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ABSTRACT. Let E be a compact subset of the complex plane. We denote by R(E) the

algebra consisting of the rational functions with poles off E. The closure of R(E) in

LP(E), 1 < p < , is denoted by RP(E). In this paper we consider the case p 2. In

section 2 we introduce the notion of weak bounded point evaluation of order B and

identify the existence of a weak bounded point evaluation of order , > i, as a

necessary and sufficient condition for R2(E) L2(E). We also construct a compact set

E such that R2(E) has an isolated bounded point evaluation. In section 3 we examine

the smoothness properties of functions in R2(E) at those points which admit bounded

point evaluations.
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INTRODUCTION.

Let E be a compact subset of the complex plane E. For each p, i <_ p < , let

LP(E) be the linear space of all complex valued functions f for which fl p is inte-

grable with the usual norm

dm(z)}
1/p

where m denotes the two dimensional

Lebesque measure. Denote by R(E) the subspace of all rational functions having no

poles on E and let RP(E) be the closure of R(E) in LP(E). A point z0 E is said to

be a bounded point evaluation (BPE) for RP(E), if there is a constant F such that
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dm(z)ll/P for all f R(E)

In [I] Brennan showed that RP(E) LP(E), p 2, if and only if no point of E

is a BPE for RP(E) The theorem is not true for p 2 (See Fernstrm [2] or

Fernstrm and Polking [3].) In this paper we show that if the right hand side of (i)

is made slightly larger a corresponding theorem is true for p 2. We also show that

this theorem is best possible.

i_ +
1

i, such thatIf z
0

E is a BPE for RPkE there is a function g LqkE
P q

f(z0) [ f(z)g(z)dm(z) for all f e R(E). The function g is called representinga

E

function for z0. Let B(z,) denote the ball with radius 8 and centre at z. We say

-i
that a set A, A C , has full area density at z if m(AB(z,))m(B(z,)) tends to

one when tends to zero.

Suppose now that z0 is a BPE for RP(E), 2 < p, represented by g e Lq(E) and

(z_z0)-s -i Lq(Iz-z01) g (E), where s is a nonnegative integer and is a non-

decreasing function such that r qb(r) -1’ 0 when r’0. Then for every e > 0 there is a

set E
0

in E having full area density at z0 such that for every f e R(E) and for all

e E
0

f’(Zo) f(S)(z0)(r )slIf() f(z ( z z
0 l! 0 s! 0

II if(z) p )II/p<_ Zo Is (I Zol) dm(z This theorem is due to Wolf [8].
E

We shall show that the theorem of Wolf is not true for p 2. We shall also

show that a slightly weaker result is true and that this result is best possible.

The main tool to show this is to construct a compact set E with exactly one bounded

point derivation for R2(E). A point z
0

E is a bounded point derivation (BPD) of

order s for RP(E) if the map f f(S)(z0), f R(E), extends from R(E) to a bounded

linear functional on RP(E).

2. BPE’S AND APPROXIMATION IN THE MEAN BY RATIONAL FUNCTIONS.

Denote the Bessel kernel of order one by G where G is defined in terms of its Fourier

transform by
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-1/2(Z) (i + IZl 2)

For f L2() we define the potential

u (z) G(z-’r) f(’r) am

The Bessel capacity C
2

for an arbitrary set X, XCI2, is defined by C2(X) [nf

din(z), where the nfmum s taken all f L() such that f(z) 0 andover

fu (z) i for all z s X. The set function C
2

is subadditive, increasing, translation

invariant and

C2(B(z,6)) = og 6 J O < i.

For further details about this capacity see Meyers [5].

The BPD’s can be described by the Besse! capacity. Let An(Z0) denote the annulus

-n-I -n
< Iz-z01 _< 2 The following theorem is proved in [3]:

Theorem 2.1 Let E be a compact set. Then z is a BPD of order s for R2(E) if and

only if

n= 22n(s+l) C2(An(Z) E) <

Definition Set

L (z)z0

log iZ_ZoI for Z-ZoI < -1 for Z-Zol >
e

A point z0 e E is called a weak bounded point evaluation (w BPE) of

order $, S > 0 for R2(E) if there is a constant F such that

for all f e R(E)

We are now going to generalize theorem 2.1 in two directions.

Theorem 2.2 Let s be a nonnegative integer and E a compact set. Suppose that z0

is a BPE for R2(E) represented by g e L2(E) and that is a positive,

-i
nondecreasing function defined on (0,) such that r (r) is non-

0
+

decreasing and tends to zero when r -) Then z
0

is represented by

function g e L2(E) such that

g e L2 (E)(z-zo)- ([ Z-Zo[)
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if and only if

22n(s+l)
n=0

-n -2
(2 C2(An(z0) E) < .

Theorem 2.3 Lot E be a compact set. Then z is a w BPE of order B for R2(E) if and

only if

-g22nn C2(A (z) -E) <
n

n=l

The proofs of theorem 2.2 and theorem 2.3 are almost the same as the proof of theorem

2.1. We omit the proofs. Wolf proved in [8] that the condition

22n(s+l) (2-n) -2
C2(An(z0 E)) < is necessary in theorem 2.2.

n=0

The compact sets E for which R2(E) L2(E) can be described in terms of the

Bessel Capacity. The following theorem is proved in Hedberg [4] and Polking [6].

Theorem 2.4 Let E be a compact set. Then the following are equivalent.

