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ABSTRACT A numerical technique, first reported in 1979 in refs.[1] and [2], fer the
numerical evaluatidn of two-dimensional Cauchy-type principal-value integrals, is°
extended in this paper to include aeve}'al cubature formulas of the Radau and Lobatto
types. For the construction of such a cubature formula the 2-D singular integral is
considered as an iterated one, and the second-order pole involved in this integral is
analyzed into a pair of complex poles, Based on this procedure, the methods of
numerical integration, valid for one-dimensional singular imtegrals, are extended to
the case of two-dimensional singular integrals. The cubature formulas of the Lobatto-
and Radau-type are now formulated to include the cases where some of the desired
abscissas may be chosen according to any appropriate criterion.

Moreover, the theory developed is enlarged to include the case of a 2-D
principal-value integral,.containing a logaritbmic singularity, The validity of the
results is illustrated by considering certain numerical examples, Furthermore, a
complete analysis of the convergence and the construetion of errer estimates is also
presented.
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1. INTRODUCTION

Two-dimensional principal-value integrals are frequently encountered in
engineering problems and especially in the three-diemensional theory of elasticity
[3 to 5]. Yet, the methods for their numerical evaluation existing in the literature
[3,6,7] are not general and efficient enough to be of a wide use. One such method,
developed by Cruse [4], can be considered as the basis of the well-known Boundary-
Integral Equation (BIE) technique. It should be noticed that, for the numerical
evaluation of these integrals by using the BIE-method, the surface on which the
integration should be performed must be discretized into infinitesimal flat pieces
and the surface data of the density function should be assumed constant on each of
them. On the other hand, a method based on the direct numerical integration [5,8] of
the two-dimensional Cauchy principal-value integral was not generally accurate enough,
thereby requiring an analytical attack on the integral.

Similar methods to the BIE-technique were proposed in refs.[7] and [8], where the
numerical evaluation of two-dimensional Cauchy-type principal~vyalue integrals on a
circular region was considered, when the singularity was at the center of the circle.
The results of [6] and [7] were generalized in [9] for the case of an arbitrary
region,

This paper presents a general method for the numerical evaluation of two-
dimensional principal«value integrals by constructing a cubature formula for their
estimation, For the formation of such a cubature formula the two-dimensional integral
is considered as an iterated one, and the involved singularity is analyzed by
reduction into a pair of complex singularities [1,2], Based on this fact, the
methods of numerical integration, developed for one-dimensional singular integrals
[9 to 10], are extended to the cases of two-dimensional singular integrals by
introducing a properly estimated set of éollocation points,

Moreover, a typical integral, which was previously evaluated by Cruse [4] in
a different way, 1s again determined by using the proposed numerical technique,

The coincidence of the results by the two methods is satisfactory,
On the other hand, the Radau and Lobatto integration rules are established

for the numerical calculation of 2-D singular integrals, Several iategrals, also
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a logaritimic singularity, are calculated while special attention is given to the
investigation of the convergence of the proposed method by obtaining estimate for the
related error,
2. MODIFIED GAUSS-LEGENDRE CUBATURE FORMULAS,

Consider the-two-dimensional singular integral I(Eo,no), defined on a plane

region S (Fig.1l, [9]):

£(Egsng»9)
I(Egsny) = -J['V(E,n —r—-u(e sn)d&dn , (2.1)
where:
(E-g)H+(n=ng) = re*® (2.2)
and w(E,n) 18 a weight function of the form
w(E,n) = w (E)w,(n) , (2.3)

vhere the functions w) and v, are included in Table I,

Under the assumptions that:
1) the density function u(f,n) of the singular integral I(Eo,no) is a bounded and
Holder continuous function is S;
11) 1f the suxface has points at infinity, themn
u(g,n) = O(r.k) (k>0) and;
111) the characteristic function f(Eo,no,e) is bounded and for a fixed pole x(;o,no).
is céntinuous with respect to 9, Fricomi [11) has shown that the necessary and
sufficient condition for the existence of the singular integral [2.1], in the
principal value sense, is.that is characteristic f(;o,no,e) satisfies the condition

