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ABSTRACT. The Fibonacci polynomials of order k are introduced and two expansions of
them are obtained, in terms of the multinomial and binomial coefficients, respectively.
A relation between them and probability is also established. The present work general-
izes results of [2] - [4] and [5].
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1. INTRODUCTION.
In the sequel, k is a fixed integer greater than or equal to 2, x is a positive and
finite real number, and n is a nonnegative integer unless otherwise specified. Motivated

introduced the Fibonacci polynomials of order K, to be denoted by fik)(x), and study spme
(k)

n (x) are generalized polynomials, appro~

of their properties. First we observe that f
priate extensions for the Fibonacci and Pell numbers of order k [3], [4], and identical
to the r-bonacci polynomials Rn(x)(nz-(r-Z)) of [1] for k=r and n20. Then we state and
prove a theorem, which provides two expansions of fék)(x) (n2l) in terms of the multinom-

ial and binomial coefficients, respectively, Hoggatt and Bicknell [1], amoung other

results, give another expansion of fik)(x), in terms of the
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elements of the left - justified k-nomial triangle. The latt:r, however, are less widely
known and used than the multinomial and binomial coefficients, and on this account our
expansions may be considered better., As a corollary to our theorem, we derive several
results of [2]-[4] and [5]. We also obtain a relation between fék)(x) (n21) and
probability.
2. THE FIBONACCI POLYNOMIALS OF ORDER K AND MULTINOMIAL COEFFICIENTS.

In this section, we introduce the Fibonacci polynomials of order k and derive two

expansions of them im terms of the multinomial and binomial coefficients, respectively.

The proof is along the lines of [2] and [4].

DEFINITION. Thé sequence of polynomials {fik)(x)}:=o is said to be the sequel of

Fibonacci polynomials of order k if fék)(x)=0, f{k)(x)=l, and

n \
oot f‘(l_lfi(x) if2<nsk

() i=1

fn (x) = (2.1)

- k

£ T ey gk +L.
1=1 n-i

If fér)(x)=0 for -(r-2)<ns-1, Hoggatt and Bickmedl [1] call Rh(x)-fér)(x) (n2-(r-2))

r-bonacci polypomials.

(k)

f(k) and P
n

n , respectively, the Fibonacci polynomials [5], the

Denoting by Fn(x),
Fibonacci numbers of order k [3], and the Pell numbers of order k [4], it follows from

(2.1) that

(k)(l) PG F(k)(Z) - p®

@, .
£ =F @, £ o » A

(2.2)
We now proceed to show the following lemma.

LEMMA. Let {fék)(x)}:;o be the sequence of Fibonacci polynomials of order k, and

denote its generating function by g (s;x). Then, for |s|<x/(1+xk),

S
Y s

s, 8,2 sk, °
E+S %+

(s3x) = -
" l—i(l-f-xk—sk) 1-x*

-1 - |3
PROOF. We see from the definition that fz(k)(x)-xk 1, xfék)(x)-féfi(x)=x féfi(x)

for 3sn<k+l, and xfék)(x)-fiki(x)=xk féfi(x)—fifi-k(X) for n>k+2, Therefore,
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l(1+xk)f(k)(x), 3<n<k+1
(k) x n-l
fn (x) = ¢
La+ 8w -2 % w0, nre+2
@+ 915, 2<n<k+1
= (2.3)
| (1 + x )f(ki( ) -3 Sji_k(x), nzk+ 2.
It may be seen, by means of (2.3) and induction on n, that
fr(lk) s Ean "2 T 0, 2.4)

which implies the convergence of gk(s;x) for |s|<x/ (1+xk). Next, by means of (2.3), we

pbserve that

(83x) = L snf(k) (x)
LN oD
k=1 ©
=+ 1 SR+ P2kl g snft(lk) =), 2.5)
n=2 n=k+2
and
r "M = Lok s Pt 1 )
n-k+2 n=k+2 X pek+2 O
- ;s;(l-xk)% L 6" (0-s- r o L1y 1772 l}-—}l; e
n=0 n=2 n=1
) 2 kel _
- 2an- Elg (esm- £ - 1 s"Rand AR (2.6)

n=2
The last two relations give

.2
gk(s;x) =g +§(1 + xk - sk)gk(s;x) -% ,

so that
8 (1—8-)

g, (8;x) = S .
k 1-2 (1+xk & -xk[%'-(i)2+...+(§)k]

We will employ the above lemma to establish the following expansions of fék) (x) (n21).
THEOREM, Let {f;fk) (x)}:_o be the Fibonacci polynomials of order k. Then

(k) . (n1+...+n
STOTE ML LNSTIRN

(a) 1(x) = ) k(n +”‘+"k) . 20,
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where the summation is over all non-iiegative integers nysecony such that n1+2n2+..*knk-n;

= k\n [n/(k+l)] _ _
® e - (1::( ) et (n n) KL (g~ G411
1=0 1
k\n-1 [(n-1)/k+1)] /n-1-k1
1 (y_x_) . ot | . )xki(lﬂk)-(lﬁ-l)i, n21,

x\ x 1m0

n21,
where, as usual, [x] denotes the greatest interger in x.

