known [i] that a vector function x X exists on for which

conditions A,B,C hold. Horeover by the twice continuous differentiability of h

and the extension of Kellogg’s theorem to minimal surfaces [6], [7], (1,8) has a

HIder continuous first derivative with respect to

IX8(1,8+5) X8(1,8) <_ Sv (2.7)

with ,v the HDlder constant and rdlder index, respectively. Specifically

THEOREM i. There exists a function x(u,v) satisfying the following conditionm
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i.I. x is continuous on

1.2. &x 0 within t)

2 2
1.3. x --x in

u V

1.4. x x 0 in l)
u V

1.5. X@ (1,@) "s tt6"lder continuous and obeys (2.7) for some values of

x maps F onto C in a monotonic one-to-one fashion;

1.7. D[x] <

1.8. For the function x(u,v) the Dirichlet integral (2.5) attains its

least value among all functions satisfying 1.1-1.4,1.6,1.7.

LEM[A i. Condition 1.5 implies 1.7 for any harmonic function x Furthermore

D[x] < M (2.8)

with M a constant dependent only on v

PROOF: By 1.5, X(I,) admits of a uniformly convergent Fourier series

expansion

a0x,e.__. - + cos j8 + 8. sin j@)
j=l

furthermore by a simple calculation

2

(Xe(l,8 +) (l,8))cos jedej
0

2
1

X@(l,@))sin jj = (x(, +)
0

whence

(2.9)

It is known [i] that the Dirichlet integral exists if and only if the series

j(j2 + j
j=l

(2.10)

converges, and if so, its value is given by the series. However it is clear that if

(2.9) holds then (2.10) does converge, and

8M2V+l 2 i
D[x] < [ l+2v

j=l J
=M
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the lemma is proved.

Let be the collection of functions satisfying I.i, 1.2, 1.5, 1.6. Let

x X be any function of By 1.6 there exists a monotonic function g(0)

0 < 0 < 2 for which

and

X(1,O) h(g(O)) (2.11)

g(0) =0, g(2) 2

Moreover, by 1.5 g(O) has a continuous derivative g’ () satisfying

0(i,8) -{(g(O))g’(O)

with t the unit tangent vector. Hence

g’(e) Ig’ (e) Ie(1,0)1
and

Ig’ (o + 5) g’ (O) I1e (z,o + )1 Ie (,,o)ll

<_ IXe(.,e + ) XeCZ,e)
< a5

v

(2.12)

(2.13)

we conclude:

THEOREM 2. Any function x of defines a monotonic r61der continuously

differentiable scalar function g(%) satisfying (2.11). We will refer to this

function as the boundary correspondence function for x

Let G be the set of all functions g(0) on [0,2] with HDlder continuous

first derivatives, obeying (2.12). Any g ( G defines harmonic function x X

satisfying (2.11). Moreover by the assumptions on h ,(i,0) has a rOlder continuous

derivative with respect to O whence by lemma i,

D[xl <

Since any function g 6 G defines in this way a unique x 6 and conversely, we

can equate the problem of minimizing the Dirichlet functional over with that of

minimizing the scalar functional

d(g) D[] (2.14)

over g G
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3. THE FIRST VARIATION OF d(g).

We now calculate the first variation of d(g) Specifically, let g* be a

function of G for which d(g) assumes a stationary value. Let () be any

Older continuously differentiable function for 0 < < 2 with (0) (2) 0

and let 6 be any parameter. Then

6(6) d(g* +

assumes a stationary value for 6 0

THEOREM 3. 6(6) is differentiable for 6 0 Moreover

2

(5’(0) 2 Xr(l,)t(g*())(@)d
0

with X defined by (i0) for g g*

(3.1)

PROOF Clearly

(g* + 6) (g*) +

g*+6

t ()de

ge

(3.2)

_-t_l
Let X,X satisfy X(l,) (g*()), i(i,)= (g*()+ 6(@)) Then

X + 66
for 6 the harmonic function on for which

Clearly

g, (e)+6,q (e)

6(i, 0) 7 t(o)do

g*(e)

