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ABSTRACT. If M is a centered operand over a semigroup S, the suboperands of M

containing zero are characterized in terms of S-homomorphisms of M. Some properties

of centered operands over a semigroup with zero are studied.

A A-centralizer C of a set M and the semigroup S(C,&) of transformations of M

over C are introduced, where & is a subset of M. When & M, M is a faithful and

irreducible centered operand over S(C,&). Theorems concerning the isomorphisms of

semlgroups of transformations of sets Mol over &.-centralizersl Ci, i 1,2 are

obtained, and the following theorem in ring theory is deduced: Let Li, i 1,2 be

the rlngs of linear transformations of vector spaces (Mi,Di) not necessarily finite

dimensional. Then f is an isomorphism of L
I L

2
if and only if there exists a

i-I semilinear transformation h of M
I

onto M2
such that fT hTh

-I
for all T E LI.
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0. INTRODUCTION AND PRELIMINARIES.

In recent times Tully [I], Hoehnke [2], and others have studied the theory of

representations of a semigroup by transformations of a set. This paper deals with

the study of a certain class of such representations (see Theorem 2.1). In section

i we define an 0-suboperand of a centered operand M over a (general) semigroup and

characterize the same in terms of operand homoorphisms of M. Soe properties of

centered operands over semigroups with zero are discussed in Section 2. In Section

3 we introduce the concept of a &-centralizer C of a set M (with IMI > 2), for any

non-empty subset & of M, and define the semigroup S(C,&) of transformations of a
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set M over C as the set of all self-maps of M which commute with every member of C.

We observe that M is a faithful centered operand over S(C,A), and also is irreduci-

ble in the case when A M.

In Section 4 we obtain results (Theorems 4.1 and 4.2) which are comparable

with Theorem 17.3 of [2], concerning the isomorphisms of semigroups of transforma-

tions of sets Mo over centralizers Ci, for i 1,2, which generalize a similar
1

result concerning the isomorphisms of near-rings of transformations of groups (as

also analogous results for loop-near-rings) Theorem 2.6 of Ramakotaiah [3]; then

we thereby deduce the following well-known isomorphism theorem in ring theory (see,

for instance, Jacobson [4]): Let Li, i 1,2 be the rings of linear transformations

of vector spaces (Mi, Di) not necessarily finite dimensional. Then f is an iso-

morphism of LI
L
2

if and only if there exists a l-1 semilinear transformation h

of MI
onto M

2
such that fT hTh

-I
for all T LI.

Throughout this paper, by "an operand over a semigroup" we mean a left operand

only. If M is a centered operand over a semigroup with zero, {0} and M are called

the trivial suboperands of M. We often write 0 instead of (0}. For the definitions

and results on operands, we mostly follow Clifford and Preston [5]. In Weinert [6],

the terms "S-set" and "S-mapping" are used to denote "operand over S" and "S-homo-

morphism" respectively.

The following definitions are taken from Santha Kumari [7].

A system N (N, +,., 0) is called a loop-near-ring if the following condi-

tions are satisfied:

+
(i) (N,+,0) is a loop, which is denoted by N

(ii) (N,.) is a semigroup

(iii) (a + b).c a.c + b.c for all a,b,c e N

(iv) a.0 0 for all a e N.

If N is a loop-near-ring, then an additive loop (G, +, 0) is called an N-loop

provided there exists a mapping (n,g) ng of N x G G, such that

(i) (m + n)g mg + ng and

(ii) (mn)g m(ng), for all m,n e N and g G.
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i. 0-SUBOPERANDS OF A CENTERED OPERAND.

In this section, M denotes a centered (left) operand (see [5]) over a (general)

semigroup S and 0 denotes the fixed element in M. We observe that, if is a S-

homomorphism of M into a centered operand M’, then (0) 0.

DEFINITION. A subset K of M is called an 0-suboperand of M if (if and only if)

S K __c K (that is, K is a suboperand of M) and 0 e K.

-i
THEOREM 1.1. A subset K of M is an 0-suboperand if and only if K (0) for

some S-homomorphism of M.

