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ABSTRACT. Let X and Y be complete metric spaces with Y metrically convex,

let D c X be open, fi u
0

X, and let d(u) d(Uo,U) for all u E D.

Let f" X- 2
Y

be a closed mapping which maps open subsets of D onto open sets

in Y, and suppose f is locally expansive on D in the sense that there exists a

continuous nonincreasing function c" R
+

R
+

with c(s)ds += such that each

point x E D has a neighborhood N for which dist(f(u),f(v))

a c(max[d(u),d(v)])d(u,v) for all u,v N. Then, given y 6 Y, it is shown that

y f(D) iff there exists x
0

D such that for x E XD, dist(y,f(Xo))
dist(u,f(x)). This result is then applied to the study of existence of zeros of

(set-valued) locally strongly accretive and -accretive mappings in Banach spaces.
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i. INTRODUCTION

This paper may be viewed as a sequel to that of Kirk and SchDneberg [i]. We

first prove a general theorem for "local expansions" and we then apply this result in

special settings to the study of the existence of zeros of the locally strongly accre-

tive and -accretive mappings. In the interest of attaining the generality readily

offered by our techniques, we formulate our results for set-valued mappings even

though some of our assumptions (e.g., continuity, as opposed to semicontinuity) might

seem stringent for such mappings. The results themselves, however, represent
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extensions of those of [i] even in the point-valued case.

Results similar to those obtained here may be found in Ray and Walker [2] and in

Torrej6n [3] however, the methods employed are different. Torrej6n relies on differ-

ential inequalities, while Ray and Walker use the Brezis-Browder order principle to

prove a refined version of the Caristi-Ekeland minimization principle, and this in

turn is used to obtain, among other things, a Banach space version of the surjectivlty

part of our Theorem 2.1. On the other hand, Torrej6n obtains our Theorem 2.1 under

the assumptions that X is a Banach space and Y is a complete and metrically con-

vex metric space. While it is likely that the methods of Ray-Walker and of Torrej6n

could be modified to attain the generality we obtain, our approach, which is a refine-

ment of the argument of Kirk-SchSneberg [1], seems more direct and more in the spirit

of the original work of Browder [h, h]. In particular, Browder uses an argument (cf.

[4, Theorem 4.9]) roughly like the one we use below to show that a local expansion

from a complete metric space X to a metric space Y is, under suitable connected-

ness hypotheses, actually a covering map of X onto Y.

For the most part, we use standard notation. B(x;r) denotes the closed ball

centered at a point x of a metric space with radius r > 0. We shall use S(Y)

and CY) to denote, respectively, the family of nonempty bounded closed subsets and

the family of nonempty compact subsets of a metric space Y, and we assign to these

families the usual Hausdorff metric (denoted by H). For a Banach space X, the map-

ping J X 2
X*

denotes the usual normalized duality mapping"

 (xl [j x*. ll ll:llxll, <x, >:IIxll

Also, for a subset A of X, we use AI to denote inf[llxll: x A].

Finally, if X and Y are metric spaces, then a set-valued mapping f" X 2
x

is said to be closed if for Ix ] in X, the conditions x x, Yn T(x ), and
n n n

yn y imply y T(x).

2. A THEOREM ON LOCAL EXPANSIONS.

THEOREM 2.1. Let (X,d) be a complete metric space and (Y,d) a rectifiably

pathwise connected metric space with intrinsic metric %, let D c X be open, fix

u
0

X, and let d(u) d(u0,u), u D. Let f X 2
x

be a closed mapping which

maps open subsets of X onto open sets in Y, and suppose there exists a continuous
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nonincreasing function c [0,) (0,) with c(s)ds + such that each point

x D has a neighborhood N for which

dist(f(u),f(v)) a c(max[d(u),d(v)])d(u,v)

for all u,v N. Then, given y Y, the following are equivalent.

(a) y f(h).

(b) There exists x
0

D such that for each x XD,

inf[%(w,y) "w f(x0)} g inf[%(w,y) :w f(x)].

In particular, if D X, then f is surjective.

PROOF. Since (a) --> (b) is trivial, we suppose (b) holds and show that the

assumption y f(D) leads to a contradiction. For each x D, let

r(x) sup[r (0,1): B(x;r) h and dist(f(u),f(v))

c(max[d(u),d(v)]d(u,v) for all u,v B(x;r)}.

By assumption, r(x) > 0 for each x D, and moreover if

c inf[c(d(u)) "u B(x0;r(x0)/2)},
then

cr(x0)/h > 0.