6(0) d(g*)

6(6) d(g* + snq)

Moreover

(5(6) (5(0) + 26D[,’,6] + 62D["’c] (3.3)

By Gauss’s theorem

by the continuity of t

2

D[X,Y (1,e) 6(1 e)de
r

0

6(1, e) (g,(e)),q(e) (1,e) (3.4)

uniformly for 6 0 whence
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D[-’-e]- f r(l’e)(g*(e))(e)de
0

LEMMA 2. D[] is uniformly bounded for all s as 0

PROOF. As e 0 the function e converges uniformly on F according to

(3.4). Using the Frenet formulas, we see

Ye(l,e) t(g, + ) +

g
(o) n(o do

But then if g*’ (e) is H61der continuous with index v then YO is rdlder

continuous with r61der index v and r61der constant independent of e which

implies, by lemma i,

D[e] < M (3.5)

with M a constant independent of e By the uniform convergence of e to Y

in F and hence on D and the lower semi-continuity of the Dirichlet integral

(3.5) implies

D[] < M (3.6)

proving lemma 2.

Rewriting (3.3) as

5() 5(o)
2D[X,Y + eD[e]

we see by (3.4), (3.5), that the limit of the left hand side exists for - 0 and

(3.1) is proved.

LEMLA 3. If a stationary value for d(g) is attained for some g* G then

g* defines a minimal surface.

PROOF. If

D[X,] 0

for all () then by the fundamental theorem of the calculus of variations
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(1,e)-(g(e)) 0
r (3.7)

which by (23.3) implies

Xr(l,8)X8(1,8) 0

However, by a standard argument [8], (3) implies that

(3.8)

deflnes a minimal surface

on 0 and the lemma is proved.

4. AN ALGORITHM FOR MINIMIZING dg.)

We now derive an algorithm for solving the problem

min.d (g) (4.1)
gG

numerically. The algorithm rests upon a Raylelgh-Ritz type of approach, in which we

solve (4.1)over a sequence of finite dimensional subsets of G yielding a sequence

of functions converging to the solution. At some stage in the algorithm we will need

to require that a "three-points condition" in which three given points of F are

mapped into three given points of C is obeyed. Since can be mapped conformal-

ly onto itself by a Mobius transformation in which the images of three given points

can be preassigned, while a function g G can be considered as mapping F onto

itself, a three points condition can always be attained through the composition of

two elements of G In addition the Dirichlet integral is invariant under the

Mobius transformation. In order to guarantee convergence of the algorithm we impose

an additional smoothness assumption on the curve C and as a consequence, on the

functions of G We also assume that a minimal surface solving (4.1) has no branch

points on the boundary.

For the purposes of this section, we will assume that the function h of (2.1)

has a HDlder continuous second derivative. Again using the extension of Kellogg’s

theorem to minimal surfaces, we see that a solution g* to (4.1) has a HIder

continuous second derivative. We now redefine the collection G as the set of all

monotonic twice differentiable functions g obeying (2.12) and having a HIder

continuous derivative of second order. Let
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inf.
g gS d(g) d(g*) (4.2)

Let go be any function of G Then g* go vanishes for 8 0,2 and has a

HDlder continuous second derivative. Hence g* go has a uniformly convergent

Fourier series expansion
a
0

g* go [ (aj cos j8 + b sin iS) +- (4.3)
j=l

j 2

moreover by calculations identical to those used in deriving (2.9).

aj bj <-- 2+y
j J

(4.4)

while

la01 < 8
2 (4.5)

where 7 are the H’Older constant and 61der exponent, respectively. Clearly

now the series in the relation

a
0

g* go +-- + [ (aj cos j@ + b. sin j@)
j=l J

(4.6)

can be differentiated termwise, since the resulting series itself converges uniform-

ly, obtaining

g*’(8) g(e) + [ (-jaj sin j + jbj cos jS)
j-1

(4.7)

If we make the (reasonable) assumption that the minimal surface defined by g*

has no branch points at the boundary, then for some possitive constant

g*’(8) >_ oo
0 > 0 0 <_ 8 < 2 (4.8)

Let
a
0

n
S (@) - + I (aj cos j8 + b. sin j@)
n

j=l 3

then by (4.8) and the uniform convergence of the series n (4.7),

LEMMA 4. The sequences [go + Sn] [g + S’]n converge uniformly to g* g*’

respectively, on [0,2] for n sufficiently large, go + Sn is monotonically

increasing.