PROOF. Suppose a subset K of M is a 0-suboperand of M. Let M/K denote the

Rees factor operand corresponding to the suboperand K of M and let : M M/K be

the canonical S-homomorphism. Clearly (x) K if and only if x K. Thus K M/K

and, moreover, K is a fixed element of M/K. In fact, K is the only fixed element

of M/K. For, if (t) is one such element, then (t) s (t) (st) for all s S

and this gives that either t, st, or both belong to K for some s S or t st for

all s S; in any case, we get that (t) K. Hence M/K is a centered operand over

-i
S with K as its zero and (K) K.

The converse part can be easily proved by direct verification.

REMARKS 1.2. Clearly {0} is the smallest 0-suboperand and M is the largest,

under set inclusion. Also, the family F of all 0-suboperands of M is closed under

arbitrary unions and intersections. Hence, F is a complete lattice under set in-

clusion, with set union and set intersection as the lattice operations.

It is a straightforward verification to see that

PROPOSITION 1.3. Let M’ be a centered operand over S and let ." M M’ be a

S-homomorphism. Then, (a) for every 0-suboperand K of M, (K) is a 0-suboperand

-I
of M’ and (b) for every 0-suboperand K’ of M’, (K’) is a 0-suboperand of M.

PROPOSITION 1.4. Let K be a 0-suboperand of i and let M/K denote the Rees

factor operand corresponding to K. Let : M M/K be the canonical homomorphism.

-i
Then, (a) a subset B of M/K is a 0-suboperand of M/K if and only if (B) is a

0-suboperand of M and (b) A (A) is a one-to-one correspondence between the sub-

operands of M containing K and the 0-suboperands of M/K.

PROOF. (a) follows from Proposition 1.3, and the proof of (b) is routine.
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2. ALMOST IRREDUCIBLE SUBOPERANDS AND ANNIHILATORS.

In this section we concentrate on centered operands over semigroups with zero,

and our study is motivated by the following:

THEOREM 2.1. Let S be a semigroup with zero. Then, there exists a one-to-one

correspondence between the representations 9 of S by transformations of a set such

that 9(0) is a constant map and the centered (left) operands over S.

PROOF. Let T
M

denote the full transformation semigroup of a set M and let

9: S T
M be a representation of S such that 9(0) is a constant map. Now M is an

operand over S with multiplication defined by a.x 9(a)(x) for all a S, x M.

Let 9(0)(M) {t}. For any a S, a.t 9(a)(t) 9(a) (9(0) (t)) (9(a)9(0))(t)

9(a0)(t) 9(0)(t) t and so t is a fixed element of M. On the other hand, if y

is a fixed element of M, then we have y 9(0)(y) t. Hence M is a centered

operand over S. Conversely, if M is a centered operand over S, then the map

9: S T
M given by 9(a)(x) a.x for all a e S, x M is a representation of S by

transformations of M such that 9(0)(x) 0 for all x e M. Hence the result.

Throughout the rest of this section, S denotes a semigroup with zero and

M # 0 denotes a centered (left) operand over S. For any centered operand N over S

and a suboperand K of N, N/K denotes the Rees factor operand corresponding to K.

DEFINITION. M is said to be almost irreducible (a. irreducible) if M has no

nont rivial suboperands.

REMARKS 2.2. Clearly, irreducibility (see [5]) implies a.irreducibility.

Also, a. irreducibility implies irreducibility except possibly in the case when M

has exactly two elements (also see Proposition 2.4 below). We use the term ’mono-

genic’ synonymous to ’strictly cyclic’. We say that M is monogenic by t (or, equi-

valently, t is an S-generator of M) if and only if St M.

DEFINITION. M is said to be strongly monogenic if to each t M, St 0 or M.

We note that M can be strongly monogenic without being monogenic. But in the

presence of SM # 0, ’M is strongly monogenic’ implies ’i is monogenic’. The fol-

lowing results are easy consequences of the above definitions.

PROPOSITION 2.3. If K is a suboperand of M and k K is an S-generator of M,

then K M.
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PROPOSITION 2.4. M is irreducible if and only if M is a.irreducible and mono-

genic.

DEFINITION. M is said to be faithful if the representation associated with M

is faithful (see [i]).

DEFINITION. Let C be a nonempty subset of M. Then {s e S sC 0} is called

the annihilator of C and is denoted by A(C). For any t e M, A({t}) is denoted by

A(t).

