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ABSTRACT. Some asymptotic relationships betveen the two ordinary differential equations

() (n) (n-l)x + Pl (t)x + + Pn(t)x 0,

(2) y(n) + Pl(t)y(n-l) + + Pn(t)Y f(t,y),

are studied. Conditions are given that lead to an asymptotic equivalence between cer-

taln of the solutions of (i) and certain of the solutions of (2). The case where the

perturbation f(t,y) depends on a functional argument is also discussed.

KEY ORDS AND PHRASES. Ordinary differential equations, aymptotic relations, func-
tion differential equations.

980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 34A.

1. INTRODUCTION

We are concerned with some asymptotic relationships between the following two

differential equations

x(n) + Pl(t)x(n-1)
(n) (n-l)

Y + Pl (t)y

+ + Pn(t)x 0,

+ + Pn(t)Y f(t,y),

(1.1)

(1.2)

where Pi: [t0’) R, i _< i _< n, and f: [t0,oo) XR R are continuous functions.

We obtain conditions that lead to an asymptotic equivalence between certain of the

solutions of the linear equation (i.I) and certain of the solutions of the perturbed

linear equation (1.2). No restriction is placed on the behavior of solutions of

(i.i) which may be oscillatory pr onoscillatory. The example given at the end of

this note deals with the case where (i.I) has both oscillatory and nonoscillatory so-

lutions. Our results generalize those of Hallam [i] for second order equations.

2. MAIN RESULTS.

In what follows we denote by W(l’’’’"m)(t) the Wronskian of
I (t) m(t).
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(t)}, be fixed and sup-Let a fundamental system of solutions of (I.i) Xl(t) ,x
n

pose that there exist positive continuous functions xi(t), i(t), I _< i _< n, which

satisfy the inequalities

Ixi(t) <_ xi(t) on [t0,), I < i < n, (2.1)

W(xI Xi_l,Xi+I xn) (t)
*< i(t) on [t0,oo), i <_ i <_ n.

W(x
I xn) (t)

t

Note that W(xI xn) (t) is a constant multiple of exp(-I Pl(S)ds)"
t
0

(2.2)

With regard to (1.2) we assume that f(t,y) satisfies the inequality

If(t,y) < (t, IYl) on [t0,o)XR, (2.3)

where [t0,)X R+ R+, R+-- [0,oo), is continuous and nondecreasing in the second

variable for each fixed t.

THEOREM i. Suppose conditions (2.1)o (2.2). and (2.3) are satisfied. Also suppose

that, for some k, i < k < n, and some constant c > i,

(s)(s,c_(s))ds < , i < i < n,

t
0

(2.4)

and

x
i
(t) I * *

i(s)(s’cxk(S))ds o(I) as t /,
Xk(t) t

(2.5)

for I < i < n with i k.

Then there exists a solution y(t) of equation (1.2) such that

y(t) Xk(t) + o(xk(t)) a.s t . (2.6)

l_n_n addition, for any solution Yk(t) of (1.2) satis.fying the inequality

lYk(t) < c(t) on [t0,) there exist_s a__ solution x(t) of (I.I) such that

x(t) Yk(t) + O(Xk(t)) a__s t . (2.7)
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and

PROOF. In view of (2.4) and (2.5) we can choose t
I

> tO so large that

*(s)(s c(s))ds < C-1
k

t
1

(2.8)

*(t)xi r * *
* J i(s)#(s’cxk(S))ds <

Xk(t) t

C--i
2(n-l)

t > tI, (2.9)

for 1 < i < n with $ # k. Let C[tl,OO) be the locally convex space of continuous func-

tions on [t, oo) with the compact open topology and consider the closed convex subset F

of C[tl,=o) defined by

F {y e C[tI,) ly(t) < CXk(t)
Define the operator : F- C[tl, by the formula

t _> tl}.

y(t) Xk(t + 7. (-l)n-i-Ix (t) f (xIi=l i Xi_l, xi+I Xn) (s) f (s,y(s))ds, (2 I0)
t

where

(Xl,... ,xi_l,xi+1 Xn) (t)
W(xI ,Xi_l,Xi+1 xn) (t)

