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ABSTRACT. We consider Schiffer's differential equation for functions in the class of
normalized univalent functions which maximize the ng- coefficient. By considering a
class of functionals converging to the u-t-‘l coefficient functional, we determine some
additional symmetries that extremal functions possess.
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1. INTRODUCTION.

Let S denote the class of functions f(z) = z + azzz +..., analytic and univalent
in the unit disc D. S is well-known to be compact in the topology of uniform conver-
gence on compact subsets of D. Therefore, variational problems of the form Re ¢(f) =
max must hgve solutions in S whenever ¢ is a continuous functional on S. By comstruc-
ting univalent variations, Schiffer [1, 2) showed that an extremal function f for

$(f) = Re L must satisfy the differential equation

' 2
(5‘7%) PCE(D) = a@® T eD .1

where p and q are rational functions and q(eie) 2 0. The coefficients of p and q de-
pend on the function f and therefore (1.1) is a functional-differential equation.
For exsmples of the uses of the variational method, see [1-10]. For consistency, we
follow the notation in Pommerenke [8, p. 183-190]. It is shown there that f is a

solution to the problem of maximizing Re a; then

) R 1
P(f(R) = & ¢n(ﬁ5) -a, (1.2)
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n-1
q() = (n - l)a + I (jajc
j=1

)) is the familiar Faber polynomial of degree n for —/ f(C) Equation (1.1)

-(-3) | jaj;“"%. (1.3)

Here ¢ (f(C
with p and q defined by (1.2) and (1.3) respectively is the Schiffer differential
equation which any function maximizing Re a must satisfy. (Unfortunately, there are
other solutions that are not extremal functions such as z(l- 22)_1 in the case n = 3.)
In this note, we consider a class of functionals Tr(f) that converge to ¢(f) =
Re a asr + 0. We compute the Schiffer differential equation for each of these
functionals and obtain new conditions that the extremal functions must satisfy. In
certain cases, we show that the extremal function must satisfy an infinite system of
differential equations. The equations in this system are of the form (1.1) and have
the unknown coefficients of the extremal function appear in the equationm.
2. THE MAIN THEOREM.

We will need the following result whose proof is an immediate consequence of the

formula for the sum of a geometric progression.

o -1 ( cie )
Lemma, Let g(z) = I b z% . Then I g\re n Z bk r kn .
n=0 n i=0 n-1
THEOREM 1. Let f be a function in S which maximizes Tr(f) Re —lE z f(z ) where
2mij nr =0
where zj =re ® , r >0, Then
i) with the notation Bj = f(zj), f must satisfy
2
' 2n-1 B n-1 z+z n-1 1+z .z n-1
/foE:D Ity PGty 2 ) - re B fGz) D)
\ j=o0 H{z)-By j=0 4 377%y j=0 3 122 =0

ii) as r > 0, the functions f (which may depend on r) approach a function in §
which maximizes Re a .
PROOF. We follow the outline in Pommerenke [8, p. 183-190]. T, is a linear function-

al of degree n and consequently

(‘ffEEQ P(£(D)) = (D)

where 2

p(w) = E w—tJ_B;

and
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n-1 T+ z n-1 1+ zz, n-1

a@) LT sy —dels 2,8 (2,) el -Re I £(z).
2 T -z 2 gz, h]
j=0 J i 3=0 i 3=0

Th: »roves the first statement of the theorem if we replace { by z. To prove the
S¢ d statement, note that the lemma implies

n-1 ( 21Tij> . )
T f\e ® /r =nar" +na r" +...
n 2n

and hence

T (£) =a + oM.

If € > 0 is given, we may choose r so that O(rn) < g. Then any function f0 maximi-

zing Re a, has
Re Tt(f) < Re a + €

and hence fO is the limit of functions maximizing Re Trf as r-> 0.

REMARKS. 1. It is well-known that a function that maximizes Re a, actually has

a > 0.
n
2, If f(z) =z + azz2 +...t anzn +... maximizes Re a s then so do the
functions . . .
omkj [ 2mij ) 2mij
e L Al /. z+e n-1 azz2 +...+ anzn +ooe

Our technique of approximating Re a, by Re Tr(f) will yield only one of the rotations

of f; the others can be obtained by considering replacing r by

2mij
tj =e n-1 r. This observation will explain some later results.
COROLLARY 1. There is a function f € S which maximizes Re a, for which

2a2an = (n + l)an+l - (n - l)an_1 .