PROPOSITION 2.5. For any nonempty subset C of M, A(C) is a left ideal of S.

In particular, A(t) is a left ideal of S for each t e M.

PROOF. It can be directly verified that S.A(C) A(C).

PROPOSITION 2.6. If M is faithful, then A(M) 0.

PROOF. Let s e A(M). Then, for t M we have st 0 0t and this gives

s 0 since M is faithful.

PROPOSITION 2.7. Suppose M is a. irreducible. Then the following hold.

(a) M is strongly monogenic

(b) If L is a left ideal of S, then, for any t M, Lt 0 or M.

(c) If A(M) 0 and 0 # L is a left ideal of S, then there exists t M

such that Lt M.

PROOF. (a) is obvious, since Sx is a suboperand for each x e M. (b) is clear

if we observe that Lt is a suboperand of M. Now we prove (c). Since A(M) 0 and

L # O, it follows that L A(M). Therefore, there exists t e M such that Lt # O;

Hence, Lt M.

PROPOSITION 2.8. Let 0 # L be a left ideal of S. If L is a. irreducible as an

operand over S (in the natural way), then L is a O-minimal left ideal of S.

PROOF. Let J be a left ideal of S with 0
_

J
_

L. Then J is a suboperand of

the operand L over S. Since L is aoirreducible, we have J 0 or L. Hence the

result.

DEFINITION. M is said to be smooth if any S-homomorphism of M satisfying

-i
(0) 0 is injective.

-i
DEFINITION. If is an S-homomorphism of M, then the congruence o is

called the kernel of and is denoted by ker .
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PROPOSI.TION 2.9. The following are equivalent:

(a) M is a primitive operand (see [i]) over S.

(b) For any S-homomorphism of M, ker (the diagonal of M x M) or

MxM.

(c) M is smooth and a. irreducible.

PROOF. (a) (b) is trivial. Assume (b). Let be an S-homomorphism of M

with 0-1 (0) 0. Therefore, ker and so is injective. Hence M is smooth.

To show that m is a. irreducible, let K be a suboperand of M. Then K -i(0) for

some S-homomorphism of M. But from hypothesis, if follows that -i(0) 0 or M.

Thus (c) is proved. Finally, assume (c). To prove (a), it is enough to prove (b),

since every congruence in M is the kernel of some S-homorphism of M. Now, let

-I
be an S-homomorphism of M. Then (0) 0 or M (since M is a.irreducible) and

hence is injective or is the zero map. Therefore, ker or M x M, proving

(b).

THEOREM 2.10. Let M,M’ be centered operands over S. Let @: M / M’ be an S-

-i
epimorphism. Let K (0). If M/K is smooth over S, then M’ is S-isomorphic to

M/K.

PROOF. Let : M- M/K be the canonical homomorphism. Since K -i(0),_ we

get that ker ker . Therefore, "h((x)) (x) for all x e M" define an S-

epimorphism h of M/K onto M’. Further, h((x)) 0 if and only if (x) K, which

is the zero of M/K, and, since M/K is smooth, it follows that h is injective. Thus

h is an isomorphism.

THEOREM 2.11. Suppose M is irreducible. For any non-zero t M, if S/A(t)

is smooth over S, then A(t) is a maximal left ideal of S.

PROOF. Let 0 # t M and assume that S/A(t) is smooth. Since M is irreducible,

t is an S-generator of M, by Lemma II.16(B) of [5]. Therefore A(t) # S. Also,

the map t: s st from S into M is an S-epimorphism, and -i(0) A(t). Now, by

Theorem 2.10, S/A(t) is isomorphic to M and therefore S/A(t) is a. irreducible. If

A(t) ! L is a left ideal of S, then by Proposition 1.4 it follows that (L) is a

suboperand of S/A(t) where : S S/A(t) is the canonical S-homomorphism. But

then, (L) A(t) or S/A(t) which gives that L A(t) or S. Hence the result.
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THEOREM 2.12. Suppose M is a. irreducible. Let L be a 0-minimal left ideal of

S such that (i) A A(C) for some C c__ M and (ii) for any S-somomorphism e of L into

-iM, (0) 0 implies is injective. Then L is S-isomorphic to M.

