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ABSTRACT A numerical technique, first reported in 1979 in refs.[l] and [2], fmr the

numerical evaluation of two-dimensional Chy-j principal-value intesrals, is"

extended in this paper to include several cubature formlas of the and obao

types. For the construction of such a cubature formula the 2-D sr intesral is

considered as an iterated one, and the second-order pole inlved in this integral

analyzed into a pair of complex poles. Based on thm procedure, the mtbods of

numerical integration, valid for one-dlmenslonal sinister Jatras, ae

the case of tvo-dlmenslonal singular intesrals. Yhe eubature formulas of the Zobato-

and -type are now formulated to include the cases where som of the

abscissas may be chosen accordins to any appropriate criterion.

Noreover, the theory devtoped is enarSed to incZude the case of a 2-D

pinclplvalue inteSral, .containin$ a loarlthtc sinSularlty, The valldity of the

remLtts is Lllustrated by conslderlns certain numerleal exaples, lrthemore a

complete analysis of the conversence and the eonstruetlon ef erez est/ates is also

presented.
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I. INTRODUCTION

Two-dlmenslonal princlpal-value integrals are frequently encountered in

engineering problems and especially in the three-dlemensional theory of elasticity

[3 to 5]. Yet, the methods for their numerical evaluation existing in the literature

[3,6,7] are not general and efficient enough to be of a wide use. One such method,

developed by Czse [4], can be considered as the basis of the well-known Bo-
Irteg Equt@.o (BIE) #ecique. It should be noticed that, for the numerical

evaluation of these integrals by using the BIE-method, the surface on which the

integration should be performed must be dlscretized into infinitesimal flat pieces

and the surface data of the density function should be assumed constant on each of

them. On the other hand, a method based on the direct numerical integration [5,8] of

the two-dlmenslonal Cauchy princlpal-value integral was not generally accurate enough,

thereby requiring an analytical attack on the integEal.

Similar methods to the BIE-technlque were proposed in refs,[7] and [8] where the

numerlcal evaluatlon of two-dimensonal Cauchy-type prlnclpalvalue integrals on a

clrcular region was consldered, when the sngularlty was at the center of the crcle.

The results of [6] and [7] were generalized in [9] for the case of an arbitrary

region.

This paper presents a general method for the numerical evaluation of tvo-

dimensional prineipalvalue integrals by constructing a cubature formula for theft

estiemtion. For the formation of such a cubature formula he ewo-diensional integral

is considered as an iterated one, and the nvolved singularity is analyzed by

reduction into a pair of complex singularities [12]. Based on this fact the

methods of numerical integraion developed for one-diensional sinEular inteErals

[9 to 10] are extended to the cases of wo-dimenstonal sngular ntegrals by

introducing a properly estimated set of collocation points.

Moreover a typical integral, which was previously evaluated by Cus# [4] in

a different way is again determined by using the proposed nuerical technique.

The coincidence of the results by the two methods is satisfactory,

On the oher hand, he udr and Lobu% ntegraton rules are established

for the numerical calculation of 2-D singular integrals. Several iegrals also
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a logarithic singularity, are calculated While special attention is given to the

investigatlon of the convergence of the proposed method by obtaining estimate for the

related error.

2. MODIFIED %USS-LEGENDRE CUBATtWE FORMULAS.

Consider the<two-dJsensional singular integral I(0,n0) defined on a plane

region S (Fig. l. [9]);

whete:

f(’n’)
I([o,nO) ([,n) 2

rS

(2.1)

,.I,%
(-O)+i(r}-nO) re (2.2)

nd w(,) is a weight function of the form

w(,n) wl()w2(n) (2.3)

where the functions w1 and w2 are included In TubZe I.