Finally, using the methods of section 2,
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L4MA 5. d(g0 + Sn) d(g*) as n-

PROOF. This assertion is easily proved by obtaining estimates of the form (2.9)

which under the heightened soothness assumption for h attain one higher power of

[/j Clearly the Fourier coefficients of h depend continuously (in the L2-norm)
on the argument of h while by these estimates the series (2.10) converges

uniformly; hence this series, which is equal to the Dirichlet integral, depends

aontinuously upon the argument of h thus proving our assertion.

Before describing our algorithm we will turn to some properties of functions of

the form ^ + S
n

For any constants A. B let
3 J

A
0

n
T (0) g0(e) + -+ (Aj cos j0 + B. sin j0)
n

j=l 3
(4.9)

LEMMA 6. Suppose that for 0 < 0 < 2n the function T (0) is monotonically
n

increasing. Then

4
IAjl Bjl <_ n-3 (4.10)

PROOF. If T is monotonically increasing, then
n

n

go(e) + (-jAj sin j0 + jBj cos jO) >_ 0
j;1

(4.11)

For all k 1,2, ...... I + cos k0 > 0 Multiplying (4.11) by this function and

integrating over [0,2] we obtain

2

’(0)co" k0 de + knB
k

02 + go
0

or

B
k >_-4/k

Similarly, multiplying by -i + cos k8 < 0 we find

B
k
< 4/k

or

IBkl <_ 4/k (4.12)
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In the same way, multiply.ing by (+ i + sin ke) and integrating over [0,2] we

obtain

and the lenna is proved.

IAkl < 4/k (4.13)

Let M denote the ollection of functions T (e) for which (4.10) is
n n

satisfied. Let C denote the subset of M consisting of those T for which
n n n

^ + T is monotonic. Let denote the subset of the 2n + dimensional
n n

Euclidean space of vectors

2n+l (A0’AI’BI An’Bn) (4.14)

satisfying (4.5), (4.12), (4.13). Then Mn is closed and bounded. Let Cn
denote the set of vectors (4.14) for which

_
+ T is monotonic, or lies in C

n n

Then C is closed and convex.
n

For any n 1,2,..., let

6 (2n+l) d(g0 + Tn) (4.15)

with s
2n+l Tn defined by (4.9), (4.14). Using the methods of theorem 3 we find

THEOREM 4. The function 6(2n+i) is lower semi-continuous, and has partial

derivatives with respect to each of its independent variables; moreover

2

2 r(l’e)t(g0 + Tn)COS je de

J 0

(4.16)

3B.
]

2

2 f r(l’e)(go + Tn)sin je de

0

(4.17)

where (l,e) (g0 + Tn)

By the lower semi-continuity, 6(e2n+l) attains a least value on the closed

bounded set Assume this is attained at a point e* whence
n 2n+l

inf. 6( 6(e* 6" (4 18)n 2n+l 2n+l 2n+l
n
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An algorithm for the solution of (I) can now be defined in the following steps:

I. Using a gradient search type method [9] which rests on (4.16, 4.17)

find a value 6* solving (4 18)
2n+l

II. This value defines a monotonic function go + T*n (by (4.9)) which

minimizes d on C
n

inf.
d(g0 + Tn) d(g0 + T*) (4.19)

C n
n

III. Using a Mobius transformation of R onto itself, derive a monotonic

* satisfying the three-points condition; clearlyfunction gn

n d(g) (4.20)

* defines-a function X* such thatIV. gn n

X*(l,0) h(g*n(0))n

and

n D[] (4.21)

V. Clearly

n+l < n n 1,2,... (4.22)

* the three points condition and (4.22),Vl. By the monotonicity of the gn
there is a subsequence of the functions {Xn} which converges uniform-

ly to a function .. ([i]).