PROOF. Since L A(C) there exists m M such that Im # O. Therefore Lm M

by Proposition 2.7(b). Therefore the map @: % %m from L onto M is an S-epimor-

phism. Moreover, @-i(0) is a left ideal of S and is properly contained in L, and

hence is 0. Therefore @ is injective, by (ii) of hypothesis. Hence the result.

DEFINITION. S is said to be primitive if S admits a faithful and irreducible

centered operand. If M is one such operand, we say that S acts primitively on M.

Now, Theorem 2.12 yields the following, by taking M for C.

COROLLARY 2.13. Let S act primitively on M and let L be a 0-minimal left

-i
ideal of S such that, for any S-homomorphism e of L into M, (0) 0 implies

is injective. Then L is S-isomorphic to M.

3. SEMIGROUPS OF TRANSFORMATIONS OVER A CENTRALIZER.

Here we mainly introduce two concepts, namely (i) a centralizer C of a non-

empty set M in a generalized form and (2) the semigroup S(C) of transformations

(of M) over a centralizer C of M, and study some preliminary properties of the

centered operand M over S(C). Theorem 3.7 plays the key role in deducing the

corresponding results for near-rings, of [3], and loop-near-rings from some of our

main results.

Throughout this section, M denotes a set with IMI 2 and such that 0 e M is

a distinguished element. I denotes the identity mapping on M and 0, the constant

map on M with range {0}.

DEFINITION. By an endomorphism of M, we mean a mapping of M into itself fix-

ing 0. A bijective endomorphism of M is called an automorphism of M.

DEFINITION. Let be a non-empty subset of M. A set C of endomorphisms of M

is called a A-centralizer of M if

(i) 0 c

(ii) C- 0 is a group of automorphisms of M

(iii) e(A) c__ A for all e C- 0

(iv) , C, 0 # w A and (w) B(w) imply
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If A M, then a A-centralizer of M is referred to as a centralizer of Mo

The set {I,0} is a A-centralizer of M for any A M. To get a non-trivial

example, take M {0,a,b,c} and let C {I, , } where interchanges a and b

keeping the other elements fixed. Then C is a A-centralizer of M where A {a,b}.

Evidently, any centralizer of a group G (see Ramakotaiah [8], Definition 2)

is a centralizer of the set G (with the identity element of G acting as the distin-

guished element). We notice that M is a vector set in the sense of [2], over any

centralizer of M.

LEMMA 3.1 Let C be a set of endomorphisms of M containing 0 such that C 0

is a group of automorphisms of M. Then C is a A-centralizer of M for some subset

of M containing non-zero elements of M if and only if u {x e M (x)=x} # M.
C-O

PROOF. Write F {x e M (x) x} for each e C and put u F M
Ic

C-0

Suppose M
I # M. Put A M MI. Then A contains a non-zero element, and we shall

show that C is a A-centralizer of M. Let w A and e C-O, with (w) A. Then

8(w) M
1
which implies that there exists C-0, # I such that ((w)) (w).

Now I # 8-1 C- and $-i (w) w which says that w A, a contradiction.

Hence 8(A) A. The rest is also similar.

Conversely, if C is a A-centralizer of M such that A contains a non-zero ele-

ment say w, then it can be easily verified that w MI; hence M # MI, and the proof

is complete.

In the rest of this section, C denotes a non-trivial A-centralizer of M with

0 A.

DEFINITION. A mapping T of M into M is called a transformation of M over C if

Ta sT for all e C.

REMARK 3.2. Any transformation of M over C fixes O. The set of all transfor-

mations of M over C, denoted by S(C,A), is a semigroup with zero and unity element

(under composition of mappings) and M is a centered operand over S(C,A) in a natural

way. Moreover M is faithful. In case A M, we shall denote S(C,A) by S(C). By

a straightforward verification, one can see that:
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PROPOSITION 3.3. For any e C, {x M e(x) x} is a suboperand of M.

The relation in A defined by x y if and only if there exists e C 0

such that (x) y is clearly an equivalence relation on A and the equivalence

classes are called the orbits of C on A. The following lemma can be proved on the

same lines as in Lemma 8 of [8] and is a generalization of the latter.