W(xI xn) (t)
(2.11)

We seek for a fixed point y y(t) of in F. Using the identities

n
(-l)n-ix %-’J’(t)W 0 < n-7.

i (xI,. ,xi+I ,Xn) (t) 0, j < 2
i--0

(2.12)

n
I (-l)n-ix. (n-l) (t)W(x

iI xi_l,xi+1 xn) (t) (xI Xn) (t),
i--0

(2.13)

we easily see that a fixed point of is a solution of equation (1.2).

i) maps F into F. This follows immediately from (2.1), (2.2), (2.3), (2.8),

(2.9) and (2.10).

ii) i__s continuous. Let {yg} be a sequence in F converging uniformly to y e F
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on every compact subinterval of [tl,CO). Consider any compact subinterval of the

form [tl,t2]. Let g > 0 be given and choose t3
> t

2
so that

* * e
i(s)(s,cxk(S))ds < i < i < n,4nM

t3

(2.14)

where M max max
l<i<n t[tl,t2]

,
xi(t). Take an integer N such that

*i(s) If(s,yg(s)) f(s,y(s)) < s e [tl,t3] i < i < n, (2.15)
2nld(t3-tI)

for all 9 >_ N; this is possible since f(t,y) is continuous and {yg} converges uni-

formly to y on [tl,t3].
Using (2.14) and (2.15) we have

y(t) 7y(t) _<
t

n , f 3 ,
Y. xi(t) J i (s) If(s,Y

i=l
tI

(s)) f(s,y(s))Ids

n , f , ,
+ 2 Z xi(t) i (s)(s’cxk(S))ds <

t=1
t
3

for all t g [tl,t2] and all 9 >_ N. This shows that ] is continuous on F.

iii) F i__s relatively compact. From (2.10), (2.11) and (2.12) (with J 0)

we obtain

n r * *l<y)’(=)l _< li(t)[ + z lxi(t) j i(s),(s,cxk(S))ds.
i=l

t

On any compact subinterval of [t0,=) the right-hand side of the above inequality is

bounded by a constant independent of y e F. Therefore F is equicontinuous on every

compact subinterval of [tl,m) and its relative compactness follows from the Ascoli-

Arzela theorem.

Applying now the Schauder-Tychonoff fixed-point theorem, we see that the operator

has a fixed point y y(t) in F. As remarked earlier, y(t) is a solution of (1.2).
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That y(t) satisfies the order relation (2.6) follows from the inequality

n , [ ,

i-I t

with the help of hypotheses (2.4) and (2.5).

To prove the opposite relationship between the solutions of (i.I) and (1.2),
,

let yk(t) be a solution of (2.2) satisfying the inequality lYk(t) < CXk(t) on

[to,). Then it is esy to verify that the function x(t) defined by

x(t) Yk(t) + ?. (-l)n-ixi(t) (Xl,...,Xi_l,Xi+1 ,Xn)(S)f(s,Yk(S))ds
i-i

t

(2.16)

is a solution of (i.i) which satisfies the order relations (2.7). Thus the proof of

Theorem 1 is complete.

THEOREM 2. Let conditions (2.1), (2.2) and (2.3) be satisfied. Suppose that,

for some integer k, 1 < k < n, and some constant c > i,

k(S)(s,cxk(S))ds <

to

(2.17)

and

,
xi(t) It

J gi(s)$(s’cxk(S))ds o(1) as t

Xk(t) to
(2.18)

for I < i < n with i k.

Then there exists a solution y(t) of (I,2) such that (2.6) is satisfied. In add--

,
ition, if Yk(t) is an solution of (1.2) satisfying the inequality [Yk(t)[ _< CXk(t),
then there exists a solution x(t) of (i) such that (2.7) is satisfied.