THEOREM 5. D[z] for defined by (4.2).

PROOF. For n sufficiently large, go + Sn belongs to Cn Hence

< D[] <_ n < d(g0 + Sn)

and by lemma 5, our claim is proved.

5. NUMERICAL EXAMPLE

As an example of an application of the results in the previous sections we

consider the followng.
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Let C be a simple closed curve in (x,y,z) space of length 2 given by

C X e) 0 < e < 2,

where

h(8)

(o, o, o) e ([o, -]

(-, o--$, o) e (I-j, - ]2(- e, , o) e [ , ]

4(o, , e- ) e E[., .]

5 4 5(o, -e, 5) e ([5,

5
(0, o, 2R- e) e ([7 "’ 2.]

(1, O, O) 0 ([0, -]

2
(o, l, o) o [-, -$.]

2
(-i, o, o) e ([-j, 1

h’ (E)) T(e) /
(o, o, l) e ([, -f.]

4 5
(o, -]., o) e [-j , -j 1

(0, O, -1) e [-,, 2R]

T(e) (TI(e) T2(e) T3(e))

(5.2)

Our problem is to find a minimal surface spanned by a curve C

Let k AI , BI Bk be given. The function g(O) will be

A
0

k
g(0) 0 + - + Y. (Aj cos j0 + B. sin j0)

j=l 3

The monotonicity of g (1emma 6) demands

4 4
j< A. B.<

-j
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while we can guarantee

g(e) 0 g(2) 2

by choosing
k

A
0

-2 A..
j=l J

(5.3)

Let the function (e)= (g(e)) and (e) (Hi(e) H2(e) H3(e))

Now we solve the Laplace equation

AX 0 (5.4)

on the domain D with the boundary condition X(l,e) (e) (see Eq. (2.11)).

Define the mesh points in the r e plane by the points of intersection of

the circles r ih (i O, 1,2, i0, i
0
+ i N) and the straight lines

e jSe (j 0,1 M)

X
2

X3 for 0 < i < i
0

1Let (ih,j6e) (X
,j, i,j’ i,j

The value of X,j
i <_ j <_ M and 1,2,3 are obtained from Poisson’s integral

i f (i- (ih)2)H()
d (5.5)X,j

i + i2h2 2(ih)cos( j6e)

We compute the integral of Eq. (5.5) by the compound Simpson’s rule.

To obtain the value of Xf for N > i > i0 i < j < M 1,2,3 we use

the following.

Consider Laplace’s equation in polar coordinates

82X 1 82X+ i_ 8X +
r2 r 0r 2

r 2
0 1,2,3 (5.6)

Then Laplace’s equation at the point (i,j) may then be approximated by

Xi+i,j 2X’ + X" I (Xi+l,.-. Xi-l,j),j -l, +_ +
h
2 ih 2h

I (X j+i 2X" + X"
,j ,j-i

2 2
(ih) (e)

=0 (5.7)

giving
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(l )Xi_l, j
i .

2(1 ++ ( + i-f xi+1, j
1 x. + 1

(i58) 2 i,j-i (i58)2

(i68)
2)X, J

xi,j+I 0 (5.8)

If these equations are written out in detail for i i
0

i
0
+ I,...,N and

j 1,2,...,M and by using the relation

X,j Xi,j+M (5.9)

then it will be found that their matrix form is

Ax d (5.10)

where X d are column vectors whose transposed are

X
. X0+I Xn(x., ),
10

where

( I’ 2 ,M i0 <- k <_ N (5.12)

i
dI (i

2(i0 I) )xi0-I (5.13)

d
2

d
3 dN_I 0 (5.14>

dN (HI ) Hj H(J68) (5.15)

The matrix A is given by

i
(i +)I

D
2

(i + 2--2 I

i
2 (N i)

) I DN_1

i
(i )I

(i+

D
N

(5.16)

where each D and I are M x M matrices and
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a
t a

t

at -2- 2ag ag

a

at -2- 2a& a
-2- 2ag

2(e)

To solve Eq. (5.10) we use the same method as in [i0].

