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ABSTRACT. A class Tk of analytic functions in the unit disc is defined in which the

concept of close-to-convexity is generalized. A necessary condition for a function f

to belong to Tk, raduis of convexity problem and a coefficient result are solved in

this paper.
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1 INTRODUCTION

This paper is directed to mathematical specialists or non-specialists familiar

with multivalent functions [i], and to close-to-convex functions [2].

Let Vk be the class of functions of bounded boundary rotation and K be the class

of close-to-convex functions. We generalize the concept of close-to-convexity in the

following direction.

n
Definition. Let f with f(z) cz + Y. a z be analytic in E {z:Izl<l} Icl=l and

n=2 n

f’(z) 0. Then feTk, k>_2, if there exist a function geVk such that, for zeE

f’(z)
Re >0.g’(z) (1.I)

It is clear that T2 E K.

Using a method by Kaplan [2], we have

fgT
k. Then with z rei0 and 0 < @THEOREM i. Let

1 2
02

iRe I(zf’(z))’l’(z) k
f.- dO > --21

(1.2)
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REMARK i. From theorem i, we can interpret some geometric meaning for the class Tk-

For simplicity, let us suppose that the image domain is bounded by an analytic curve

i0
C. At a point on C, the outward drawn normal has an angle arg[ei0f (e ]. Then from

k
(1.2), it follows that the angle of the outward drawn normal turns back at most .
This is a necessary condition for a function f to belong to Tk. It will be inter-

esting to see if this condition is also sufficient.

RE,LARK 2. Goodman [3] defines the class K(B) of functions as follows.

n
Let f with f(z) z + Y. a z be analytic in E and f’(z) 0. Then for B>0, feK(6),

n=2 n

if for z=rei6 and 61 < 62

We note that TkCK().

02

iRe(zf’fI(z)(z))’] d6 > -8

1

2. MAIN RESULTS

From remark 2 and results given in [3] for the class K(B), we have at once

THEOREM 2. Let feTk-

(i) Denote by L(r,f) the length fo the image of the circle Izl r under f and by

A(r,f) the area of f(Izl=r). Then for 0<_r<l,

(a) L(r,f) <_ L(r,Fk)
(b) A(r,f) _< A(r,Fk)

where F
k

is defined by, for zeE,

Fk(Z) (-- [\ i_-I
z + I A (k)zn

n=2 n
(2.1)

and clearly Fk e Tk.

(ii) lanl < An(k) n 2,3 k >__2

where A (k) is defined by (2.1). This result is sharp for each n > 2.

i6
(iii) For z re 0 < r < i,

(l-r)
1/2k

(+/-+r)k+2 < f’(z) < (--+[-)1/2e
(l-r) 1/2k+2

These bounds are sharp, equality being attained for the function F
k

defined by (2.1).
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We also need the following result.

Lemma 1 [4]. Let ggVk. Then there are two starlike functions sI and s 2 such that

for zgE

g’(z)

.gk4
(Sl(Z)/Z)

k-1/2
(s2 (z)/z)

THEOREM 3. fgT
k if and only if

(ki (z)) kl k2ekf’(z)
(k (z)) k-1/2

PROOF: From definition i, we have

f’(z) g’(z)h(z), geVk and Re h(z)>0.

Using lemma I, we know that there are two starlike functions s
I

and s
2

such that zgE,

k
(s(z)/z)g’(z)

kk-1/2
(s2(z)/z)

Thus

f’(z)

1/2k
(s (z)/z)

k_. h (z)

(s2(z)/z)
(k (z)

k+

(k (z))k-1/2

1/2k
((Sl (z)h(z))/z)

((s2 (z)h(z))/z)
1/2k-1/2

where k
I
and k

2
are two suitable selected close-to-convex functions.

Lemma 2. Let H be analytic and be defined as

H(z)g’(z) (zg’(z))’, ggVk and H(z) 7 + hl(Z) h2(z)’

Then

and

Re ho(Z) > 0, i=1,2, h (0)= 1
i

2

2 [H(z) dO <_
0

2
1 + (k2-1)r i0

l_r2- (z re

2i
1 IH’(z) Id0 < 22 l-r

0

PROOF: By the representation formula due to Paatero [5], we can write
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where

+ it
1 +/- ze

H(z) 2-- -ze+/- d(t),

0

da(t) 2, and

0

27

Id(t) <_ k
0

n
Let H(z) I + I c z

n=l n

Then
27

c i [ -in
n -- e td.t, and so for n>_l,

0

ICn] < I Id(t) < k

Thus

2 (k2_l 2
i 2 2 2n 2 2n i+ )r
2 IH(z)l de E ICnl r < (l+k Y. r l_r2

0 n=0 n=l

Aso 2

H’ (z) i e

(l_zeit 2
d(t)

Thus

i iH,(z)ide <
ll-rei(e+t) 122

27

deld(t) < l,r’2 Id(t) <
l_r2

THEORF21 4: Let feTk. Then for n>_l,

2
< c (k)n

where c(k) is a constant and depends only on k.