Under the assumptions that:

i) the density function u(m,) of the singular integral I(0,0) is a bounded and

Kd eontanueus function is S;

ll) if the surface has points at infinity, then

u,,l 0(r"k) (k>0) and;

Ill) the chaTaeterlstlc function f(0,0,%) is bounded and for a fixed pole X(0m0)
s centinuous wth respect to %, T2uon [11 has shown that the necessary and

sufficient condlton for the existence of the slngular Integral [2., in the

prlncpal value sensem s.that is characteristic f(0m0m%) satisfies the condition

[12]
21

If(Go
o

(2.4)

Let us now consider a square area T of sides equal to 2 units, belonging to S,

which surrounds the second order pole I(0,Q0). Then, it is easy to show that the

singular integral I becomes

f(0,n0,)
I(o,O) f w(,n) 2 u(’n)ddn+II(tO’nO)

rS-T

where

(2.5)
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n)
f("’)

T

(2.6)

Here. the first integral on the rlght-hand side of Eq.(2.5) is a re.at one,

while the second (that is the integral II) ust be considered in a princlpal-value

sense.

Integrals of the form (2.6) are frequently encountered in the 3-dla theory of

elastlclty [3], where the characterlstle f(o,o,%) satisfies the cndltlon (2,4),

Then, according to reference [12], the followlng expression Is valid:

where:

1
(zx_zs)

-I

1
f(o,.o,%)

-1

I
f(o,Uo,O)

,Is w2(u) . --u(,)dq

-1 -z

and:

(2.7)

(2.8)

(2.9)

with:

z- ,0+i{-0 (2.10)

Flrst, we note that Eqs, (2,8) and (2,9) can he appwoxmted :b,F. qalatares of the

form [’10]

(2.11)

(lf rOUk (k 1,2,..,,n))

n f(0.,0., d[f(0.,0.,,)u(,,)
k,lAk rk.-r0

rlk)u(’k)+Aa dr

(if

with:

nO- ua (k- 1,2,.,.,n))

q.(t)
n

("0 "k

-2t(:o’"o )u(;’ no)n("o)’
n-,n

0

(2.12)

(2.13)
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A (t) ’(t) + I"
n ot(t) qn Amn(t) (0 m (2 14)

The functions K (t) An(t) are systematically tabulated in ref [12] according to the
n

various numerical integration rules

At the same time the principal value I can be approximated by:

m (IA(O, rO, m)-]B(0, riO, m)
II" A--I m m-0 2(lA(0,n0)-IB(0,n0))Kn(0) (2.15)

where the functions IA, IB
are given by the expressions (2.11) and (2.12).

Let us consider now the special case where:

w(,n) 1 (Sauss-Legeruir,e numerical integration rule) (2.16)

and

n0,O) v:" cose

Then, the singular integral Ii(o,nO) becomes:

(2.17)

11 --/---- 2u(,n)ddh (2.I8)

T ("0)2+(n-no
Moreover, the quadrature (2,15) may be rewritten as:

I Im(I
2 (t0, nO, n))I

1 n (2.19)
’0-1

where Im(I2(O,O,q)) does the lgtnary par ef he cpl functlon

1 1

I2(EO,nO,)- u(E,)d(/E-z)+ 2u(E,n)d (2.20)

-1

It is already ell established [12] tt t 0 t selected as a oot o the

ge function of the second kind and ode gven

%(0 0 (2,u

a general meted o the necal evaluation o( the ntegca1 (28)

established. This can be achieved by making one-dlenslonal numerlcal ategratlons

(that is by using product rules [11]), Fnally, it was concluded that:

m ImCI2 ((0’ no’ nk)

where k are the abscissas and Ak the corresponding weights of the numerical

(2.22)
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ntesratlon rule. Applylng this, ic ay be observed that the following improper

ntegral is needed to be calculated numerlcally:

u(z,n)Q
n
(z)

z3(o’"o) ,.(z’) i.-.0’Ian <2.,3)

-!

ere (z) does theg fclon of he second klnd and order n, whereas

Pn(Z) presses thegII of degree n. e isence of 12 in an

ord sse requires

(0) 0, <2.2)

ere n dotes he nber of absclss us for he nerlcal evaluation of he

tesr 12, d 0s be sec as a roo of he gee function of he second

d of order n,

erefore, t pair of r nbers (0,0), which are considered as a roo of

heg fmi of h

colloti t X(0,0). e roots of heg function of he second kind

are systmIcally calea d taat In ref. [I0].

