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ABSTRACT. ge consider Schlffers dlfferentlal equation for functions in the cZass of

norsallzed unlvalent functions which axJaize the n---coeffclent. By conslderln a

th
class of functiouals converging to the n---coefficient functional, we determine some

addtttona/ setrtes that extreaal functions possess.

L:Y AH PfiF.. Univalent function, Schtffer’s differential equation, varia-

tion, Harry relation.

1. IN’L3I)DCTIOli

Let $ denote the class of functions f(z) z + a2z2 +..., sZytZc 8d univalent

the t dtc D. S ,e 11- to be cact in the topology of unifo cver-

gce cact subsets of D. erefore, variatiol probl of the fo (f)

t ve lutt S ever ts a conttnus fcttol on S. By ct-

CS lvt varti, Schiller [1, 2] shd tt trl fction f for

(f) an t satisfy the differentl eqtt

f()/ p(f(C)) -q() D (1.1)

ere p q are ratil fcti d q(ei6) 0. e coefficients of p and q de-

pd the fcti f therefore (.) is a fctiolifferential eqtion.

For les of the es of t vartiol td, see [-10]. For consistency, we

foll the notation in Pr [8, p. 83-190]. It is sho there that f is a

soluti to the problm of zing Re an; then

1p(f()) n() , (.)
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n-i
q()-- (n- l)an + J=IE (Jaj

(n-j) + .aaj ).

I i
Here n()z) is the familiar Faber polynomial of degree n for f()

(1.3)

Equation (i.i)

with p and q defined by (1.2) and (1.3) respectively is the Schiffer differential

equation which any function maximizing Re a must satisfy. (Unfortunately, there are

other solutions that are not extremal functions such as z(l- z2) -I in the case n 3.)

In this note, we consider a class of functionals T (f) that converge to (f)
r

Re a as r + 0. We compute the Schiffer differential equation for each of these
n

functionals and obtain new conditions that the extremal functions must satisfy. In

certain cases, we show that the extremal function must satisfy an infinite system of

differential equations. The equations in this system are of the form (i.i) and have

the unknown coefficients of the extremal function appear in the equation.

2. THE MAIN THEOREM.

We will need the following result whose proof is an immediate consequence of the

formula for the sum of a geometric progression.

n-i (2iJn
Lemma. Let g(z) Z b z

n
Then Y. g\re z n Y, bknrknnn:0 i=0 i--0 n-i

THEOREM i. Let f be a function in S which maximizes Tr(f) Re n
Z f(zj) where

nr J :0
2ij

where z re n r > 0. Then

i) with the notation B. f(z.), f must satisfy
3 3

I) O- z  z’z.f (z 2 B2. i ]3 1 Y. f’(zj) 7. z f’(zj)(z
j 0

f(z)-B 2 j j=O j l-’.zj j:0 ]
3

ii) as r 0, the functions f (which may depend on r) approach a function in S

n-i
Re E f(zj) (2.1)

J:0

which maximizes Re a

PROOF We follow the outline in Pommerenke [8, p. 183-190] T is a linear function-
r

al of degree n and consequently

f()/ P(f()) q()

where 2
n-i Bp(w) r

w B.J:O ]

and
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i
nl

q() z f’
j=o J (zj

n-i i + n-I+ zj i zj
z.

+ Z zjf’(zj) i
Re Z f ).

j j=o zj j--o
(zj

Th roves the first statement of the theorem if we replace by z. To prove the

s d statement, note that the lemma implies

i(o2i n 2n
n-1
Z f

n r nanr + na2nr +...
j=0

and hence

T (f) a + 0(rn).
r n

If g > 0 is given, we may choose r so that 0(rn) < g. Then any function fo maximi-

zing Re a has
n

Re Tt(f) < Re an + g

fo f as r+ 0and hence is the limit of functions maximizing Re Tr

REMARKS. 1. It is well-known that a function that maximizes Re a actually has
n

a > 0.
n

z
n

2. If f(z) z + a2z2 +...+ a +... maximizes Re a then so do the
n n

functions
_2kj t\ef2ij 1 + e2ijn-i n-i n-i 2 n
e z z a^z +...+ a z +

Z n

Our technique of approx+/-ating Re a by Re Tr(f) will yield only one of the rotations
n

of f; the others can be obtained by considering replacing r by

2ij
n-i

r e r. This observation will explain some later results.