[12]
2x
Jf(so,no,a)de =0. (2.4)
0

Let us now consider a square area T of sides equal to 2 units, belonging to S,
which surrounds the second order pole x(Eo.no). Then, it is easy to show that the

singular integral I becomes
f(EO’ﬂooe)
I(Egng) = J w(E M (E,n)dEdm T, (Eg,ng) (2.5)
S-T T

wvhere
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f(golno’a)
I(Egsng) = ]LV(E.n)—-—z——u(E.n)dEdn . (2.6)
r
T

Here, the first integral on the right-hand side of Eq.(2.5) is a regilar one,
while the second (that is the integral Il) must be considered in a principal-value
sense,

Integrals of the form (2.6) are frequently encountered in the 3-dim theory of
elasticity [3], where the characteristic f(;o,no,e) satisfies the cendition (2,4),

Then, according to referemce [12], the following expression is valid:

1
(IA-IB)
11(50’"0) = fvl(i)'ﬁs— dg , 2.7)
where:
I £Egemg,®
I - )(vz(n)——n—_z—u(s,n)dn ’ (2.8)
-1
and:
1
f(EOOnoia)
Ip= )[vz(n)——:——u(i.n)dn ’ (2.9)
-1 n-z
with:
z = n0+1(£-£o) . (2.10)

First, we note that Eqs.(2,8) and (2,9) can he appxoximated By quadratures of the

form [10]:
o n f(ao.no.ﬁ.nk)
I, =~ kzlAk Ty (€ym)=2£(Eang, 8)ulE,ngdK (ng) , (2.11)
(634 no‘f"lk (k = 1,2,-n,n))

and:

n £(¢ N tEOnk) d[f(E N ’tpﬂ)“(eo“)]l
. 0’0 0*’0 1
Le &Ak mone T EmOtA, T | ~2€(E,ng 8)u(E,nA (),
kfa )

(2.12)
f ng=n  (k=1,2,,,.,0)) ,

with:
(t)

%4
Kn(t) = '0—33' s (ﬂo ¢ L' I (2.13)
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S W Loyl -
An(t) = Ué(t)l_qn(t) + 4Amon(t)_| ’ (no = Tlm) . (2.14)

The functions Kn(t), An(t) are systematically tabulated in ref.[12], according to the
various numerical integration rules.

At the same time the principal value I, can be approximated by:

1

I o ;!A (IA(EO’no’gm)-in(io'no’gm))
1 =1 Eno

- 2(1, (5gng) =T (Eung )R (B (2.15)

where the functions iA’ iB are given by the expressions (2,11) and (2.12).

Let us consider now the special case where:

w(E,n) = 1 , (Gauss-Legendre numerical integration rule), (2.16)
and:
£(En0y8) = 2E = cosd (2.17)
o*’o’ 9E : :

Then, the singular integral Il(EO,nO) becomes:

1 -][ °’2’/°5 5u(g,n)dEdn | (2.18)
T (E*EO) +(n-no)

Moreover, the quadrature (2.15) may be rewritten as:

1
1 “{ Im(Iz(gonnoon))‘

dn (2.19)
1 2 n=n, ’
where Im(Iz(Eo.no.n)) denotes the imaginary part of the complex function:
1
Iz(eo.no.n) - Ju(z.n)d(rle—z)-"j -~£~7u(ﬁ.n)d5 . (2,20)
-1 4 ¢-2)

It is already well established [12] that, if ny is selected as a root of the
Legendre function of the second kind and order m given by:
Q(ng) = 0, (2,21)
a general method for the numerical evaluation of the integral (2.18) can be readily
established. This can be achieved by making one-dimensional numerical iategrations
(that is by using product rules [11]), Finally, it was concluded that:

n In(I,(EnoNpH50,))
2450 M0* "k
I, (Eneny) = ) , (2.22)
177070 k-1Ak (n~ng)

where n, are the abscissas and Ak the corresponding weights of the numerical
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fntegration rule. Applying this, it may be observed that the following improper
integral is needed to be calculated numerically:

1 u(z.n)Qn(z)

T3¢5gimg) = er’

n, (2.23)

where Qn(z) denotes the Leégendre function of the second kind and order n, whereas
rn(:) expresses the Légendre polynomial of degree n. The existence of 12 in an
ordinary sense requires that:

Qn(Eo) =0, (2.24)
where n denotes the number of abscissas used for the numerical evaluation of the
integral 12, and Eo must be selected as a root of the Legendre function of the second
kind of order n,

Therefore, the pair of real numbers (Eo,no), which are considered as a root of
the Legendre function of the second kind of order (n,m) respectively, defines a
collocation point x(;o.no). The roots of the Legendre function of the second kind
are systematically calculated and tabulated in ref.[10].

Finally it should be mentioned that, if the cubature formula (2,22) is applied
to a set of points (Eo,no) different than the corresponding collocation points, the
resulting numerical values should be invalid, and usually diverge. The case where

ind can be treated analogously.

f(‘o.“ogo)-ar/'an or e
3. APPLICATION OF THE CUBATURE FORMULAS
As an application of the above developments the following two-dimensional

Cauchy-type principal-value integral was evaluated:
1, - -}Lﬂ‘zﬁda , (3.1)
r
T

where the variables are - defined again by Eq.(2.2) and T denotes the square with
-1<g,n<l,
On the basis of the results of Cruse [4], this integral was evaluated in a closed

form as: / /
2 2,1/2 2 2,1/2
I - to l-no+[(l+£o) +(1-ng)"] -1-n°+[(l-€°) +(14ng) ] }

G.2)
{-1-n°+[ (145 2 (14ny 11t/ 2}{1-no+t (-t %21 2}

On the other hand, the integral I, was evaluated numerically by applying the above

4
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suggested Gauss-Legendre method. The results are given in Table II for several
collocation points Xi(eo.no).

It is obvious from this table that, by increasing the orders (mxn) of the Legendre
polynomials, the values for 14 converge fast and smoothly towards their corresponding
theoretical values derived on the basis of Eq.(3.2)

More preeisely, in Table II, the numerically estimated values for I‘(go,no) are

given for an arbitrarily selected set of collocation points, that is for the points:

x1(0.36062 31751 , 0,36062 31751) ,
12(0.37149 22970 , 0.54039 34260) ,
x3(0.54794 77112 , 0.95094 46082) ,

The coordinates of the collocation points xl, X, 13 are selected in both cases
to be the roots of the Legendre polynomials of the second kind of orders w=n=8, 16.
and 32 respectively [10].

Comparing the numerical values of the integral IA with their corresponding exact
values given by relation (3.2), it may be implied that a rapid convergence exists.
Indeed, the results presented in Table II seem to vconverge rapidly to their
corresponding theoretical values, that is, for the case where 8x8 abscissae are used,
the values of 14 was found to be within 29 percent of the exact value, while for the
16x16 case the discrepancy between these two values decreases to within 6 percent and
finally, for the 32x32 case it becomes only 0.3 percent.

Finally, it is worth mentioning that the rate of convergence of the suggested
numerical integration rule was mainly affected by the oscillatory behavior of the
characteristic of the two-dimensional Cauchy principal-value integral Ib' In the
present case the characteristic function coincides with the function cos?d.

4, NUMERICAL EVALUATION OF 2-D PRINCIPAL VALUE INTEGRALS WITH A LOGARITHMIC
SINGULARITY

The theory developed for the numerical evaluation of 2-D principal-yalue
integrals, containing an algebraic singularity, is extended to include the case of
Cauchy principal-value integrals involving a legarithmie singularity. Although such

singular integrals are hardly found in physical problems, the derivation of a
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corresponding cubature formula is motivated by the fact that these integrals are a
natural extension of the 2-D Cauchy principal-value integrals involving an algebraic
singularity, extensively examined in the previous paragraph. We generalize now the
cubature formula (2.15), which is valid for two-dimensional singular integrals, to
singular integrals of the following form, presenting a logarithmic singularity:

£ (x1,5,s9)
0 070 2 uo(x.)')ds ’

IS(XO’YO) = ][vo(xy}')(x-x )2+( N
s o’ "9 Yo
(xo,yo) €s, (4.1)
on a plane finite region S (Fig.l), where,
(x-x0)+1(y-y0) = :I:ej"9 . (4.2)
while the logarithmic density function is expressed by

$nm{fx—xo)2+(y—yo)2}

"o(x»Y) = ’

A/2
{(x—xo)2+(y-y0)2}
(ﬂl = 1,2.3,..-0) [} Azl . .(403)

Moreover, Is(xo,yo) can be written as:

1, - )[ wir, 2 u(r,0)as
r
with: § (4.4)

f(9) = fo(xo.yo,%) » u(r,d) = uo(x,y) ,» w(r,d) = wo(x,y),.

In the following it was assumed that the functions u and f satisfy the same
conditions as previously stated (see Eq.(2.4)). On the other hand, the boundary of §
(Fig.l) can be described by:

R=R(®) , &€ [0,2r) , (4.5)
where R is considered as a single-valued, although the case of multivaluedness does
not introduce any further considerable difficulties,

We shall now derive the cubature formula for the 2-D singular integral I5 in

accordance with relations (4,4) to (4.5) and reference [9]:

2x R(9)
I, - Jf(s)da -,( w(r,0)2Eayy (4.6)
0 0

Equation (4,6) suggests the possibility of considering IS as a product of two one-
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dimensional integrals, by applying for the outer integral a product rule (i.e the
trapezoidal rule with L abscissas), while for the inner integral the already known

finite-part integration quadratures [13]:

1= 2 Z ( 2“))1 jzo(x yin(® j)[R(in)](s ek kiz‘lj o [ 2:1)]]+
(s+l)(n(211 d<l-1)[u( 211)]

T D o-D! ax =D

(4.7)

We observe that, if j=0 in the double sum, the corresponding weights ¥k are those

of the quadrature formula fer finite-part integrals involving an algebraiec singularity

and which are tabulated in [13], The weights jwk for j#0 are also included in [13].

Finally xj denote the equally spaced nodes xj-(j-l)/N, (3=1,2,...,N).

As an application of the above developments the following 2-D Cauchy principal-

value integral was determined:

1, - Jv(c.n)5359u<e.n)d5dn . (4.8)
s Tr
where:
w(g,n) = -h'(r)/r“ » (E=gg)+in = rel? . (4.9)

The numerical results are presented in Tgqble III for various positions ;o of the
second order pole X(Eo.no) inside the unit disk (Fig,2) with a weight function of the
form (4,9), (m=1, A=172) or (m=2, A=1) and a density function u(f,n)=f or u(f,n)=exp(Z).

The total error of the cubature formula (4.7) consists of one term depending
upon the trapezoidal rule which is applied around the angle & (the number of abscissas
of this rule is denoted by the integer L), while the other one term is that of the
finite-part integration rule, which is applied along the radius r of the unit disk
of Fig.2 (th; number of abscissas of this rule is denoted by the integer N),

In order to check the rate of convergence of the proposed cubature (4.7), as L
increases, we consider the special case of the density function u(f,n)=f for which
the errer term belopging to the finite-part integration is zero (or equivalently

independent or N) (Table III(a)). By observing this Table we can see that as L
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increases from L=18 to L=36 or L=72 four additional digits of the numerical results
are fixed (independently of the values of the abscissa N), 50-0.2 or 0.8 and (m=1,
A=1/2).

On the other hand, in order to check the rate of convergence of the cubature
formula (4,7) as a function of the integer N, we consider the special case fior which
the density function u(g,n) has the exponential form exp(f), while L is taken to be
large enough (i.e. L272) in order to minimize the trapezoidal error effects inherent
to the numerical calculations (Table III(b)).