Fy It sd be atied t. If the cubaure formula (2.22) is applied

o a se ofs (0,q0) dfert n he corresponding collocation polns, he

rml ,ri values sId be valld, and usually diverge. The case where

f(0,nO,%)=r/- or I% be tr alogously.

applii of he ae delos he followlng enslonal

uchy-e prclpal-value esral s aled:

r2
.s

T

re he varbles ar. def aga by Eq.(2.2) and T dotes he sqre h

he sls of the rets of Cse [4], s In,ezra1 s alted In a closed

fo
I/2 --..+[t1_.0+[ (t+o)2+(i_.o)2

he oher nd, eral I4 s al nertcally by applys he aboe



NUMERICAL EVALUATION OF SINGULAR INTEGRALS 573

suggested Guuss-Legdr method. The results are 81ven in Table IX for several

collocatlon points Xi(0,n0).
It is obvious from this table that, by increasing the orders (mxn) of the Lege

polynomlals, the values for 14 converge fast and smoothly towards thelr correspondin

theoretlcal values derived on the basis of Eq. (3.2)

More preclsely, in Table If, the numerlcally estimated values for I4(0,nO) are

given for an arbitrarily selected set of collocation points, that i for the points:

X1(0.36062 31751 0.36062 31751)

X2(0.37149 22970 0.54039 34260)

X3(0.54794 77112 0.95094 46082)

The coordinates of the collocation points XI, X2, X3 are selected in both cases

to be the roots of the Leg polynomials of the second kind of orders m-n-8, 16

and 32 respectively [I0].

Comparing the numerical values of the integral 14 with their corresponding exact

values given by relation (3.2), it may be implied that a rapid convergence exists.

Indeed, the results presented in Table II seem to ,iconverge rapidly to their

corresponding theoretlcal values, that Is, for the case where 88 abscissae are used,

the values of 14 was found to be within 29 percent of the exact value, while for the

1616 case the discrepancy between these two values decreases to rlthin 6 percent and

flnally, for the 3232 case it becomes only 0.3 percent.

Finally, it is worth mentioning that the rate of convergence of the suggested

numerical integration rule was mainly affected by the oscillatory behavior of the

characteristic of the two-dimenslonal Cauchy princlpal-value Integral 14, In the

present case the characteristic function coincides with the function

4. NUMERICAL EVALUATION OF 2-D PRINCIPAL VALUE INTEGRALS WITH A LOGARITHMIC

SINGULARITY

The theory developed for the numerlcal evaluatlon of 2-D princlpal-value

integrals, containing an algebraic singularity, is extended to include the case of

Cauchy prlnclpal-value integrals involving a Lgat.h,r[. rla, Although such

singular integrals are hardly found in physical problems, the derivation of a
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corresponding cubature formula is motivated by the fact that these integrals are a

natural extension of the 2-D Cauchy princlpal-value integrals involving an algebraic

singularity, extensively examined in the previous paragraph. We generalize now the

cubature formula (2.15), which is valid for two-dimensional singular integrals, to

singular integrals of the following form, presenting a logarithmic singularity:

I5 (x0’Y0) 0(x,y)

S

f0(xO,Y0 ,%)

(x_x0)2+(y_y0)2 u0(x’y)dS

(x0,Y0) S

on a plane finite region S (Fig. l), where,

(x-x0)+i(y-Y0) re
I%

while the logarithmic density function is expressed by

w0(x,y) ,nm{ (x-x0) 2+(y-y0) 2}
{ (x-x0) 2+ (y-y0) 2}’/2

(4.1)

(4.2)

(m- 1,2,3, XI .(4.3)

Moreover, 15(x0,Y0) can be written as:

with:

f(%) f0(x0,Y0,%)

15 w(r’%)f(--ur’%)dS
rS

u(r,%) - u0(x,y) w(r,) w0(x,y)..

(4.4)

In the following it was assumed that the functions u and f satisfy the same

conditions as previously stated (see Eq.(2,4)). On the other hand, the boundary of S

(Fig,l) can be described by:

R R(%) % {[ [0,2x] (4.5)

where R is considered as a single-valued, although the case of multivaluedness does

not introduce any further considerable difficulties.

