
Intat. J. Math. & Math. Si.
Vol. 6 No. 3 (1983) 535-543

535

FOREST DECOMPOSITIONS OF GRAPHS WITH
CYCLOMATIC NUMBER 3

E.J. FARRELL

Department of Mathematics
The University of the West Indies

St. Augustine, Trinidad

(Received June 15, 1982)

ABSTRACT. The simple tree polynomials of the basic graphs with cyclomatic number 3

are derived. From these results, explicit formulae for the number of decompositions

of the graphs into forests with specified cardinalities are extracted. Explicit ex-

pressions are also given for the number of spanning forests and spanning trees in the

graphs. These results complement the results given in [i].
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1. INTRODUCT ION.

The graphs considered here will be finite and without loops. Let G be such a

graph. With every tree a in G, let us associate an indeterminate w called the weight

of a. With every spanning forest F in G, let us associate the weight

w(F) H w

where the product is taken over all the elements in F. Then the tree polynomial of G

is lw(F), where the summation is taken over all the spanning forests in G. If we give

each tree with n nodes a weight Wn, then the tree polynomial of G, denoted by T(G;w_),

will be a polynomial in the variables Wl,W2,w3,etc. where w_- (Wl,W2,W3,...). If we

put w
i

w for all i, then the resulting polynomial, denoted by T(G;w), will be called

the simple tree polynomial of G. The basic properties of tree polynomials are given

in Farrell [2].
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By a forest decomposition of G, we mean a node disjoint collection of trees in G,

which span G. Therefore, a forest decomposition is simply a spanning forest. We will

use the word decomposition to mean forest decomposition unless otherwise stated. Let

T be a tree. We attach T to a graph G by identifying an endnode of T with a node of

G. The basic graphs with cyclomatic number 3 is the minimum set of graphs with cyclo-

matic number 3, with the property that any other graph with cyclomatic number 3 can be

obtained from one of these graphs by attaching trees to it.

We will derive the simple tree polynomials of the basic graphs with cyclomatic

number 3. From these polynomials, we will deduce results about (i) forest decomposi-

tions and (ii) spanning trees, in graphs with cyclomatic number 3. We refer the read-

er to Harary [4] for the basic definitions in Graph Theory.

2. SOME FUNDAMENTAL RESULTS.

Let xy be an edge of a graph G. By partitioning the spanning covers of G into

two classes (i) those containing xy and (ii) those not containing xy, we obtain the

following theorem.

THEOREM i. Let G be a graph containing an edge xy. Let G’ be the graph obtained

from G by deleting xy, and G* the graph obtained from G by identifying nodes x and y

(and omitting any loops formed). Then

T(G;w) T(G’;w) T(G*;w).

The algorithm implied hy this theorem will be called the reduction process.

Let G be a graph consisting of two blocks A and B with a common cutnode x. Let

FI and F
2
be spanning forests in A and B respectively. Let i and 2 be the elements

of F
I

and F
2

respectively containing node x, and the tree obtained by attaching i
to 2 using node x. Then (F

1 {i (F
2 {2 }) u {} will be a spanning forest in

G, with cardinality IFII + IF21 i. Hence, a spanning forest in A could be "combined"

with a spanning forest in B to yield a spanning forest in G, with one less component.

This observation leads to the following results.

LEMMA i. Let G be a graph consisting of two blocks A and B. Then

-iT(G;w) w T(A;w) T(B;w).

THEOREM 2. (The Cutnode Theorem) Let G be a graph consisting of blocks

BlB2’’’’’Bn" Then
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w-(n i) n
T(G;w) T(Bi;w)

i=l

The following theorem can be easily proved.

THEOREM 3. (The Component Theorem) Let G be a graph consisting of components

n
HI H

2
H Then T(G;w) T(Hi;w).n

i=l

3. PRELIMINARY RESULTS.

It is clear that the removal of any k-i edges from a tree T with p nodes (k<p-l)
P

yields a spanning forest with k components. Hence we have

LEMMA i.

LEMLA 2.

T(T ;w) w(l + w) P-I.
P

T(C ;w) (i + w)
p

1
p

where C is the circuit with p nodes.
P

Most of our results will be given in terms of tree polynomials of circuits. We

will therefore use (p) for T(Cp;W). It can be easily confirmed that has the pro-

perty

PROPERTY I.

(m + n) (m) (n) + (m) + (n).

This property of will be useful in obtaining our results in forms which display the

symmetries in the graphs.

Let us denote by H the graph obtained by attaching a tree with n nodes to a non-
n

empty graph G. By using the Cutnode Theorem, we obtain the following lemma

LEMLA 3.

T(H ;w)= (i + w)n-iT(G;w).
n

By a chain, we will mean a tree with nodes of valencies i and 2 only. We add a

chain (of length greater than i) to a graph G (with at least 2 nodes) by identifying

the end nodes of the chain with two different nodes of G. We will denote by J the
n

graph obtained by adding a chain with n nodes (denoted by P to a graph G.
n

THEOREM 4.