By observing this table we can see that as N increases (from N=3 to 4 or 6), at
least one additional digit of the numerical result is fixed 50-0.2 or 0,6 and
(m=1, A=1/2), The results given in table III are for the first time directly
calculated for a two dimensional singular integral of the form (4.8), with a weight
function different.from unity, by applying a cubature formula of the form (4.7) for
various positions of the second order pole x(eo,noj inside the untt disk S (Fig.2).
It should be also mentioned that the corresponding results referenced in the
bibliography are those of Gabdulkhaev [6,7] who succeeded in proposing a cubature
formula for the singular integral I7 in the special case where the weight function
w(E,n)=1 and the second order pole X(Eo,no) coincides with the-:center of the unit
disk S, that is X(Eo.no)-x(0.0).

Furthermore, we can calculate a large variety of singular integrals of the form
(4.8) by applying the cubature formula (4.7). As an example we can mention the cases
(m=2, A\=1) (L=54, N=8) for which (50,17)-(0.2.61.442289) or (0.4,74866826) or
(0.6,90.038705) or (0.8,101.075295), u(E,n)=exp(£). Another numerical example is:
(m=0, A=0), u(E,m)=at2+bE+yE 4oEre, (Lm72, N=b), (Eqra:8,7,6,¢,1,)n(0.2,0.5,0.5,
1.5,1.0,1.0,-0.807914) or (0.4,0.5,0.5,1.5,1.0,1.0,-4,080431) or (0.6,0.5,0.5,1.5,
1.0,1.0,-12,089886) or (0.2,0.5,1.5,1.0,0.5,0.5,0.792218) etc. Another numerical
example is (m=1,A=1/2) (L=72, N=8), u(g,n)=at+b, (Eo,a,b,17)-(0.2,0.5,1.0,
-6.2408940) or (0.4,0.5,1,0,-5.9932751) or (0.6,0.5,1.0,-5.0806756) etc.

As a conclusion, it can be claimed that a powerful numerical technique is
developed for the numerical investigation of 2-D singular iategrals of the form

(4.8), defined over a planar region S and presenting a logarithmic singularity of
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any type.

The proposed method seems to be new and can be considered as a direct
generalization of several previous attempts to solve the simpler problem of the
numerical calculation of the 2-D singular integral (4.8) for the special case
w(E,n)=1, 50-0, nolO, where S denotes the unit disk of Fig.2 (see: for example [3] to
[8l).

5. MODIFIED GAUSS-LOBATTO AND GAUSS-RADAU CUBATURE FORMULAS

In problems of elasticity it is convenient to use cubature formulas where some
of the abscissas are given in advance, whereas the others are free ‘to be chosen
according to some appropriate criterion. The case when a single station should be
fixed in advance in the classical Gauss integration theory is generally called the
Gauss-Radau integration, whereas the case when two preassigned stations are needed
is called the Gauss-Lobatto rule.

In the following we shall develop appropriate integration rules for both
modified types of integration. For this purpose we consider again the singular
integral (2.1). By introducing a polar coordinate system with its origin coinciding
with the second-order pole of the singular integral (2.1) x(eo.no), we obtain that:

£(8) = £(Egunge®)

u(r,9) = ufE,n , G.D
dS = r dr 49 .
Based on Eq.(5.1) the principal value of the integral (2.1) may be written as:
2z R(9)
I, - zmjf(e) Jﬂirﬁldr ds . (5.2)
e*Oo €

where the weight function w(f,n) equals unity, and R(39) is defined by Eq,.(4.5).
Equation (5.2) suggests the possibility of considering I8 as a product of two

one-dimensional integrals expressed by:
2x

m-1
Ip = [ecoras - 2 ;Zo'('z':}') : (5.3)
0

and: R(®)

°(8) = £(9) J Uy, , (5.4)
0

vhere the integral on the right-hand side of Eq.(5.4) may be defined in the finite-
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part semse [13].

As regards the numerical evaluation of the integrals of the form (5.4), it is

valid that:
R(9) a
J 202904r o § A uR(D)p, ,u)+u(0,8)LaR(D) , -3
k=1
0

where pk"k are the abscissas and the weights respectively formally tabulated in
ref.[13].