We factorized the supermatrices in the form

A =LU

(5.17)

(5.i8)

L

and

L2 I

LN I

U

UI VI

U
2

V
2

iUI D
1

V
1 (i + )I

UN_I VN_I
U
N

(5.19)

i I )D-I(i- m)m_iD
I

Vm Dm (i- m-l(l +m

m>l

1V
m

(i + 2-f-.m)

i
2(m- i)

(5.20)

This method has been described by Wilson [Ii] though not actually for elliptic

difference equations but for equation of a similar form.

To solve Eq. (5.10) we first solve the following equation

LY d Y (YI YN (5.21)

The solution of Eq. (5.21) is given by
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YI dl (see Eqs. 5.13-5.14) (5.22)

Yk -Yk-1 N i >_ k >_ 2 (5.23)

YN dN LNYN-I (5.24)

Now we solve the equation

UX Y (5.25)

by solving the following equations

U-- YN (5.26)

UN-j-j + VN-jXN-j+I YN-j N i >_ j >_ i (5.27)

Thus we obtain the values of X. for all I < i < N i <_ j <_ M We do these
,3

calculations for 1,2,3

In the next step we calculate the values of
8X 8X

at the points
8r 88

(i,j) i i N+I j 0, i ,M by standard difference equation method, then

we compute the integral

=f x.2 ] ox2]D [(----) r + E- }dr de,
=i

(5.28)

by approximating it by a generalization of Simpson rule [12].

In the third step we compute the value

E max [ [8--)
<_M -- .X.

N+I,j [8---)N+I,j (see Eq. (3.8)). (5.29)

In our example we first compute the value of the integral D and of E We

do this by choosing of {Aj } {Bj } (j I, k) in a random way and such that

{Aj} {Bj} satisfies Eqs. (4.12), (4.13). For IEI not sufficiently big we stop

the random process and then we use gradient method [9].

To use the gradient method we calculate the value of the gadient by approxi-

mating the integrals
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(5.30)

2

0B0---- 2 / ____OX (l,B)T(g(B))sin j dB (5.31)
j =I 0

As before we approximate the integrals (5.30), (5.31) by the compound Simpson’s rule.

We halted our process when the values of IEI were smaller than

In the following table we see the numerical results for 2 10
-3

k I0

and N 21 M 31 i0 I0

In Table I we present a selected result that was obtained by random choices of

Aj Bj In Table II we see selected results that were obtained by using gradient

method. The intial value of {Aj} {Bj} for the gradient method are the best

results obtained by random selection. In Figure I, we show the =Linimal surface

drawn from the values of X,j and using the closed curve C given in (5.1).

Figure
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Table I

Calculations by Random Choice for the Coefficients of (Aj,Bj)

Value of Value of
Integral D IEl
134598. 84615 30000. 70486

12036. 91971 246.44 340

18ii. 33271 1238. 02080

711.49210 18.52716

272.28744 78.04352

256.88041 42.43274

181.60385 43. 24106

i01.73822 59. 3020]

73. 75771 20.54170

53.35582 9.87578

49.01988 13.00610

33.56237 16.20803

24.76756 9.08349

14.99357 12.11406

9.34689 6.42093

8.00960 9.95630

7.97180 4.27323

7.00766 6.51285

6.67786 3.15938

5.42465 3.54083
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Table II

Calculations by Gradient Method for the Coefficients of (Aj,Bj)

Value of Value of
Integral D El

5.42465 3.54083

5. 33672 2.86892

5.11811 2.57031

4.96691 1.05302

4.87354 0.47714

4.77961 0.34489

4.75412 0.68156

4.703091 0.81391

4.59962 0.46404

4.58185 0.45846

4. 50000 O. 39333

4.41726 0.32073

4.38645 0.22813

4.32602 0.19501

4.30832 0.24215

4.28768 0.36908

4.24679 0.22170

4.23814 0.13596

4.13554 0.02041

4.085048 0.00174
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