PROOF. Let F(z) denote the expression appearing in (2.1). We fix r > 0 and expand

0 obtaining, since f(z) = z + a 22 +...,

both representations for F(z) about z

2
n-1 n-1 1 n-1 [ 1+ z/z,
- L B, + (-n - 2a ZB)z+0(z)=.._Z 2. £'(z.) ]+
=0 3 2 3=0 2 3=0 i j7 1 - z/zj
1 n-1 1+7z.2 n-1 1 n n-1 .
t7 2 z, f'(Z ) ——————L— - Re L Bj = - 3 pX [z f'(z YA+ =+ 0(z ))
j=0 J 1 - ij _0 =0 J J
15— _ 2 n-1 n-1
+3 Iz, £'(z) (1 + 22,2+ 0(z")| - Re I f(zj) = _iIm T zjf'(zj)
3j=0 3 3 J §=0 3=0
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n-1 n-1 2 2
~Re L f(z)+< L [-f'(z,) +z.7 £'(z )])z+0(z ).
=0 h| 4=0 i 3 h|

Equating coefficients, since B, = f(zj), we obtain

h|
n-1 n-1 n-1
- I f(z,) =-1iIm I z f'(z,) - Re £ f(z,) (2.2)
4=0 ] §=0 k| ] 4=0 k|
n-1 n-1 n-1 __,
-n-Za2 I f(z,)=- I f'(z,)+ L 2z £'(z,) (2.3)
j-o j j=0 j j'_'o j j
Applying the argument of the lemma to (2.2) and (2.3), we obtain
-nanrn + O(rzn) = —iIm n(n + l)an+lrn - Re nanrn + O(rzn) (2.4)
-n - Zaznanrn + O(rzn) = -n - n(n + l)an_'_lr:n + n(n - 1)an_l =+ O(rzn). (2.5)

Upon dividing (2.5) by r® and letting r +- 0, we obtain

Zazan = (n + 1)an+1 - (n - l)a_n: .
REMARK, The conclusion of the corollary is the well-known Marty relation. It was
originally derived by very elementary methods. Hummel [6, p. 77] observed that the
Marty relation can also be obtained by considering the Schiffer differential equation

for the functional Re an .

3. CONSEQUENCE OF THE MAIN THEOREM.
THEOREM 2. Suppose that a fixed function f maximizes Re Tr(f) for some sequence of

r's converging to 0. Then f satisfies the system of functional-differential equations

zf' (z) 2

1,1 .
f(z)) kn ¢k.n(f(z)) T T (kn - l)akn +
kn-1
T (Ga,z®03) 4oz Oy o 10, (3.1
a=1 h] 3

where ¢kn(w) is the knth Faber polynomial for W.

PROOF. By Theorem 1, f must satisfy the functional-differential equation

2
2 n-1 B n-1 z+ z

Zf'(Z)) p i -l ey —31+

( £(z) =0 f(z) - B:1 2 3=0 3 3’z - zj
n-1 1+2z.z2 n-1

+3 5 T FG) —— -k I £fGz) (.2
j=0 4 3 1. zyz j=0 3
2mij
where Bj = f(zj) = f<re n > For fixed z, the expression F(z) defined by (3.2)
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is an analytic function of r for r in some small interval about 0. We expand (3.2)
in powers of r noting that the lemma insures that only powers of rkn can appear. We
show the argument only for powers of rn since the computation for higher powers is

similar.

2 2
2 n-11 B B B

zf'(2) i i i

( f(z)) Flrw Crey 2t

j=0 £(z)
1 n-1 -2—21
== I '
2 420 zjf (zj)(l + 5 +...)
1 ngl _ _ n-1
= ' .l) - I f .
+ 2 120 zj f (zj)(l + Zij +...) Rej=0 (zj)
2 C.(m) C, (n)
M) nr“( e >+ 02
( £(z) f(z) f(z)2 f(z)n-l
n-1 £'(z,) £'(z.) o
= % nzanrn + 0™ + = z§ — 3 z§ — |+ % nZantn
j=0 z z
n-1
+ O(rzn) + I TZ £f'(z,)z + ;_3 f'(z )z2 +...] - Re nanrn+ O(rzn)

4=0 | 3 3% 75 3

n-1 n-j
(2 -ma +ncf Ga,z2 @ 4532 HIP+ 0.
n j=1 i 3

The coefficients Cm(n) are obtained in the following manner:

n-1 2
nrnCl(n) = I B
3=0
n-1
- (e’
j=0
n-1 2
= L (z, +a,z, +...)
=0 h| 273

n-1 o ( M)m
r

2

= I I L a_a

3=0 m=1 ml-hn2=m T

= ar® X a_ a +0(r2n).
m, m
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nrncz(n)