The previously developed cubature formula may be extended as follows to the Radau
and Lobatto integration rules;
1) In the case of Radau-type formula with the point x=0 as the one preassigned

station, the following ene-dimensional quadrature formula seems to be valid [13,9]:

x 'rl
-f- 5524: u( u(O)] (5.6)
1-1 xy+l

*
where v: are the weights of the classical Gquss-Legsndre quadrature formula and x,
denotes a zero of the Legendre polynomial or order n. By combining expressions (5.3)
and (5.6) together with a preperly selected trapezoidal rule (with m abscissas), we

obtain the following cubature formuls for the numerical evaluatjénrof the singular

wed T A -
(o)l

*
where xj are identical with the zeros of the Legendre polynomials of order n, while

*
'j are the weights of the classical Gauss-Legendre-quadrature formula.

integral (5.2).

i1) The second important case of the Lobatto type quddrature, with the points x=0, 1

as preassigned stations, jay be treated similarly. For this case it is valid that

[13]'
X, =1 x,+1 +1
.)(l‘-(ﬂdx § Lo - < 12)]-u(o)+u(1) . (5.8)
i=1 1-:

where Vs X, are the weights and the stations, derived from the special Jacobi
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(l’o)(x). These coefficients are systematically tabulated in ref.[14].

polynomials P
By properly combining expressions (5.5) and (5.8), we may conclude that, for the

case of the Lobatto-type integration rule, the following modified cubature formula is

valid:
g2 ] f/m\{le (o1 - T2
: \
(5 2n1\}m/1,2“i ,ZT\,[ {R(Z" )]-1]} ) (5.9)

6. ERROR ESTIMATES FOR 2-DIMENSIONAL PRINCIPAL VALUE INTEGRALS
An error estimate is derived for the cubature formula, which was proposed in the

previous paragraph (Eqs.(4,6) or (5.2)), and the convergence of this formula is

established,
Let us consider now the two-dimensional singular integral of the form:
2n
H = J w()E(DIH, (9)ds , (6.1)
0
where:
i u(r,d (n- 1)(0 9
H,(3) = jLw(r)—]-:’-—ldr‘!-p(n)-—T)-f—')-Kﬁan,(ﬁ)l , (6.2)
0
with w(r)=r1—q and:
1, if q is an integer
p(n) = (6.3)

‘0, if q is a rational number,
Here the variables r and ¢ have been already introduced in relation (4,2), while the
functions u(r,%), £(®) satisfy the conditions (2.4), and R(8) is given again by
Eq. (4.5).
Next, we can assume that the function u(z,%) is an analytic function of z,

regular in the disk |z|<e, which contains the integration interval [0,1]; 4.e,

w(z,9) = Z bz (6.4)
k=0 K
with:
(k)
b, = “__kiz!l:.@)_ . (6.5)

Then, according to the developments of gyrdy (f15] p.83), the integral:

Hy = Je“tr(_zt)dc , (6.6)
0
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where:
oo

k
F(z) = J b=, (6.7)
Lo KT+

represents a radial continuation of the function u(r,9) on a definite region of

summability. This practically means that the function u(z,9) has the form:

@

u(z,9) = je [ Lo, e } . (6.8)

Then, the error term can be calculated as follows:

1 © nt+k
IR (u)] = |qeo(r)eTay, o } wu(r,,9) et ? TS (6.9)
n r kel & (n+k)! "n,k ’ :
k=0
0 0
with:
1
_ n+k-1 n+k
cn,k = Jw(r)r dr - ylwkxk . (6.10)
0
Furthermore, it follows from Eq.(6.9) that:
n+k
L b
-t nt+k
|Rn(u)| J F Wn k:dt , (6.11)
0
or, after applying H6lder's inequality to Eq.(6.11), we obtain:
q
© t[” tn+k " q} © o 1/q
- n .
IR (W] s Je ) o || [ Z 'cn,ki ] de , (6.12)
|k=0 k=0
0
=
with:
1/p+l/q =1 .
Thus, the error bound can be written as:
IR_(u) |54 (n,p)e, (u,q) (6.13)
where:
o l/q
4 ) = | T Je klp} (6.14)
k=0
and
© [ n+k 'p l/q
( -t ¥ iy (6.15)
bp(wsa) = Je |k;0 CESHE :
o | J