We shall now derive the cubature formula for the 2-D singular integral 15 in

accordance with relations (4,4) to (4,5) and reference [9]:
2x R()

I5 If()d%w(r’)u(r’-)dr’r
0 0

(4.6)

Equation (4,6) suggests the possibility of considering 15 as a product,of two one-
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dimensional integrals, by applying for the ouner integral a produc rule (i.e the

trapezoidal rule wlth L abscissas), while for the inner integral the already known

flnlte-part integration quadratures [13]

(4.7)

We observe that, if J-0 m the double sun the corresponding weights 0Wk are those

of th quadrature formula fer flnlte-part Integrals involv/ng an algebralc slngularlty

ad which are tabuXated in [13]. The weights jwk for JO are also included in [13].

Yhally zj dmote the equally spaced nodes xj=(J-l)/N, (J=I,2,...,N).

A an applleatlon of .the above developments the followng 2-D Cauchy prlnclpal-

COS}
X7 (,n]- -2- u(,n)ddn

rS

(4.8)

vlue ntegrl was deteznned:

where:

w(;,n) na(r)/rX (;’40)+i rei% (4.9)

The ntmertcal results re prested in Te III for various postions 0 of the

seend order le X(0,0) sde the unit dsk (Fig.2) eh a weight function of the

fo (4), (1, X-If2) or (2, -1) d a dsity functian u(,)= or u(,)-p().

The total error of the eaeure fola (4.7,) consists of one e depending

un he erapezoldal le ch s applled around the angle % (the nber of abscissas

of s le Is denoted by he Integer ,L) wle the other one te s tt of the

fIte-pare tesratlon le Ich Is applied along the radius r of the unit disk

of Fig.2 (the nber of abscissas of this le is denoted by the integer .N).

In ordsr o check the rate of convergce of the proposed cubaeure (A.7) as L

crses we eonslder the speclal ese of the densley funcelon u(n)= for which

the rrer ee beloing eo the flniear negraelon is zero (or equlva1cly

dependen ) (Tab1 IZX(a)). By obseIng ehls Table we can see chac as L
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Inc_rases from L=I8 to L=36 or L=72 four additional digits of the numerical results

are fixed (independently of the values of the abscissa N) 0=0.2 or 0,8 and

,=1/2).

On the other hand, in order to check the tae of convergence of the cubacure

formula (4,7) as a function of the integer N, we consider the special case 6or which

the density function u(,) has the exponential form exp(), while L is taken to be

large enough (i.e. L72) in order to minimize the trapezoidal error effects inherent

to the numerical calculations (Table Ill(b)).

By observing this table we can see that as N increases (from N=3 to 4 or 6), at

least one additional digit of the numerical result is fixed 0=002 or 0.6 and

(re=l, t=I/2). he results given in table III are for the first time directly

calculated for a t dimensional singular integral of the form (4.8), with a weight

function dlfferent,:from unity, by applyln a cubature formula of the form (4.7) for

various positions of the second order pole X(0,0)’ inside the unit disk S (Fig.2).

It should be also mentioned that the corresponding results referenced in the

bibliography are those of Zu [6,7] who succeeded in proposing a cubature

formula for the singular integral 17 in the special case where the weight function

w(,)=l and the second order pole X(0,n0) colncidas with the.:center of the unit

disk S, that is X(0,0)mX(0,0).
Furthermore, we can calculate a large variety of singular Ineegrals of he form

(4.8) by applyln8 the cubature formula .(.4.7). As an example we can mention the cases

(m=P,j --1) (L=54, N=8) for which (0,17)m(0.2,61.442289) or (0.4,74866826) or

(0.6,90.038705) or (0.8,101.075295), u,n)ep(.). Another numerical example is:

1.5,1.0,1.0,-0.807914) or (0.4,0.5,0.5,1.5,1.0,I.0,-4.080431) or (0.6,0.5,0.5,1.5,

1.0,1.0,-12.089886) or (0.2,0.5,1.5,1.0,0.5,0.5,0.792218) etc. Another numerical

example is (m.=,X=l/) (L=72, N=8), u(,)=a/, (0,a,b,17)m(0.2,0.5,1.0,
-6.2408940) or (0.4,0.5,1.0,-5.9932751) or (0.6,0.5,1.0,-5.0806756) etc.