LEMMA 3.4. Let 0 # w A and w’ M. Then there exists T S(C,A) such that

(i) T(w) w’ and (ii) T maps elements of M which do not belong to the orbit of w

onto 0.

REMARK 3.5. It follows from Lemma 3.4 that every non-zero element of A is a

S(C,A)-generator of M. Hence, if C is a centralizer of M, then S(C) acts primitive-

ly on M. If M is a group (respectively loop) and A is a non-empty subset of M,

then we can analogously define (i) a A-centralize# C of the group (loop) M- so

that it reduces to the centralizer of the group (loop) M when A M- and (2) the

near-ring N(C,A) (loop-near-ring L(C,A)) of all transformations of M over C. Then

M is a faithful N(C,A)-group (L(C,A)-loop). Also, as sets, N(C,A) and L(C,A) both

coincide with our S(C,A). Thus we have:

COROLLARY 3.6. Let M be a group (loop), and 0 # A, a subset of M containing

0 and C, a A-centralizer of the group (loop) M. Then every non-zero element of A

is a N(C,A)-generator (L(C,A)-generator) of M. Hence, if A M, then M is a N(C)-

group (L(C)-loop) of type 2 and N(C) (L(C)) acts 2-primitively on M.

Using Lemma 3.4, we obtain the following theorem which is crucial in extending

some of our main results to near-rings (loop-near-rings) of transformations of a

group (loop) M over a centralizer of the group (loop) M.

THEOREM 3.7. Let M,C be as in Corollary 3.6. Let M’ be a N(C,A)-group

(L(C,A)-loop). Then any S(C,A)-(operand) homomorphism 9 of M into M’ is a N(C,A)-

group (L(C,A)-loop)homomorphism (that is, preserves addition also); hence, if

9-1(0) 0, then 9 is injective.

PROOF. Let 9" M M’ be an S(C,A)-homomorphism. Fix a non-zero element w of

A. Let x,y M. Then, by Lemma 3.4, there exist TI,T2 e N(C,A)(=S(C,A)) such that

Tl(W) x, T2(w) y. Now 9(x + y) 9(TI(W) + T2(w)) 9(T
I
+ T2)(w) (TI + T2)9

(w) T
1

9(w) + r
2 9(w) 9 Tl(w) + 9 r2(w) 9(x) + 9(Y). Hence the result.
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Theorem 3.7 can be generalized to the case of Universal Algebras, as follows.

We assume that (A,) is a Universal algebra such that A has a distinguished element

0 (that is, some f is nullary) and 0 A
_

A.

DEFINITION. A set C of endomorphisms of the -algebra A is called a A-central-

izer of the -algebra A if (i) 0 C (ii) C 0 is a group of automorphlsms of A

(iii) (A) A for all C and (iv) , C, 0 # w A, (w) (w) imply .
Let C be a A-centralizer of the -algebra A. We denote by U(C,A), the set of

all transformations of A which commute with every member of C. Defining operations

pointwise, and adding the binary operation "o" of composition of mappings, we get a

Universal algebra (U(C,A), u {o}). Now A is a centered operand over U(C,A) and we

have the following theorem whose proof is similar to that of Theorem 3.7.

THEOREM 3.8. Let A, U(C,A) be as above. Let B be a -algebra such that there

is a (left) multiplication of the elements of B by the elements of U(C,A), satisfy-

ing (i) f(TI, Tn).b f(Tl’b, Tn’b) for all f , TI, T
n

U(C,A)

and b B (ii) (TIT2).b TI’(T2"b) for all TI, T
2

U(C,A) and b B. Then any

U(C,A)-(operand) homomorphism of A into B is a -algebra homomorphism.

With the usual notation, we have:

LEMMA 3.9. Let 0 # w A. Then M is S(C,A)-isomorphlc to A(M-) where is

the orbit of w.

PROOF. Consider the S(C,A)-homomorphism : T / T(w) from A(M-) into M.

That is surjective follows from Lemma 3.4 and can be shown to be injectlve

using the definition of S(C,A). Hence the result.

THEOREM 3.10. Suppose M is a.irreducible over S(C,A). Let be a non-zero

orbit. Then A(M-) is an irreducible operand over S(C,A) and hence A(M-) is a 0-

minimal left ideal of S(C,A); further, A(M-F) A(A).