PROOF. It suffices to proceed as in the proof of Theorem i by replacing (2,10)

and (2.16), respectively, by

,n-k-1y(t) Xk(t) / (-ll Xk(t) (Xl, Xk_l,Xk+1 xn)(s)f(s,y(s))ds
t

n f
t

(-x)n-xx(t)J . (Sl,...,Xi_l,Xil,...,xn)(s)f(s,y(s))ds+
i=l t

1iSk

(2.19)
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and

x(t) Yk(t) + (-l)n-kxk(t) I (xI Xk_l,Xk+l,...,Xn)(S)f(s,Yk(S))ds
t

t
n

)n-i-lxi+ Z (-i (t) (xI Xi_l,Xi+1 Xn)(S)f(s,Yk(S))ds. (2.20)
i=l
i+k tl

The details will be left to the reader.

It is not hard to see that the above arguments can be applied to establish sire-

ilar asymptotic relationship between (i.i) and the functional differential equation

(n) (n-l)
y (t) + Pl(t)y (t) + + Pn(t)y(t) f(t,y(g(t)), (2.21)

where Pi(t) and f(t,y) are as before and g [t0,) R is a continuous function such

that lira g(t) . For example, we have the following analogue of Theorem i.
t

THEOREM 3. Let conditions (2.1), (2.2), ad (2.3) be satisfied. Suppose that,

for some k, I < k < n, and some constant c > I,

i(s)(s,cxk(g(s)))ds < , 1 < i_< n, (2.22)

t
0

x
i
(t) ,f , ,

, J i(s)(s,cxk(g(s)))ds o(1) as t

Xk(t) t

(2.23)

for I < i < n with i k.

Then (2.21) has a solution y(t) which satisfies (2.6). l_n addition, i__f Yk(t) i_s
,

a solution o_ (2.21) satisfying lYk(t) _< CXk(t), then (1.1) has a solution x(t) such

that (2.7) is satisfied.

3. EXAMPLE.

Consider the third order differential equations

x"’ + x 0, (3.1)

y’’’ + y b(t)[y[sgn y, (3.2)

where y > 0 is a constant and b [0,=o) R is a continuous function. The functions

Xl(t) (2/3e-t
x2(t) e

t/2 st/2cos2)t, x3(t) sinO2)t form a funda-

mental system of solutions of (3.1) such that W(Xl,X2,X3)(t) i. We can take
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* -t * * t/2 * t * *Xl(t) (2/)e x2(t) x3(t) e $1(t) (72)e 2(t) 3(t)

-t/2(213)e

Suppose that

e(l-y)tlb(t Idt < =.
0

(3.3)

Theorem 1 (with k-- i) then ensures that (3.2) has a solution Yl(t) such that

Yl(t) xl(t) + o(e-t) as t 0% (3.4)

Suppose next that

(l+(y/2))t
e Ib(t) Idt <

0

(3.5)

Then, applying Theorem i (with k-- 2 and k 3), we see that (3.2) has solutions

Y2(t) and Y3(t) such that

t/2
Y2(t) x2(t) + o(e as t oo, (3.6)

and

(e
t/2

Y3(t) x3(t) + o as t oo. (3,7)

Obviously, Yl(t) is nonoscillatory, whereas Y2(t) and y3(_t) are oscillatory.

Since (3.5) is stronger than (3.3), (3.5) guarantees the existence of all the three

solutions Yl(t), Y2(t) and Y3(t) listed above.

From Theorem 1 it also follows that, in case (3.5) holds, if y(t) is a solution

of (3.2) satisfying

t/2ly(t) < c e (3.8)

for some constant c > i, then there exists a solution x(t) of (3.1) such that x(t)

y(t) + o(et/2) as t o% Note that not all solutions of (3.2) are subject to this

estimate. In fact, equation (3.2) with y 3 and b(t) 28e
6t

has a solution

3ty(t) e even though (3.5) is satisfied.

Finally, consider the functional differential equation

y’’’(t) + y(t) b(t)ly(t + sin t)l sgn y(t + sin t), (3.9)
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where y and b(t) are as above. Appealing to Theorem i we conclude that if

(3.5) holds, (3.9) has three solutions Yl(t), Y2(t and Y3(t) with properties (3.4),

(3.6), and (3.7), respectively.
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