As a conclusion, it can be claimed that a powerful numerical technique is

developed for the numerical investigation of 2-D singular lategrals of the form

(4.8), defined over a planar region S and presenting a logarithmic singularity of
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any type.

The proposed method seems to be new and can be considered as a direct

generalization of several previous attempts to solve the simpler problem of the

numerical calculation of the 2-D singular integral (4.8) for the special case

w(,)-l, 0m0, 0m0, where S denotes the unit disk of Fig.2 (see: for example [3] to

[8]).

5. MODIFIED GAUSS-LOBATTO AND GAUSS-RADAU CUBATURE FORMULAS

In problems of elasticity it is convenient to use cubature formulas where some

of the abscissas are given in advance, whereas the others are free.to be chosen

according to some appropriate criterion. The case when a single station should be

fixed in advance in the classical C,2uss integration theory is generally called the

Guuss-Rudz integration, whereas the case when two preassigned stations are needed

is called the Gauss-obatto rule.

In the following we shall develop appropriate integration rules for both

odlfled types of integration. For thls purpose we consider again the singular

integral (2.1). By introducing a polar coordinate system with its or81n coinciding

with the second-order pole of the singular integral (2.1) X(0,0), we obtain that:

f() f(o,no,)
(5 1)u(r.) u.(,n)

dS r dr d%

Based on Eq.(5.1) the principal value of the integral (2.1) ay be written as:
2 R(i)18 im[f() u(r’)dr d
0

r

where the weight funetlon w(,) equals unlty, and g(l) is defined by Eq(4,5).

(5.2)

Equation (5.2) suggests the posslblllty of eonsldezlng 18 as a product of two

one-dlasenslonal integrals expressed by:
21

18 @()d% i-0 ’/
0

(R)(e) e(e) I ur_dldrr
0

(5.3)

where the Integral on the rlght-hand side of Eq. (5.4) may be defined in the finite-
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part sense !3].

As regards the nunerlcal evaluatlon of the integrals of the form (5.4), it is

valid that:

r
k=l

where Pk,Ak are the abscissas and the weights respectively formally tabulated

ref. 13 ],

The previously developed cubature formula may be extended as follows to the Ruru

and Lobato tntegratXon rules;

i) Xn the case of Radau-type formula with the poiu x=0 as the one preassigned

statlon, the foXXowing one-dimenslona quadrature formLla seems to be Valid [13,9]:

where

u(x)’lxx x;+lt’--7.- (5.6)
0 t=1

are the weights of the cIassical nte-Le quadrature formuIa and x
i

denotes a zero of theg plynomial or order n. By coubining expressions (53)

and (5.6) together with a properly selected trapezoidal rule (with u abscissas), we

obtain the following cubature fermLla for the numerlaal evaluatlenof the singular

inteSraX (5.2).

2i ( 2i 2zi }
where xj are identical with the zeros of the LegendJ polynoalals Of order n, while

wj are the weights of the classical zue-L.-quadrature formula.

JA) The second /nportant case of the Lo/x2to type udratue, with the points x=0, I

as preassigned stations, ,b7 be treated statlarly. For this case tt is valid that

1

"- :’I , 2 )l
0

(5.8)

where vi, x
i
are the weights and the stations, derived from the speclal Jacobi
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polynomials p(l,0)(x). These coefficients are systematically tabulated in ref.:[14].

By properly combining expressions (5.5) and (5.8), we may conclude that, for the

case of the Lobatto-type integration rule, the following modified cubature formula is

valid:

18

(5.9)

6, ERROR ESTIMATES FOR 2--DIMENSIONAL PRINCIPAL VALUE INTEGRALS

An error estimate is derived for the cubature formula, which was proposed in the

previous paragraph (Eqs,[4,6) or (5,2)), and the convergence of this formula is

established,

Let us consider now the two-dimensional singular integral of the form:
2

H I w(%)f(%)HA(%)dO
0

where: 1 (n-i)

HA(% (r)U (r, %)dr+p (n)U-r (n-l) xnlR’(%)l
0

with w(r)=rl’q and:

p(n)

1I0
if q is an integer

if q is a rational number,

(6.1)

(6.2)

(6.3)

Here the variables r and % have been already introduced n relation .4,2) while the

functions u(r,%), f(%) satisfy the conditions (2,4), and R(%) is given again by

Eq.(4.5),

Next, we can assume that the function u(z%) is an analytic function of z
regular in the disk Izl<, which contains the integration interval [0,i]; i,e,

m(f %) bkzk
kO

with:

u(k)(0,%)
bk k!