PROOF. The first part is an easy consequence of Lemma 3.9. To prove the last

part, consider the map T: M M which is identity on and 0 elsewhere. Now

T S(C,A) and thereby T A(M-P) A(A).

The bracketed statement of the following corollary is due to [3], Lemma 2.1.

COROLLARY 3.11. Let M # 0 be a group (loop) and C, a centralizer of M. Then

N(C)(L(C)) contains a left ideal K which is N(C)-group isomorphic (L(C)-loop iso-
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morphic) to M and hence is a N(C)-group (L(C)-loop) of type 2. Afortiori, K is a

minimal left ideal of N(C)(L(C)).

PROOF. C is a centralizer of also the set M and N(C), L(C) are both equal to

S(C), as sets. Let be a non-zero orbit of C on M. A simple verification shows

that A(M-P) is a left ideal of the nar-ring (loop-near-ring) N(C). By Lemma 3.9,

M is S(C)-operand isomorphic to A(M-) and so by Theorem 3.7, M is N(C)-group iso-

morphic (L(C)-loop isomorphic) to A(M-r). Since M is a N(C)-group (L(C)-loop) of

type 2 (see Corollary 3.6), so is A(M-). The rest follows from Theorem 3.10.

As an immediate consequence of Corollary 2.13 we have:

PROPOSITION 3.12. Suppose M is a.irreducible and let L be an 0-minimal left

-I
ideal of S(C,A) suuh nat for any S(C,A)-homomorphism of L into M, a (0) 0

implies is injective. Then L is S (C A) -isomorphic to M.

THEOREM 3.13. Let C’ be a A-centralizer of M such that C c__ C’. Then S(C,A)=

S(C’,A) if and only if C C’.

PROOF. One way is clear. To prove the converse, let S(C,A) S(C’,A) and

assume that C # C’. Then there exists ’ C’ C. Let 0 # w A. It can be seen

that e’ (w) r, the orbit of w with respect to C. Now by Lemma 3.4, there exists

T S(C,A) such that T(w) a’(w) and T maps M-[ onto 0. But then T S(C’,A) and

so a’T(w) Ta’(w) 0. Therefore w 0, a contradiction.

COROLLARY 3.14. ([3], Theorem 1.2.) Let M be a group and C & C’, centralizers

of M. Then N(C) N(C’) if and only if C C’.

The following result generalizes Corollary 1.3 of [3] (as also the analogous

result for loops) and the proof is analogous to that of the latter.

PROPOSITION 3.15. Suppose (a) M is a.irreducible (b) for any S(C,A)-endomor-
-I

phism of M, a (0) 0 implies e is injective and (c) A-0 is the set of all

S(C,A)-generators of M. Then the set of all endomorphisms of M satisfying (i)

aT T for all T e S(C,A) and (ii) a(A) c__ A, is C itself.

PROPOSITION 3.16. If A’ is the set of all S(C,A)-generators of M together

with zero, then C is a A’-centralizer of M and S(C,A) S(C,A’).

PROOF. Let e C. Then for any 0 # w A’, S(C,A)(a(w)) a(S(C,A)(w))

e(M) M. Therefore, e(A’) m A’ for all a C and, similarly, the other conditions

can be verified to show that C is A’-centralizer of M. The rest is obvious.
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In Proposition 3.16, there is no harm in taking M as a group (or a loop) and

C as a A-centralizer of the group M (loop M).

4. ISOMORPHISMS OF SEMIGROUPS OF TRANSFORMATIONS.

We introduce here the concept of a generalized semi-space as a generalization

of semi-space introduced by [3].

DEFINITION. A generalized semi-space is a triple (M,A,C) where M is a set

with 0 M, 0 A
_
M and C is a A-centralizer of M. If A M, we omit A and write

simply as (M,C).

DEFINITION. Let (M
i,

A
i, Ci) be generalized semi-spaces for i 1,2. A map

: C
l - C

2
is called an isomorphism of CI onto C

2
if (0) 0 and is a group

isomorphism of C
1

0 onto C
2

0.