-lT(J ;w) w (n- i) T(G;w) + T(G*;w),
n



538 E.J. FARRELL

where G* is obtained from G by identifying the nodes common to G and P
n

PROOF. Let x and y be the nodes of J which are common to G and P Apply the
n n

reduction process to J by deleting an edge of P which is incident to node x. This
n n

yields

T(Jn;W T(Hn_l;W) + T(Jn_l;W).

This recurrence relation yields

r(Jn;W r(Hn_k;W) + r(G;w) + r(G*;w),
k=l

where G* is the graph obtained from G by identifying nodes x and y. The result then

follows by using Lemma 3.

The basic graphs with cyclomatic number 2 are shown below. The number of edges

in the sub graphs are indicated by p,q and r, where p,q,r > I.

r

p P q

(c)
(a) (_b)

Figure I

We will denote the graphs shown in Figures l(a), (b), and (c) by G(p,q), G(p,q,r), and

G((p,q),r) respectively. The simple tree polynomials of these graphs were derived in

Farrell [I]. We will not reproduce their proofs here, but simply quote the results

(N.B., In [i], p,q, and r were the number of nodes).

and

LEIMA 4.

(i) r (G (p q) ;w) w-l(p) (q),

-i(ii) T(G(p,q,r);w) w [(p + q + r) (p) (q) (r)]

(iii) T(G((p,q),r);w) w-l(p) (q) [(r) + i].

Lemma 4 could be proved by using the Cutnode Theorem for the graphs in (a) and

(c), and Theorem 4 for the graph in (b).

4. SILE TREE POLYNOMIALS OF GRAPHS WITH CYCLOMATIC NUMBER 3.

The basic graphs with cyclomatic number 3 are shown below.
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P

P

r r r

(a) (b) (c) q (d)

Figure 2

The lengths of the chains are indicated on the diagrams by the symbols p,q,r,s,t,

and u. We will assume that these lengths are all greater than i. The graphs shown in

Figures 2(a), (b), (c), and (d) will be represented by G((r,s),(t,u),(p,q)),

G((r,s),(t,u),q), G(r,s,t,u), and G((p,q),(r,u),(s,t)) respectively. We will obtain

the polynomials for these graphs in forms which display the symmetries in the graphs.

THEOREM 5.

-2T(G(r,s,t,u);w) w [(r+s+t+u) -(r+s) (t+u) (r+t)

@(r+u) (s+t) (s+u) + 2((r) + (s)

+ (t) + (u))].

PROOF. G(r,s,t,u) can be viewed as the graph G(s,t,u) with the chain Pr+l added

to it. Therefore, Theorem 4 can be immediately applied. In this case, G would be

G(s,t,u), and G* would be the graph consisting of three circuits C Ct, and C all
s u

joined to a common node. From Lemma 4,

-iT(G(s,t,u);w) w [(s+t+u) (s) (t) (u)].

From the Cutnode Theorem, we get

-2T(G*;w) w (s) (t) (u).

Hence, by substituting in Theorem 4, we get

-2T(G(r,s,t,u);w) w {(r)[(s+t+u) (s) (t) (u)] + (s) (t) (u)}.

The symmetric result then follows by using Property i.

THEOREM 6.

-2T(G((r,s),(t,u),q);w) w [(q+r+s+t+u) (q+r+s)

(q+t+u) (r+t) (r+u) (s+t)

(s+u) + (q) + 2((r) + (s) + (t) + (u))].
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PROOF. We can view G((r,s),(t,u),q) as the graph G(r+s, t+u) with the chain P
q+l

added to it. Hence, Theorem 4 can be applied. In this case, G* will be G(r,s,t,u).

From Lemma 4 (i),

-lT(G(r+s, t+u),w) w (r+s) $(t+u).

Therefore,

T(C((r,s),(t,u),q);w) w-2(q) #(r+s) (t+u)+ T(C(r,s,t,u);w).

The result then follows by using Theorem 5 and Property i.

The graph G((p,q),(r,s),(t,u)) can be viewed as G((r+s, t+u),q) with the chain

Pp+l added to it. Therefore, we can apply Theorem 4. In this case, G* will be

G((r,s), (t,u) ,q). Hence,

T(G((p,q),(r,s),(t,u));w)--w (p) T(G((r+s t+u) q);w)

+ T(C((r,s),(t,u),q);w).

By using Lemma 4 (iii) and Theorem 6, we obtain the following result, after simplifi-

cations and using Property i.

THEOREM 7.

-2T(G(p,q),(r,s),(t,u));w) w [(p+q+r+s+t+u) (p+q+r+s)

(p+q+t+u) + (p+q) (r+t)

(r+u) (s+t) (s+u)

+ 2($(r) + (s) + q(t) + qb(u))].

Notice that the "sum" forms, in which Theorem 5, 6, 7, and 8 are given, will fa-

cilitate deductions about forest decompositions of the graphs.