We define a sequence [Un]c D as follows. Let u
I

x0, t
I

0, and select

w
I

f(uI) and a path " [0,i] Y joining w
I

and y (with (0) wI) such

that the length, %(F), of F satisfies

%(F) m inf[%(w,y) :w f(x0)]+.
Let t

2
sup[t [0,I] F(t) f(B(Ul;r(ul)/2))], let [Sn] [0,i] be such that

s t
2

and let F(s f(v where v B(Ul;r(ul)/2) n= 1 2 ".’. Since
n n n n

F(s --r(t2) and
n

d(F(s ),F(Sm)) dist(f(v f(Vm)) cd(vn,Vm)n n

it follows that Iv ] converges to some point v M. Since f is a closed mapping,
n

l’(t2) f(v). Also, since y f(D), y f(B(Ul;r(ul)/2)). In view of this, the

fact that f is open implies v 3B(Ul;r(Ul)/2). Now set u
2

v and w
2 F(t2).

Similarly, having defined [ui], {ti], and [wi] for i [1,-..,n], let

tn+1 sup[t [0,1] :r(t) f(B(un;r(Un)/2))]
and as above obtain Un+1 8B(Un;r(Un)/2) for which Wn+1 l’(tn+l) f(Un+l).
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Thus, by induction, sequences [Un] [tn] and [Wn] exist satisfying for n ,
(i) tn+I > t

n

(ii) d(Un+i,un) r(u )12;

(iii) c(max[d(Un)’dCUn+l)])d(Un’Un+l) g distCf(un )’ f(un++/-)) < d(Wn,Wn+l).
Since [tn] is increasing,

(iv) Z d(w ,Wn+I) g %(r) < +@.
n=l n

If [d(Un) ] is unbounded, define c(s) c(s-l) for s > i and select

[u ] so that i
I i and ik+I is the smallest integer j such that

"k k=l

d(uj) < d(Un+I) if d(Uik+l) < d(Uik); otherwise, take ik+1 ik+l. Then

c (max[ d (u
n
), d(Un+I ] )d(Un Un+"n=l

n=l Un+l Un

Z cCa(u. ))(a( )-(u. ))
k=l k Uik+l k

a S
+(R)

This contradicts (iii)and (iv). Thus s sup[d(ui), i:i,2,-.-] < +- and (iii)

implies

c(s)d(Un,Un+l) d(Wn,Wn+l), n: 1,2,’’’.

In conjunction with (iv),: the above in turn implies that [Un] is a Cauchy sequence.

Since X is complete, u x D Moreover, since r(u 2d(u 0 itn n n Un+l
follows that x is not in D. Also, since t t [0,i], w w* F(t), andn n

the assumption that f is closed implies w* f(x). To complete the proof, observe

that

Therefore,

cr(XO)/2 m c(max[d(Ul),d(u2)])d(Ul,U2)
dist(f(ul),f(u2))
d(w

I ,w2)-

inf[(w,y) "w f(x)] g %(w*,y)

g inf[(w,y) w f(w0)]+-d(Wl,W2)
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m inf[(w,y) "w E f(x0)}-cr(x0)/h
< inf[(w,y) "w E f(w0)},

and, since x XD, this contradicts (b).

The final assertion of the theorem follows from the fact that, if D X, then

(b) is satisfied vacuously.

3. APPLICATIONS TO ACCRETIVE MAPPINGS

Let X be a real Banach space and D c X. We recall that a mapping A: X- 2
X

is said to be accretive if for each x,y D, u A(x), v A(y):

(u-v,x-y>+ m sup[(u-v,j> j J(x,y)} 0.

Since the unit ball of X* is weak* compact, the above supremum is attained and

thus, by Lemma i.i of Kato [5], (u-v,x-y)+ 2 0 iff for each % 0,

llx-yll l(x-Y)+l(A(u)-A(v))l.

Therefore A:D 2
X

is accretive if for each i > 0, J m (I+A) -1
is a non-

expansive mapping of (I+kA)(D) onto D. If (I+A)(D) X for some (hence all)

% > 0, then A is said to be m-accretive.

Finally, A: D 2X is said to be strongly accretive if A-cl is accretive

for some c > 0.

For our first application we require the following version of Deimling’s domain

invariance theorem of [6]. SchSneberg’s modification (see [7]) of the Crandall-Pazy

proof ([8]) of this result carries over from point-valued mappings to set-valued map-

pings without essential change.

THEOREM 3.1 (of. [7]). Let X be a Banach space, (X) the nonempty bounded

closed subsets of X, and H the Hausdorff metric on (X). Suppose U c X is

open, and let T: U-(X) be continuous (relative to H) and satisfy for some

c>O,

(i) IT(x)-T(Y)I 2 clIx-YlI;

(ii) the mapping R U ---(X) defined for fixed Y0 E X by

R(x) c-l(T(x)-Y0 )-x (x U) satisfies

llu-vll l(u-v)+t(R(u)-R(v))l (u,v E U, t 2 0).