Throughout the rest of this paper, unless otherwise stated, (Mi’ Ai’ Ci)
denotes a generalized semi-space for i 1,2.

DEFINITION. A map h: M
I

M
2

is called a semi-linear transformation of M
I

into M
2

if (i) h fixes 0 and h(Al) c__ 42 and (ii) there exists an isomorphism of

CI
onto C

2
such that ha (a)h for all CI.

If we wish to indicate also, we shall denote the semilinear transformation

by (h,). We notice that, if (GI,CI) and (G2,C2) are semi-spaces, then any semi-

linear transformation of the semi-spaces (GI,CI) and (G2,C2) is a semi-linear trans-

formation of the generalized semi-spaces (GI,CI) and (G2,C2).
DEFINITION. A semilinear transformation h: M

I
M
2

is called a i-i semilin-

ear transformation if h is bijective and h(AI) A
2.

If (h,) is a i-i semilinear transformation of M
I
onto M

2
(h-I, G-1) is one

such from 2 onto MI. The proof of the following theorem is analogous to that of

Lemma 2.7 of [3].

THEOREM 4.1. Let (h,) be a i-i semilinear transformation of M
I
onto M2.

Then, (T) hTh
-I

for all T S(CI,
AI) defines an isomorphism of S(C I,

AI) onto

S (C2, A2).
Conversely,

THEOREM 4.2. Let be an isomorphism of S(CI, AI) onto S(C2, A2) and suppose

that Mo is a. irreducible over S(Ci, Ai) for i 1,2. Then M2 can be regarded as a
1

faithful, irreducible operand over S(CI, AI). Further, suppose that
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-I(1) foe any S(CI, Al)-homomorphism e of MI into M2, (0) 0 implies

is inj ective.

(ll) for i 1,2, Ai-0 is the set of all S(Ci, Ai)-generators of M
i-

-I(ill) for any S(CI, Ai)-endomorphlsm of Mi, (0) 0 implies e is

Injectlve, for i 1,2.

Then there exists a i-i semillnear transformation (h,) of MI onto M
2

such that h

is an S(CI, Al)-Isomorphism of M
1
onto M2 and (T) hTh-lfor all T S(CI, AI).

Before proving this theorem, we give the following three lemmas in each of

Which it is assumed that is an isomorphism of S(CI, AI) onto S(C2, A2) and that

for i 1,2, M
i

is a.lrreduclble over S(CI,
LEMMA 4.3. M2 c=- c regarded as a faithful and irreducible operand over

S(C1, 41)-
PROOF. The left multiplication ’.’ given by T’m (T)(m) for each T S(CI,4I)

and m M2 serves the purpose.

LEMMA 4.4. Suppose conditions (i) and (il) of Theorem 4.2 are also satisfied.

Then there exists an S(CI, 41)-isomorphism h of MI onto M
2

such that h(4I) 42 and

@(T) hTh
-I

for all T S(CI! 41).
PROOF. Let r be a non-zero orbit of CI over 41 Lemma 3.9 says that MI is

S(CI, 41)-Isomorphlc to A(MI-). Using Theorem 3.10 and condition (1) of the hy-

pothesis, we get from Proposition 3.12 that A(MI-[) is S(CI, 41)-isomorphlc to M2.

So, there exists an S(CI, 41)-isomorphism h: MI
/ M2. Now, let T S(CI, 41 and

mI MI. Then h T(mI) T’h(mI) @(T) h(mI) and hence hT @(T)h, which means

(r) hrh
-I It remalns to show that h(4I) 42 Let 0 # wI 41 Then

S(C2, 42) h(Wl) (S(CI, 41))h(wI) (h S(CI, 41)h-l)h(wI) h S(CI, 41)(wI)
h(MI) M2. Therefore, h(wI) 42 by condition (ii). Thus h(4I) 42 To prove

the reverse inclusion, let 0 # w2 42 Then w
2

is an S(CI, 41)-generator of M2,

and so S(CI 41 h-i -i(w2) h (S(CI, 41)w2) h-l(M2 MI. Therefore, h-I(42)c_I
and this completes the proof.