5. FOREST DECOMPOSITIONS OF GRAPHS WITH CYCLOMATIC NUMBER 3.

It is clear that the coefficient of w
k

in T(G;w) is Tk(G), the number of decom-

positions of the graph G into spanning forests with k trees, i.e., the number of k-

decompositions of G. By extracting the relative coefficients in Theorems 5, 6, 7, and

obtain the following corollaries in which (kr) 0, for k < r, and k’ k + 2.8, we

COROLLARY 5. i.

r+s+t+u. r+s t+u r+t.
Tk(G(r’s’t’u))-- k’ )- k’) k ’) k ’)

ts+t s+u. + 2[(r s t u
k,) (k,) k,) + (k,) + (k,) + (k,)l.
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COROLLARY 6. i.

(q+r+s+t+u_ (q+r+s q+t+uTk(G((r s) (t,u)q))= k’ k’ k’

r+t r+u .s+t .s+u.
(k,) (k,) k,) k,

q) +2[ r s t u+ (k’ (k ’) + (k ’) + (k ’) + (k ’)]"

COROLLARY 7.1.

cp+q+r+s+t+u .p+q+r+s
rk(G((p,q),(r,s) (t,u))) k’ J- k’

.p+q+t+u) (p+q) r+t r+u
k’ + k’ k ’) k ’)

(s+t (s+u) + 2[(r s (t u
k ’) k’ k ’) + (k ’) +

k ’) + (k’)i"

(Notice that Corollaries 5.1 and 6.1 can be obtained from Corollary 7.1 by putting

p q 0 and p 0 respectively.)

COROLLARY 8.1.

cp+q+r+s+t) fp+r+sTk(G((p,q) (r,u) (s,t))) k’ k’ k’

.p+t+u. .q+s+u. p+q r+u
k’ k’ k ’) (k’)

.s+t D r s t u
k,) + 2[(,) + (,) + (k,) + (k,) + (k,) + (k,)l.

Let us denote, by N(G), the total number of decompositions of G, i.e., the total

number of different spanning forests in G. Then N(G) is the sum of the coefficients

of T(G;w). Hence, by putting w i in Theorem 7, we obtain the following result.

N(G((p,q),(r,s),(t,u))) 2P+q(2r+s 1)(2t+u 1)

(2r + 2s 2)(2 t + 2
u 2).

By putting p 0 and p q 0 respectively, in Theorem 9, we obtain

COROLLARY 9. i.

N(G((r,s),(t,u),q)) 2q(2r+s i)(2
t+u

I) (2
r + 2

s 2)(2 t + 2
u

2).

COROLLARY 9.2.

N(G(r,s,t,u)) (2
r+s

i)(2
t+u

i) (2 r + 2
s

2)(2 t + 2
u 2).

The following result is intaedlate from Theorem 8.

COROLLARY 8.2.

N(G((p,q),(r,u),(s,t))) 2P+q(2r+s+t+u-l) -2P(2r+s+ 2t+u-2)- 2q(2r+t+2s+u-2)
4[(2s-I i)(2

t-I
i) + (2r-I i)(2

u-I -,)] + 2.
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Let us denote, by F(G), the number of spanning trees in G. Then F(G) is the co-

efficient of w in T(G;w). Hence, we can obtain the following result from Theorem 7 or

from Corollary 7.1 (by putting k’ 3).

THEOPd i0.

(p+q+r+s+t+u) .p+q+r+s t+u)F(G((p q) (r s) (t,u)))=
3 3

(p+q

r+t. .r+u. + .+u. ()+ () ++ (P+q)-
3
)- 3 + 2[ () + u

"3 3 - 3

Similar expressions for F(G((r,s),(t,u),q)) and F(G(r,s,t,u) can be obtained from

Theorem I0 by putting p 0 and p q O, respectively, in the formula. Explicit

linear formulae for the number of spanning trees in the basic graphs with cyclomatic

number 3, have already been given in Farrell [3].

6. NON-BASIC GRAPHS WITH CYCLOMATIC NU[BER 3.

Let G be a non-basic graph with cyclomatic number 3. Then G consists of one of

the basic graphs with trees attached to it. The simple tree polynomial of G could

therefore be obtained by using Lemma 3 and the appropriate result in Section 4. Hence

our results cover all graphs with cyclomatic number 3.

Lemma 3 can be used to obtain the following results for Tk(Hn) and N(Hn). The

proofs are quite straightforward.

LEMMA 4.

LEMMA 5.

k

Tk (Hn) [ n-i (G)(r) rk-rr=O

N(Hn) 2
n-I

N(G).

Lemma 4 and the results given in Section 5 can be used to find the number of k-

decompositions of non-basic graphs with cyclomatic number 3. Similarly, Lemma 5, to-

gether with Theorem 9, can be used to find the number of spanning forests in non-basic

graphs with cyclomatic number 3.

7. DISCUSSION.

We are aware that some of the results given in Section 5 and 6 can be deduced by

straightforward combinatorial arguments. However, they not only provide useful checks

for some of the major results, but also serve to illustrate a new powerful technique

afforded by the tree polynomial.
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