]
o™
=}

. 2 3
= I (z, +a,z;, +...)
=0 3 2]

n-1 ® ( lij_)

= I ¥ ZIa a a, (3.3)
j=0m=1 M1 T2
n 2n
=nr Za_a a +0(x7). (3.4)
h B R’
The sum Za a a is taken over all positive integers m.,, m,, m, with
o, m)"my 1 2 3
o, + m, + m, = n. This procedure yields in general
n n
nr C,(n) =nr a_ ... a
' m, M1
where m_ + m, +...+ m, = n, m, > 0. We recognize Ll (n)f-z ¢ (——) -
1 2 2 > e : 2=1 “& f(z) a4

[8, p. 57]. This proves the result if k = 1. The other equations for k = 2,... are
obtained in a similar manner by equating coefficients of higher powers of rn.
REMARKS. 1. A result of Pfluger [7] shows that a Koebe function

k(z) = z(1 - eiez)—2

always satisfies (1.1).

2, The assumption that f is essentially the only extremal function for
the problem of maximizing Re a, is used quite strongly in this proof. If there were
more than one function, the coefficients of the extremal function for Tr would de-
pend upon r, making the functional-differential equations even more complicated. It
seems reasonable to suppose that there is essentially one extremal function (apart
from rotations) for each n but we are unable to prove this.

3, The equation for k = 1 is of course the familiar Schiffer differential
equation for a function f maximizing Re an. The nature of this family of equations
suggests that, if f(z) = z + a z2 +... is a function which maximizes Re a ., £ also

2

on? Re g sece - If so, the Bieberbach conjecture would follow from a

result of Hayman [11, p. 104]. He showed that, if f € §,

maximizes Re a

a.
1im J——‘;-L =qa <1, with a = 1 only if f(z) = z(1 - %22,
=»00

THEOREM 3. Suppose that f satisfies the hypothesis of Theorem 2. Then f satisfies

the functional equation
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kn-1
-(kn-j) — kn~j
1 v 1 (kn - 1)a, + I (ja,z + ja.z )
kn ¢kn(f?;7) ~ %n - kn n=1 3 J (3.5)
[} 1 n-1 — (i — gn-j °
In ¢zn(gz;7) “%n (- Dag + b (jajz (fn-3) jajz )
j=1

and hence f is algebraic.
PROOF. Divide the kth equation in the system (3.1) by the 2th equation.

The following result is of interest only if the Bieberbach.cenjecture is false.

i6_,-2

z) © and that f

190

satisfies the hypothesis of Theorem 2. Then there is a number 60 such that e is

THEOREM 4. Suppose there is a function f not of the form z(l1 - e

simultaneously a zero of

kn-1
qk(z) = (kn - l)ank + jEo(jaje

PROOF. Pfluger [7] has shown that if f is a function that maximizes Re a, then

Re[%- ;(f(i)) - an] < 0 unless f is a rotation of the Koebe function. (He actually

(kn-j)16 j:,;e(kn-i)ie) k=1,2,...

proved this theorem for any linear functional and the rational function p related to

it by (1.2).) It is well-known that —-¢ (= = 0 if and only if f is a Koebe

f(z)) T3
function. (See [8, p. 194], [6, Theorem 13.6].)
We consider equation (3.5) with £ = 1, It is well-known that since f maximizes
Re a, the function q defined by (1.3) must have at least one zero on z = 1. Since
the left-handed side of (3.5) is analytic by assumption, each zero eie of
n-1

ql(eie) =(m-1a + I (ja e
j=1

must also be a zero of qk(e ), k =1,2,.,.. . This completes the proof.

S0, 0

THEOREM 5. Suppose that f satisfies the hypothesis of Theorem 2. Then

i) a . is real k = 1,2,,...

1) 2a2 = (kn - 1)akn+1 = (lm - l)akn 1°
PROOF. Since f is essentially the unique function maximizing Re a , the equations
(2.2) and (2.3) are valid for all r = Izjl in some neighborhood of 0. Equating co-

efficients of rkn in (2.2) yields, after an application of the lemma,

-na, = in Im kn a,-n Re a .

or

-1 Im a., = -i Im k na,
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which implies that a. is real.

Equating coefficients in (1.6) and applying the lemma, we obtain

-2a2n a = -n(kn + l)akn+1 + n(nk - l)ank_1

and the result follows after division by -n.
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