LEMMA 4.5. Assume all the hypothesis of Theorem 4.2, and let h be an S(CI, 41)-
-I

isomorphism of MI onto M2
such that h(4I) 42 and (T) hTh for all T e S(CI,4I)

-i
(the existence of h being ensured by Lemma 4.4). Then h el h C

2
for each

el CI and : I + hlh-i is an isomorphism of CI onto C2.
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-i
PROOF. Let i e CI" Write 2 hlh In view of Proposition 3.15, it

suffices to show that (a) 2 is an endomorphism of M2 and (b) 2(A2) n A
2

and (c)

2T2 T22
for all T2 S(C2, A2).

(a) is obvious. Since h(AI) A
2

and h is an isomorphism, we have 2(A2)

hlh-l(A2) hl(Al)
_

h(Al) A2, proving (b). Finally, let T
2 S(C2, A2) and

m
2 . Then there exist T

1
S(CI, AI) and m

I E M
1

such that (TI) T
2

and

h(ml) m2. Now 2T2(m2 hlh-l(Tl)h(mI) hlh-Tlh-(mI) hiTl(ml)

hTll(ml) hTlh-lhlh-lh(ml T22(m2), which proves (c).

PROOF OF THEOREM 4.2. In view of Lemmas 4.3, 4.4 and 4.5, it remains to show

that i C1 implies haI O(l)h, which is clear from the definition of o. Hence

the theo rem.

REMARK. The particular case of Theorem 4.2 when A M can also be deduced

from [2], Theorem 17.3.

COROLLARY 4.6. (Isomorphism Theorem for Near-rings of Transformations, Theorem

2.6 of [3]). Let (Gi, Ci) i 1,2, be semi-spaces (GI, G
2

are groups). (a) If

-i
there exists a I-i semi-linear transformation h of G

1
onto G2, then f(A) hAh

for all A N(CI) defines an isomorphism of N(CI) onto N(C2). (b) If f is an iso-

morphism of N(CI) onto N(C2), then there exists a i-I semi-linear transformation h

-I
of G

1
onto G

2
such that f(A) hAh for all A E N(CI).

PROOF. (a): Clearly h is a i-i semilinear transformation of the generalized

-i
semi-spaces (GI, CI) and (G2, C2). Now by Theorem 4.1, f(A)= bah for all

A N(CI) defines a multiplicative semigroup isomorphism of N(CI) onto N(C2). We

show that f preserves addition also. Let AI, A
2

e N(CI) and g2 G2" We have

f(A
1
+ A2)(g2) h(A

1
+ A2)h-l(g2 h(Alh-l(g2) + A2h-l(g2) hAlh-l(g2 +

hA2h-l(g2) f(Al)(g2) + f(A2)(g2) (f(Al) + f(A2))(g2) hence, f(A1 + A2)

f(Al) + f(A2). Thus f is a near-ring isbmorphism.

(b): We deduce this part from Theorem 4.2. From Lemma 3.4 we get that every

non-zero element of G. is an N(Ci)-generator of G
i

for i 1,2 and so G. is an

a. irreducible operand over N(Ci) for i 1,2 and condition (ii) of Theorem 4.2 is

satisfied here. That conditions (i) and (iii) are also satisfied here, follows

from Theorem 3.7. Hence there exists a I-i semilinear transformation h of the gen-
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eralized semi-space (GI, CI) onto (G2, C such that h is an N(Cl)-isomorphism of GI

onto G
2

and f(A) hAh
-I

for all A N(CI) By Theorem 3.7, h is a group isomor-

phlsm too, and hence h is a i-i semilinear transformation of the semispaces (GI,CI)
and (G2, C2). Hence the result.

We now get the following Isomorphism Theorem for rings of linear transformations

of vector spaces over division rings, the proof being the same as that given in [3],

Corollary 2.13.

COROLLARY 4.7. Let Li, i 1,2, be the rings of linear transformations of

vector spaces (Mi, Di) not necessarily finite dimensional. Then f is an isomorphism

of LI - L2 if and only if there exists a I-i semilinear transformation h of MI onto

-i
I
2

such that fT hTh for all T LI.
REMARK 4.8. In the case of loops also, we can define semi-spaces and their

semilinear transformations analogously, and all the corollaries obtained in this

section for groups hold for loops as well, with ’near-ring of transformations’

replaced by loop-near-ring of transformations’.
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