We shall now consider the following important cases:
i) The case of wl(n,Z), ¢2(u,2), that is the Kuclidean norm of ¢, for which it is

valid that:
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2 2
$1(m2) = e |, (6.16)
k=0
ii) The case ¢, (n,»), ¢, (u,1) will be examined next, by which the supremum norm may be
1 2

obtained, that is:

¢, (n,®) = sup le_ | . (6.17)
1 k=0,1,... ™Mk

The main problem of the present analysis concerns the conditions of existence of
the functions ¢l(n,z) and ¢1(n,¢0.
In order to prove the existence of the function ¢l(n'z), we investigate the

series Zcz We can rewrite Eq.(6.16) in the form:

n,k’
k 2 ©© oyo o 2
¢7(n,2) =k£0Ln+k—2k;0Ln+£ikaOSk , (6.18)
with:
1
Loy - Jx“*k‘*dx , (6.19)
0
n
_ n+k
Sy _1£1w1x1 . (6.20)
Since it is valid that:
n n
+
‘Skl <y iwilx: ko [ ) |w1|}(maxxi)n+k (6.21)
i=1 i=1

which means that the series [ E Iwil(maxxi)n+k} is a convergent majorant series for
ZSk, then it can be concludedi;;at the second and third series in Eq.(6.21) are
:bsolutely convergent. On the other hand, the first series on the right-hand side in
Eq.(6.18) represents a general harmonic series, which converges absolutely, Therefore
the first, second and third series in Eq.(6.18) are absolutely convergent and as
consequence, ¢l(n,2) exists, On the other hand, the function ¢1 can be calculated
numerically by simply applying Eq.(6.18).

As an example we have that (n=4, ¢l(n,2)=0,289), (n=6, ¢1=0.223), (n=8, ¢1=0.186),

(n=10, ¢1=0,l62), (n=12, ¢1=O,145), (n=14, ¢1=0,l32) are the calculated values of the

factor ¢l.
By properly combining expressions (6.1) to (6.3), we obtain that:
%n 21 %ﬂ
[
H = Jel(a)de+J¢2(0)d0+Jo3(u)ds , (6.22)
0 0 0
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where:
n
9,9 = ] wulr;,9), (6.23)
i=1
9,(9) = R (u,9) , (6.24)
w1 (0 5)
0,(9) = p(n)w—znlk(e)l . (6.25)

Here the quantities Wis T Rn, p(n), R(9) are defined by relations (4.2), (4.5) and

i’

(6.13). As a conclusion, the total error of the cubature formula (6.1) is given by:

Rt(u’f) = Rn(u,ol)+Rn(u’02)+Rn(u,v3) ’ (6.26)

where Rn(u,wi) is the error expression of the trapezoidal rule for the finite
integration interval [0,2n].

In order to determine the error Rn(u,oi), we consider the function ¢(z) defined

rexp{+in{v(z-a)-1], Imz>0
¢(z) = (6.27)

rexp{-in[v(z-a)-1r], Imz<0 .

where a,v and A are real constants, A being such that 0sA<l. Because of the fact that
this function is analytic in each half-plane, we obtain, according to the developments

of Donalson and Elliott [16], the relation:

1 (z)
Rn(u,oi) = E;TJ %?;jvi(z)dz R (6.28)

[

where ¢(z) is given by the relation (6,27) and u(z) is defined by:

u(z) = -sinn[v(z-a)-A] , (6.29)

Moreover the functions oi(z) are defined by Egs,(6.23) to (6,25), The curve C, which
surrounds the interval [0,2r), is defined in ref.[16] (p.584).