COROLLARY i. There is a function f e S which maximizes Re a for which
n

2a2an (n + l)an+I (n- l)an_I

PROOF. Let F(z) denote the expression appearing in (2.1). We fix r > 0 and expand

2
both representations for F(z) about z 0 obtaining, since f(z) z + a2z +...

n-i n-i
i
n I

(zj
i + z/z.]E B + (-n- 2a

2
l B )z + 0(z2) zjf’ z +

j--o j j=o j j=o
1-

inl l+z.z n-I nl[ (zj ]+ -- f’(zj) J Re Y. Bj
-i_ zjf’ )(I + 2__z + 0(z2))

j=0 J I- z.---z j=0
2
j=0

z.

+ f’(z (i + 2.z + 0(z2) Re l
j =o J j =o

n-i

f(zj) -iIm I zjf’(z.)
j=0 3
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Re 7. f(zj) + 7. [-f’(z + z. f’(z z + 0(z2).
j--0 j--0 J

Equating coefficients, since Bj f(zj), we obtain

n-i n-i n-i
7. f -Jim 7 z f’(zj) Re 7. f(z

--o (z --o j --0
n-i n-i n-i --2

-n 2a2
Y. f Y. f’ + Y. z.3 f’

j=o
(zj

j=o
(zj

j=o
(zj

Applying the argument of the lemma to (2.2) and (2.3), we obtain

n (r2n) n n (r2n)-nanr + 0 -ilm n(n + l)an+ir Re nanr + 0

n n-n 2a2nanrn + 0(r2n) -n- n(n + l)an+Ir + n(n l)an_1 r + 0(r2n).

Upon dividing (2.5) by rn and letting r / 0, we obtain

(2.2)

(2.3)

(2.4)

(2.5)

2a2an (n + l)an+I (n l)an_I
REMARK. The conclusion of the corollary is the well-known Marty relation. It was

originally derived by very elementary methods. Hummel [6, p. 77] observed that the

Marty relation can also be obtained by considering the Schiffer differential equation

for the functional Re a
n

3. CONSEQUENCE OF THE MAIN THEOREM.

THEOREM 2. Suppose that a fixed function f maximizes Re Tr(f) for some sequence of

r’s converging to 0. Then f satisfies the system of functional-dlfferentlal equations

’f(z)’2
1 i (kn l)akn +(z-; nn qbkn(’f’(z)) an

kn-i (kn-j
zkn-3-’) k 1,2,E (jajz + jaj-

n=l

where kn(W) is the knt__h Faber polynomial for W.

PROOF. By Theorem i, f must satisfy the functlonal-differential equation

J_ 1 7. zjf’(zj) +f()7 f (z) Bj z zj
n-I i + z n-i

1 l z f’(zj) -- Re 7. f(zj)+
j=O j 1 .z j=O

3

where Bj f(zj) fkre n ;. For fixed z, the expression F(z) defined by (3.2)

(3.1)

(3.2)
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is an analytic function of r for r in some small interval about 0. We expand (3.2)

kn
in powers of r noting that the lemma insures that only powers of r can appear. We

show the argument only for powers of r
n

since the computation for higher powers is

similar.

(z)
j=0 Lf(z) (I + f(z) f(z)2

i nl 2zj
zjf’(zj)(l + +...)2

j=0
z

n-i n-i
+ i j=07" --j f,(zj)(l + 2z +...) Rej=0l

<zf’f (zl)2 fn C(n)(zrn tl" (z) +
C2(n)

+" "+
1 .) + )]f (z)

2
f (zin-I 0"r2n

i 2 n
=--nar

2 n

f(zj)

n-i [ f’ (zj) 2 f’(zj) "I 1 2-- n
+ O(r2n) + 7. z + zj 2 +’" +- n ant

j=0 z z

7. f’(z )z +--3 z
2 rn+ O(r2n)

n
j=0 j zj f (zj) +. Re na+ 0(r2n) +

n-i n-j
[(n2 n)a + n 7. (jajz

-(n-j) + j jz )]rn + O(r2n).
n

j=l

The coefficients C (n) are obtained in the following manner:
m

n-inrncI (n) l 2

j=O
Bj

n-i 27. (f ))
j=o

(zj
n-i

7. (zj + a2z +...)2
j=0

n-i
Z l Z a a

J=0 m=l ml+m2---m ml m2

n
nr 7. a a

ml"2=n ml m2
+ 0 (r2n).
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n-Inrnc2(n) E B3.
j=0 J