Then T(U) is an open subset of X.

This theorem can be proved as follows. Let x
I

U and Yl T(Xl)" Choose



424 W.A. KIRK

r > 0 and p > 0 so that B(Xl;r+p) c U. Fix y B(Yl;Cr) and define

R U (X) as in (ii). It must be shown that there exists x U such that

0 x+R(x); thus, 0 T(x)-y and y E T(x), from which B(Yl;Cr c T(U).

Let @ [0,1] [0,i) satisfy l@(s)ds < D. For u U, v R(u) and . >0,

let

A(u,v,.) [c [0,i]" (l-c)u-cv U and H(R((l-c)u-cv),R(u)) < $(.+i)],

and let l(u,v,.) sup A(u,v,.). (Since U is open and R continuous,

Z(u,v,Z) .)

Now let c
I

i and v
I

c yl-Y)-Xl and select c
2

A(x
I
v
I

i) so that

2c
2
a l(Xl,Vl,l). Next, select v

2 R((l-c2)xl-C2Vl so that

and define [Xn] [Cn] and [vn] recursively by taking

Xn+1 (1-Cn+1)xn-cn+lvn,
n n

where Cn+I A(Xn,Vn,j=l’ c.)3 is chosen so that 2On+I 2 l(Xn,Vn,jlCj )’ and then

select Vn+1 R(Xn+l) so that
n

n +/- n j=l 3

From this point on it is possible, except for obvious modifications (generally,

replacing R(xi) with v. to follow SchSneberg’s proof and obtain a point x U
1

for which Ix+R(x)l 0. Since R(x) is closed, 0 6 x+R(x). We refer to [7] for

the details.

We now prove the analog of Theorem 3 of [i].

THEOREM 3.2. Let X be a Banach space with D an open subset of X, let

c" [0,) [0,) be a continuous nonincreasing function for which c(s)ds +,

and suppose T:D- S(X) is continuous on D and locally strongly accretive on D

in the following sense" Each point z 6 D has a neighborhood N such that for

each x,y N, if u T(x) and v T(y), then for some j J(x,y),

<u-v,j) > c(max[ll xlI,IIYlI])II x-Yll2. (*)

Then the following are equivalent:

(a’) 0 T(D).

(b’) There exists x
0

D such that IT(x0) g IT(x)l for each x 8D.

PROOF. Let z D and let N be a bounded neighborhood of z for which (*)
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holds for all x,y E N. Then the assumptions on c imply inf[c(llull): uEN] > O.

If u T(x) and v T(y) for x,y N, for suitable j J(x,y),

(u-v-(x-y) ,j > 0.

Thus, by Lemma i.i of Kato [5], for each 2 O,

and since this is true for all u E T(x) and v T(y),

Ix-y+%(T(x)-T(y))-(x-y))l 2 llx-yll (x,y N, 2 0).

-I
Taking % c in the above,

IT(x)-T(y) llx-y:: (x,y N).

-( )-Y0Also, if R:N--(X) is defined by R(x) T(x )-x (for fixed Y0 X),

then T(x)-T(y) (R(x)-R(y))+(x-y), and it follows that for each t 0,

Ix-y+t(R(x)-R(y))l IIx-Yll (x,y N).

Therefore, by Theorem 3ol, T maps open subsets of N (hence open subsets of D)

onto open sets in X. Since (*) impl+/-es

IT(x)-T(y) c(max[IIxll,IIyll])llx-yll (x,y E N),

and since (b implies that (b) of 2.1 holds for y 0, we conclude: (b $ (a ).

The reverse implication is obvious.

Our second application involves the so-called -accretive mappings ([h]). Let

X and Y be Banach spaces and a mapping of X onto a dense subset of Y* which

satisfies

ll(x)llllxll = ()=(x) (xx, 0).

THEOREM 3.3. Let X and Y be Banach spaces and suppose Y has an equivalent

Frchet differentiable norm with respect to which Y* is strictly convex. Let

: X Y* be as above, let c" [0,) [0,) be a continuous nonincreasing func-

tion for which c(x)dx +, and suppose T: X--CY) is locally lipschitzian

and satisfies: For each z X there is a neighborhood N N(z) such that for each

x,y N and each u T(x), v T(y),

<-v,(x-y) > o (xll xll,llyll])ll x-yll. (..)

Then for each open set D X the following are equivalent"

(a) 0 E T(D).

(ba) There exists x
0

D such that IT(Xo) m IT(x)l for each x D.
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PROOF. Since (u-v,(x-y)) ]]u-vlll](x-y)[! ]]u-vlll]x-l condition (.*)implies

that

IT(x)-T(y) c(max[llxll,llyll)llx-yll (x,y N).