(6.4)

(6.5)

Then, according to the developments of 1c ([15] p,83), the integral:

letF(_zt)dt
0

(6,6)
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where:
k

F(z) bkr(+k
k=O

(6.7)

represents a radial continuation of the function u(r,O) on a definite region of

summability. This practically means that the function u(z,O) has the form:

u(z,) e
-t (tz) ]dt

k
k’.

0

Then, the error term can be calculated as follows:

n*k

IR (u) (r)U(r1)d n ! t bn4k
n r r-k=l’ WkU(rk’) e-tk=O (n+k)’. Cn,kdt

0

with:

c w(r)rn+k-ldr- Wkx+kn,k k=l
0

Furthermore, it follows from Eq.(6.9) that:

t
tn+kb

n+kIR (u) e
(n+k)’

c Idtn k0
n k.

0
or after applying HSlder’s inequality to Eq.(6.11), we obtain:

IRn (u) - Ie-t
0

with:

tn+kbn+k
(n+k)

0

q] 1/q

]I/q. Cn klP dt
k=0

I/p+I/q

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

Thus, the error bound can be written as:

where:

and

2

IR (u)I+ (n p)+2(u q)
n

(n,p)- ICn,k
k=O

]-t [(u,q)
J
0 [k=0

tn+kb p] q

n+ki

(6.13)

(6.14)

(6.15)

We shall now consider the following important cases:

i) The ease of ,l,l(n,2), 2(u,2), that is the Euclidean norm of +, for wlich it is

val td that:
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2(n,2) [ c
nI

k=0 ,k (6.16)

ii) The case l(n,==), 2(u,l) will be examined next, by which the supremum norm may be

obtained, that is:

sup Ic (6 17)
k=O,1,.., n,k

The main problem of the present analysis concerns the conditions of existence of

the functions +l(n,z) and +l(n,).
In order to prove the existence of the function 1

series On, k. We can rewrite Eq.(6.16) in the form:

2(n,2) [ e _-2 Y e _S+ [41 k/0 n+k k0 n+kk kl0
with:

Ln+k fxn+k-Xdx
0

n
7 n+k

S
k

w x
=1

1 1
t

(n,z), we investigate the

2
(6 18)S

k

(6.19)

(6.20)

Since it is valid that:

]Skl < [ iwilxl+k < [wil (maxxi)n+k (6.21)
i=l i=l

which means that the series iwil(maxx )n+k
t=1

t
is a convergent majorant series for

Sk
then it can be concluded that the second and third series in Eq.(6.21) are

absolutely convergent. On the other hand, the first series on the right-hand side in

Eq.(6,18) represents a general harmonic series, which converges absolutely. Therefore

the first, second and third series in Eq.(6.18) are absolutely convergent and as

consequence, l(n,2) exists. On the other hand, the function

numerically by simply applying Eq.(6.18).

can be calculated

As an example we have that (n-4, 61(n’2)=0’289)’ (n=6, 1=0,223), (n=8, ,1=0,186),
(n-lO, 1--0,162), (n-12, +1=0,145), (n=14, +1=0,132) are the calculated values of the

factor 1"
By properly combining expressions (6.1) to (6.3), we obtain that:

2 2 2

l(%)d+j2()d’rj3()dD (6.22)

0 0 0
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where:

n

I () wiu(ri’$)
i--I

(6.23)

2 () Rn(U’O) (6.24)

(n-l)

3( p(n)U (0, ZnlR(O) (6.25)
(n-I)

Here the quantities wi, r
i,

Rn, p(n), R() are defined by relations (4.2), (4.5) and

(6.13). As a conclusion, the total error of the cubature formula (6.1) is given by:

Rt(u,f) Rn(U,l)+Rn(U,2)+Rn(U,3) (6.26)

where R (u,i) is the error expression of the trapezoidal rule for the finite
n

integration interval [0,2t].