n-i
y. +, a2z + .)3

j=o
(zj

n-i 2_ni" m

E l Ea a a \re /
j=0 m--i ml m2 m3

n (r2n)nr Y.a a a + 0
mI m

2 m3

The sum lamlam2am3 is taken over all positive integers ml, m2, m
3
with

m
I + m2 + m3

n. This procedure yields in general

(3.4)

nrnc(n) nr
n Y.a a

mI m+l
n-i f- i , i

where m
I + m

2
+ + m n m

i
> 0 We recognize Y’=l C(n) as- a

n n f(z) n

[8, p. 57]. This proves the result if k i. The other equations for k 2,... are

obtained in a similar manner by equating coefficients of higher powers of r

REMARKS. i. A result of Pfluger [7] shows that a Koebe function

k(z) z(l ei0z)-2 always satisfies (i.i).

2. The assumption that f is essentially the only extremal function for

the problem of maximizing Re a is used quite strongly in this proof. If there were
n

more than one function, the coefficients of the extremal function for T would de-
r

pend upon r, making the functional-differential equations even more complicated. It

seems reasonable to suppose that there is essentially one extremal function (apart

from rotations) for each n but we are unable to prove this.

3. The equation for k i is of course the familiar Schiffer differential

equation for a function f maximizing Re a The nature of this family of equations
n

suggests that, if f(z) z + a2z2 + is a function which maximizes Re fan, also

maximizes Re a2n Re a3n If so, the Bieberbach conjecture would follow from a

result of Hayman [ii, p. 104]. He showed that, if f e S,

lira <_ i, with I only if f(z) z(l eiz)-2"
k

THEOREM 3. Suppose that f satisfies the hypothesis of Theorem 2. Then f satisfies

the functional equation
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kn-i
(kn- l)akn + 7. (ja.z-(kn-j)1 1

nn *kn(f(z) akn n=l 3

i , 1 n-1
n nif(z) an (n l)aEn + 7. (ja.z

j=l 3

and hence f is algebraic.

+ jzkn-j

(3.5)

PROOF. Divide the kth equation in the system (3.1) by the th equation.

The following result is of interest only if the Bieberbach.conjecture is false.

THEOREM 4. Suppose there is a function f not of the form z(l el@z) -2 and that f

180satisfies the hypothesis of Theorem 2. Then there is a number @0 such that e is

simultaneously a zero of

qk(z) (kn l)ank +
kn-I

e-(kn-j)i$Z (jaj
j=0

+ jje (kn-j)iS) k 1,2

PROOF. Pfluger [7] has shown that if f is a function that maximizes Re a then
n

i iRe[ n((z)) a
n

< 0 unless f is a rotation of the Koebe function. (He actually

proved this theorem for any linear functional and the rational function p related to

it by (1.2).) It is well-known that
I i

Cn(f(z)) an 0 if and only if f is a Koebe

function. (See [8, p. 194], [6, Theorem 13.6].)

We consider equation (3.5) with i. It is well-known that since f maximizes

Re a the function q defined by (i 3) must have at least one zero on z i Sincen

the left-handed side of (3.5) is analytic by assumption, each zero e of

n-I
-(n-J)i8ql(ei8) (n- l)a + Z (jaje-(n-j)i8 + jajen

j=l

must also be a zero of qk(ei8), k 1,2, This completes the proof.

THEOREM 5. Suppose that f satisfies the hypothesis of Theorem 2. Then

i) akn is real k 1,2,...

ii) 2a2akn (kn l)akn+l (kn l)akn_l

PROOF. Since f is essentially the unique function maximizing Re an, the equations

(2.2) and (2.3) are valid for all r zjl in some neighborhood of 0. Equating co-

efficients of rkn in (2.2) yields, after an application of the lemma,

or

-nakn in Im kn akn- n Re akn

-i Im akn -i Im k nakn
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which implies that akn is real.

Equating coefficients in (1.6) and applying the lemma, we obtain

-2a2n akn -n(kn + i) akn+l + n (nk i) ank_l

and the result follows after division by -n.
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