PROOF: Since feTk, we have for zgE,

Set

f’(z) g’(z)h(z), geVk and Re h(z)>0

F(z) z(zf’ (z))’ zg’ (z)[H(z)h(z) + zh’ (z)],

where Re h(z) > 0 and H(z)g’ (z) (zg’ (z))’, with

i 2(z)’ Re hi(z) > 0, i=1,2, hi(0)=l

Thus, for E and n>l;

(2,2)
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(n+l) 2

2

an+l-n anl< n+l I-1
2r

and by using lemma i and (2.2), we obtain

2g k-
{n+t)2 2 f is (z)

an+l-n anl< iz_ i IH(z)h(z) + zh’(z) Id0
0 Is2(z) lk-1/2

where Sl, s
2
are starlike functions.

It is well-known [i] that for starlike function seS,

(2.3)

2 2 (2.4)
(l+r) (l-r)

Let 0<r<l. Then by a result of Golusin [6,p162], there exists a zI with

Zll r such that for all z, z[ r,

2r
2

IZ-Zl] ISl(Z) < (2.5)
l_r

2

From (2.3)-(2.5), we have
hk-1/2 2

(n+l)
2 an+l-n2an I<--

2r
n+ll (i<k-1/2(i!r’22)( 2)r I(- ]H(z)h(z)+zh (z) Id0 (2.6)

i0
NOw as in [7], we have with z re

.2 2
l+3r1 lh(z)12d0 <2n
l_r

2
0

and
2i

flzh’(z) Id8 <
2r

2 2
0

l-r

where Re h(z) > 0.

Aso
2 2 2

1 IH(z)h(z) + zh’ (z)Id8 < ]H(z)h(z)[dO + Izh’ (z)Id6)2

(2.7)

(l+(k2-1) r2)1/2 (i+3r2) 1/2
2r< +2 2

l-r l-r
(2.8)

by using Schwarz’s inequality, lemma 2 and (2.7).

Hence from (2.6) and (2.8), we have

2an+I 2 1 21/2k [(l+(k2 r2 1/2+i] 1
(n+l) -n anl<_ nfl -i) 1/2k+l

r (l-r)
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2
and so choosing II r we obtain for n>_l

n fan+ll-lanl < l+(k2-1)r + 1
\3!

n

Thus

lan+ll-lanll <_ c(k)n1/2k-I

The function F
k

defined by (2.1) shows that the index (}- I) is best possible.

We now evaluate the radius of convexity for the class Tk.

THEOREM 5: Let feTk. Then the radius R of the circle which f maps onto a convex

domain is given by

R 1/2k+2>-X/k)],
The function F

k
defined by (2.1) shows that this result is best possible. In par=

ticular, when k 2, R 2aV--,which is well known. This result also follows from

the remark in [3,p.23].

PROOF: By definition

Thus

zf’(z) ag’ (z)h(z) geVk; Re h(z)>O.

(zf’ (z))’ (zg’ (z))’ zh’ (z)+f’(z) g’(z) h(z)

and so

(zf’ (z))’
f’(z)

> Re (zg (z)) izh’(z)g’ (z) hz)

i8For geVk, it is well known [9] that, for z re 0<r<l,

Re (zg’ (z))
>

r2-kr+l
g’ (z) l_r

2

Hence
2

Re (zf’ (z)) r2-kr+l 2r r -(k+2)r+l
f’(z)

>
2 2

l-r l-r l-r
2

This gives the required result.

(i). We also note that the extremal function Fk(Z) defined by (2.1) is the same

function as FB(z) defined by equation (2.6) in [3]. As A. W. Goodman has pointed out

that this function is sometime referred to as the generalized Koebe function.
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(li). We conjecture that the class T
k

is a proper subclass of the class K(B) as

defined in [3], since in the definition of Tk, gV
k

and we know that gVk, 2<_k<__4, is

convex in one direction and all the functions in one direction form a proper subclass

of the class of close-to-convex functions.

(ii). It remains open whether T
k

is a linear in variant family.
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