Also the local -accretive assumption on T of Theorem 3.3 implies that T is io-

cally strongly -accretive in the sense of Definition 2.1 of Downing and Ray. Thus

by Theorem 2.1 of [9], T maps open subsets of D onto open sets in Y. The result

now follows from Theorem 2.1 as in the proof of Theorem 3.2.

Our final application of the above development is a global result patterned after

the approach of [10].

THEOREM 3.4. Let X be a Banach space with D X bounded and open, let

A" D---/(X) be continuous and accretive, and suppose there exists z D such that

IA(E)I < inf[IA(x)l "x

Then there exists a (single-valued) nonexpansive mapping f:D-- D whose fixed

points are zeros of A.

PROOF. Since D is bounded, it is possible to choose a (0,i)

IA(z)] + (l-)IIz-yll < inf[]A(x)[-(l-)llx-y[l :x D]

for each y . Fix w and define T -- 2
x

by

T (x) (l-@)(x-w)+GA(x) x D.
x

Then, if x 8D,

Also, if u T (x)

so by Theorem 3.2, there exists

so near i that

IT (z)I I(1-a)(z-w)+O.A(z)

< inf[zlA(x)I- (l-)llx-wll x D}

inflaA(x)+ (l-)(x-w) :x

%().
and v T (y), then, for some j J(x-y),

<u-v,j ) (-)x-;
Zw E D such that 0 E Tw(Zw) (l-)(Zw-W)+A(Zw);

zw w-A(zw) (=a/(1-a)).

By accretivity of A,

llzu-zvll l(zu-zv) +k(A(zu)-A(zv))l (u,v D).
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But z u-A(z and z v-kA(z ). Thus
U U V V

l(z-z )+%(A(z )-A(z ))I < llu-vll,
U V U V

proving that the mapping u z is nonexpansive. Finally, if u z for u t D,
LI u

then u u-lA(u), proving 0 A(u).

COROLLARY 3.1. Let X be a Banach space for which the closed balls have the

fixed point property for nonexpansive self-mappings. Suppose A" X --(X) is con-

tinuous and accretive, and satisfies

Then A(X) X.

lim IA(x)I: +=

PROOF. Fix y X and define - X (X) by (x) A(x)-y. Choose 6 > 0

so that

c: {xx:IX(x)I ] #.

Since IA(x)l-IlYll l(x)l l(x)l as llxll---, C is bounded, and more-

over for r > 0 sufficiently large and x
0

C,

l(x0)l < inf[l(x)l llxll r].

Thus, 0 (x) for some x B (0); hence, y A(x).
r

The analog of Corollary 3.1 for m-accretive operators is proved in [ii].

(i) As TorreJ6n observes in [3], the assumption that c is nonincreasing in

Theorem 2.1 (hence in Theorems 3.2, 3.3) is not really essential. To see this, define

Uik} as in the proof of Theorem 2.1, fix k I, and use the fact that the image of

([0,i]) under the inverse of the restriction of f to B(u. ;r(u. )/2) is a path.
k k

(k) sk) ...,s(k)] inConsequently, it is possible to obtain points IsI nk

(Uik (Uik k) (k)(k)) < (s < < (sB ;r )/2) such that the numbers d(Uik) d(s
I nk

d(Uik+l) induce a partition of [d(Uik),d(Uik+l)] while at the same time

(k)) f((k)) where t (k) < (k) < < t(k) t Moreover if(tik s
i i

k
tl t

2 n
k ik+l"

Ck > 0, then the above partition may be further refined so that

nk-I d(Uik+l)
i=iZ c(d(s(k))(d(i+l. Si+l(k))-d(si(k))) (Uik) c(s)dS-k.
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Since the left side of the above is bounded by the length of i from tik to tik+l
by choosing [k] so that "k < ’ it is possible to proceed as in the proof of

Theorem 2.1 to obtain (if [d(u )] is unbounded) the contradiction"
n

nk-i (k) (k)
+" > (r) Z Z dist(f(s f(s ))

k=l i=l i i+l

nk-i
Z Z c(d( (k)))(d( (k))-d((k)))
k=l i=l Si+l Si+l si

> C s ds Zk +"

(Note that this argument is merely a reworking of that of Browder [4, Theorem 4.9].

(2) We note also that Theorem 2.1 has the following corollary (cf. [4, Theorem

.o]).

COROLLARY. Let X and Y be Banach spaces, c [0,) (0,) a continuous

2(nonincreasing) mapping for which c(s)ds +, and T X a closed mapping

which maps open subsets of X onto open sets in Y. Suppose each point z 6 X has a

neighborhood N such that for each x,y 6 N,

IT(x)-T(y) c(max[llxll,llyll])llx-yl I.
Then T(X) Y.
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