The integrals of the form (6,28) can be calculated directly and, because of the
analyticity of their integrands, they are finite and bounded. Therefore, by applying
Eq.(6.26), the error of the cubature formula (4.7) follows as a definite and bounded

quantity.
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7. CONCLUSIONS

In the present paper the general method, already introduced in refs.[1] and [2],

s extended to include the cases of the Lobatto- and Radau-integration rules, for the

a1lculation of 2-D singular integrals. This construction of the cubature formulas of

e Gaussian type has the following advantages, in comparison with the approximate
tecrniques of Cruse et al.[3]:
i) The density function u(r,9) is no longer approximated by an algebraic polynomial
(ax+b or ax2+bx+c (a,b,c=constants)), in order to calculate the integrals or to
solve the 2-D singular integral equations resulting from physical problems under
consideration.
ii) The range of integration S is no longer divided into small triangles etc in
order to calculate the C.P.V,of the 2-D integrals.
iii) It permits for the first time, the calculation of V2-D singular integrals with a
weight function w(r,9) different from unity.
iv) The error quantities and the proof of convergence of the resulting Gaussian
cubature formulas is established.
v) The concept of collocation points is extended to three-dimensional problems by
using the techniques of complex analysis [7].

As a consequence,correct numerical values are found for certain 3-D problems

with a much smaller computer-time requirement.
vi) The numerical technique developed in this paper is simpler and less time-~

consuming method than the BIE-method, since it does not need to discretize the

surface into small pieces,on which the integration must be done while the surface data

of the density function do not need to be considered as constant. This is an
advantage of the suggested method as compared with the BIE-method [4,6].

vii) The method developed can be easily extended to solve numerically systems of
two-dimensional singular integral equations [10]. From this point of view it seems
to be the two-dimensional counterpart of the already established theory for the
numerical solution of one-dimensional singular integral equations.
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TABLE I

w
1
w 1 L LH U mlm lecm
2 (Hlm \m _\wlmN \Wu
1 1
1 1 1
V1-n V1-n v(l=-n)(1-¢)
1 L 1 L
/n /n /n(l-¢) VEn
1 1 <ﬁ 1 1 1
v 2 1- - -
l-n \T:N (1-n) (1+n) (1=€) | YE(1-n) (1+n) _\b-mf:l}
e ! e " MMHW MMH e e~ (E*M)
ot e T1-g2
A -n 1 -n |m|':.| m.m.u &N muAm;v muhm;v
Vn Vn /n(1-€) 3 a /n VE-n

Table I: The weight function w(E,n)=w

Legendre (G.L.), Modified Gauss Legendre (M.G.L.), Gauss Chebyshev (G.CH.),

Gauss-Laguerre G.,LAG., Gauss-Hermite G.H.).

HAmvzwA:v for various quadrature rules (Gauss
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TABLE II

Collocation Points Numerical Theoretical

(mxn) - value of I value of I,
X (Egong)t = 1,2,3 (Eq.(22))" (Eq.(26))"
x1(0.36062 31751,

(8x8) 0.36062 31751) -1.342879 -1.045333
x2(0.37149 22970,

(16x16) 0.54039 34260) -1.069729 ~1.011953
x3(o.54794 77112,

(32x32) 0.95094 46082) -1.194753 -1.191160

Table II: Numerical and theoretical values of the integral I -{

(16x16) and (32x32),.

TABLE

(a)
N 0.2 0.8
L . .
18 -12.5143188| -8.7161754
36 |-12.5147725| -8.7161762
72 -12.5147725| -8.7161762

Table ITI: (a) Numerical evaluation of the 2-D singular integral I

Sgggds for mxn=(8x8),

111
(8)
L o 0.2 0.6
1
3 | -15.0669552 | -20.1688455
4 | -15.3306996 | -20.5379592
6 |[-15.3382977 |-20.5853835

case where (m=1, A=1/2) and u(f,n)=¢;

7 (eqn.34) for the

(b) Numerical evaluation of the 2-D singular integral 17 (eqn.34) for the

case where (m=1, A=1/2, u(§,n)=expf and L=72.
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Fig. 1. Geometry of the two-dimensional region.

g ide. it.
Fi 2. Geometry of a unit disk S with a second-order pole X (Co,no) ins
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