PROOF. First we show (a). Let |s| < x/(1+xk), so that |xk[§+§)?.'+...+(‘s;)k]|<l.

—~Let n, (1si<k) be non-negative integers as specified below. Then, using the lemma and the

k
multinomial theorem, and replacing n by n- I (1—1)n1, we get,
i=1
® n (k) k 8,2 s. k. ,-1
s -
nEO s f 1) = {1-x"[1 + Q7+...+) 1}

- IR (%)2+...+(§)"1}“
n=0

n s n1+2n2+. . .-ﬁ-k.nk

kn
(;)

nfox nl,.Z.,nka (“1"‘"“k

n1+. . .+nk-n

*® n,+...
A <n1 “‘k)nk(n1+...+nk)-n, (2.8)
n=0 n0,,...,n3 170

+2n,+... =
n1 2n2 +l<nk n
from which (a) follows.
k 8 k k
We now proceed to establish (b). Let 0 < 8 < x/(1L + x ), so that |-;(1+x -8 )| < 1.

Then, using the lemma and the binomial theorem, replacing n by n-ki, and setting

k n [n/(k+1)] _ _
B(k) (x) = (1+x ) § (-l)i n-ki xki(l"l'xk) (k+l)1, n20, (2.9)
n X 1=0 i
we get
S ng(k) N A S N |
nfos £ (0 = - D= Z(1+x"-s )]

- -9 1 2ank-a)"
n=0
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- a- s)“ z ( )" z 0t (3) an®H" et

® [0/ (k)] ~ ) .
=a-3zs” (_1)1( niki\ ()P (HDL - (n-ki)
n=0 i=0 .
P N ()
= (1- x)ngos B (x), by (2.9)
- 2" - e, (2.10)
n=1
since B(k)(x) 1 from (2.9). The last two relations show part (b) of the theorem.

We have the following obvious corollary to the theorem, by means of relation (2.2).

(k)
COROLLARY 2.1. Let F x), f (k) and P denote the Fibonacci polynomials, the

Fibonacci numbers of order k and the Pell numbers of order k, respectively. Then,

(n/27
- -21
(a) x) = I (“ i) 2, 20
n+1 1=0 i
n_+...
@ - ¢ ) o,
L 13eeeamy
nl,...,nka
n1+2n2+...+knk-n
[n/(k+1)] oy
(b) (i1) f(1:) .o v -t (niki) o~ (k)1
1=0
[ (n-1)/(k+1)1
-1 v -1t (n—i-ki) Ll LI
1=0
n_+...4n
@ % - v 1 k) k(ny*e.dnp)-noos
n=1 Nyyeeeyn
nl,. .,nkB 1 k
n1+2n2+...+knk-n
k n [n/(k+1)]
k) 142 $ 1 (n-ki) ki, ko -(k+1)i
@D rl - @D LD (s )z (142%)
k n-1 [(n-1)/(k+1)" n-1-ki _
_ 1 3 (_1)1( : ) 2K (1agky - (HDL
1=0 nal.

REMARK. Part (a) of Corollary 2.1 was proposed by Swamy [57, who appears to be the
first to introduce the Fibonacci polynomials. Part (b) (i) was first shown in [37,
while (b) and (c), respectively, were later proved by a different method in [21 and [41.

The following corollary relates the Fibonacci polynomials of order k to probability.



550 A. N. PHILIPPOU, C. GEORGHIOU and G. N. PHILIPPOU

(k)

n

COROLLARY 2.2. Let {f (x)}:;o be the sequence of Fibonacci polynomials of order

k, and denote by Nk the number of trials until the occurrence of the kth consecutive

success in independent trials with success probability p (0<p<l). Then,

PN, =ntk) = p“““‘(l—l';l’-)“/k fﬁi ((1—;1’-)1/ %), n20.

PROOF. It follows directly from Theorem 3.1 of [3] and part (a) of the present
theorem.
In particular, Corollary 2.2, reduces to the following results of [2] and [4],

respectively, by means of (2,2).

Let N, be as above, and set p=(1+2k)-1. Then,

k

AN
k.n+k "n+1°’

P(Nk=n+k) -
(1+27)

n20. (2.11)

Let Nk be as above, and set p=1/2. Then,

L o, (2.12)

P(N, =ntk) = ok ol
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