by:

In order to determine the error R (u,i) we consider the function (z) defined
n

Kexp{+in[v(z-a)-%], I z>0

exp{-i[(z-a)-], I z<O

(6.27)

where a,v and are real constants, being such that 0<I. Because of the fact that

this function is analytic in each half-plane, we obtain, according to the developments

of Donalson and Elllott [16], the relation:

IRn(U,$i) - Utz) i
C

where (z) is given by the relation (6,27) and (z) is defined by:

(6.28)

V(z) =-sinz[v(z-a)-] (6.29)

Moreover the functions t(z) are defined by Eqs,(6.23) to (6,25). The curve C, which

surrounds the interval [0,2],is defined in ref,[16] (p.584).

The integrals of the form (6,28) can be calculated directly and, because of the

analyticity of their integrands, they are finite and bounded. Therefore, by applying

Eq,(6.26), the error of the cubature formula (4.7) follows as a definite and bounded

quantity.



NUIERICAL EVALUATION OF SINGULAR INTEGRALS 583

CONCLUSIONS

In the present paper the general method, already introduced in refs.[l] and [2],

extended to include the cases of the Lobatto- and Radau-integration rules, for the

Iculation of 2-D singular integrals. This construction of the cubature formulas of

e Gassicrn type has the following advantages, in comparison with the approximate

tecniques of Cruse et al.[3]:

i) The density function u(r,O) is no longer approximated by an algebraic polynomial

(ax+b or ax2+bx+c (a,b,c=constants)), in order to calculate the integrals or to

solve the 2-D singular integral equations resulting from physical problems under

consideration.

ii) The range of integration S is no longer divided into small triangles etc in

order to calculate the C.P.V. of the 2-D integrals.

iii) It permits for the first time, the calculation of /2-D singular integrals with a

weight function w(r,O) different from unity.

iv) The error quantities and the proof of convergence of the resulting Gaussian

cubature formulas is established.

v) The concept of coZlocation points is extended to three-dimensional problems by

using the techniques of complex analysis [7].

As a consequence, correct numerical values are found for certain 3-D problems

with a much smaller computer-time requirement.

vi) The numerical technique developed in this paper is simpler and less time-

consuming method than the BIE-method, since it does not need to discretize the

surface into small pieces, on which the integration must be done while the surface data

of the density function do not need to be considered as constant. This is an

advantage of the suggested method as compared with the BIE-method [4,6].

vii) The method developed can be easily extended to solve numerically systems of

two-dlmenslonal singular integral equations [10]. From this point of view it seems

to be the two-dimensional counterpart of the already established theory for the

numerical solution of one-dlmenslonal singular integral equations.
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TABLE II

(ren)

(8x8)

(16x16)

(32x32)

Collocation Points

Xi(o,no)i 1,2,3

X I(0.36062 31751,

0.36062 31751)

X2(0.37149 22970,

0.54039 34260)

3(0.54794 77112,

0.95094 46082)

Numerical
value of I
(Eq. (22))

-1.342879

-1.069729

-I,. 194753

Theoretical
value of 1 4
(Eq. (26))

-I .045333

-1.011953

-I. 91 60

Table II: Numerical and theoretical values of the integral 13 2 aS for mxn=(8x8),
r

(16x16) and (32x32). S

-12.5143188

36 -12.5147725

72 -12.5147725

0.8

-8.7161754

-8"7161762I_
-8 7161762

T A B L E IIl

6

(1)

0.2

-15.0669552

-15.3306996

-15.3382977

0.6

-20. 1688455

-20.5379592

-20.5853835

bble III: (a) Numerical evaluation of the 2-D singular integral 1
7 (eqn’34) for the

case where (re=l, =I/2) and u(,n)=;

(b) Numerical evaluation of the 2-D singular integral 1
7 (eqn’34) for the

case where (m-l, k=I/2, u(,n)=exp and L=72.
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X(x,y

y Xo {xo.Yo)

S

Fig._. Geometry of the two-dimensional region.

Fig. 2. Geometry of a unit disk S with a second-order pole X (0,n0) inside, it.
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