(i) Re(E) L2(E).

(ii) C2(B(z,6)-E) C2(B(z,6)) for all balls B(z,6).

C2 (B(z,) -E)
(iii) lim sup > 0 for all z.

If we combine theorem 2.3 and theorem 2.4 we get the following theorem.

Theorem 2.5 Let B > i and E be a compact set. Then L2(E) R2(E) if and only if E

admits no w BPE of order B for R2(E).

Now we shall show that theorem 2.5 is not true for B < i. We first need the following

theorem.

Theorem 2.6 There is a compact set E such that

(i) C2(B(0,1/2) E) < C2(B(0,1/2))

(ii) n
-I 22nC2(An(z E) for all z.

n=l

The proof is a modification of a proof in [2] or [3], where a weaker theorem is

proved. Since we shall need the construction of E later, we give some details.

roof. There are constants FI and F
2

such that

-i
Fl(log ) <_ C2(B(z,6)) _< F2(log )-i for all 6, 6 < 60 < I.
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Choose , > i, such that

< C2 (B(0,1/2)).
n log2n

Let A
0
be the closed unit square with centre at the origin. Cover A

0
with 4

n
squares

-n
4
n

with side 2 Call the squares A (i), i 1,2,..., In every A
(i)

put an openn n

disc Bn(i) such that Bn
(i)

and An (i)
have the same centre and the radius of Bn

(i)
is

exp(-c4n n log2n). Repeat the construction for all n, n > 2.

Set

4
n

n=2 i=l
n
(i)

The subadditivity of C
2
now gives (i).

In order to prove (ii) it is enough to prove

F1C2(An(i) E) > for all n, n > n
O32 4nlog n

Consider all Bk(i) 2
n <_ k _< n such that Bk(i._ An

(i)

log2 2We get 4 discs with radius exp(-4n+(n+Z) (n+Z)) 0 < Z < n n.

(2.1)

Call the discs

4n2-n+l -1
D (r)

r 1,2n 3

F1
a4n

Thus
2 2

jn 1 t (r) F2 jn 1
"= j log’q <- C2(Dn <

4n .= j logZj

Set Dn D
nr

(r)

Since the distances between the discs are large compared to their radii, it can be

shown that

C2(Dn) >_ Z C2(Dn(r)) if n is large.
r

(See theorem 2’ in [2] or theorem 2 in [3] for a proof.)

Thus if n is large,
2

F1 n 1C2(A (i). E) > C2(Dn) >---- jnn 84n J log2j

F1

16a4nlog n

which is (2.1)
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Theorem 2.7 There is a compact set E such that

(i) e2(E) R2(E)
R
2

(ii) E has no w BPE of order one for (E).

Proof The theorem follows immediately from theorem 2.3, 2.4, and 2.6.

3. BPE’S AND S!IOOTHNESS PROPERTIES OF FUNCTIONS IN R2(E).
In this section we treat the theorem of Wolf mentioned in the introduction for the

case p 2.

Theorem 3.1 Let be a positive, nondecreasing function defined on (0,) such that

r L0(r) (r)
-I

is nondecreasing and r L0(r) (r)
-I

0+0 when r

Suppose that z0 is a BPE for R2(E) represented by g and

-s -i 2
(z-z0) (Iz-z01) g L (E), where s is a nonnegative integer.

Then for every $ > i and > 0 there is a set E0 in E, having full area

density at Zo, such that for every f R(E) and every T E
0

f- (z0) f(s) (Zo) sf() f(z0) (r-Zo) (-Zo)
i! s!

I f() 12 Lz0
E

(z)

The proof of theorem 3.1 is only a minor modification of the proof of theorem 4.1 in

[8]. l.breover, there is a proof of theorem 3.1 for B 2 in Wolf [7]. We omit the

proof.

Remark. Let z 0 E (the boundary of E) be both a BPE for R2(E) and the vertex of a

sector contained in Int E. Let L be a line which passes through z0 and bisects the

secotr. Let s 0 and let be as in theorem 2.2. For those y e L E that are

sufficiently near z0 Wolf showed in [9] that

If(y)-f(zo) _< f(z)]2 dm(z)l 1/2
for all f R(E).

Our next step is to prove that theorem 3.1 is not true for B I. We first need a

theorem, which we think is interesting in itself.

Theorem 3.2 Let s be a nonnegative integer. Then there is a compact set E such that

(i) n-I 22n C2(An(Z)-E) if z # 0.

(ii) E 22n(s+l) C2(An(O)-E) <
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Proof We shall modify the set constructed in the proof of theorem 2.6. Let Bk.
denote the same discs as in that proof. Let all B

k)j-. which intersect AI(0)

be denoted by All, AI2, AI3,... so that their diameters are decreasing.

Choose J l so that

22(s+l) E C2(AIj) < 2
-1

J>Jl
-3

and diam(Alj < 2
i

(k)
which intersect An+l(0)Suppose that we have chosen Jl Jn" Let all Bj

AIJI’ ,AnJn, be denoted byand which do not coincide with All Anl
An+l i, An+2 2’ An+3 3’’’’ so that their diameters are decreasing.

Choose Jn+l so that

22(n+I)(I) E C2 < 2-(n+l
>Jn+l

(An+l j

and diam(An+I Jn+l
< 2-(n+3)

Let A0 be the closed unit square with centre at the origin. Set E A0- (The

union of all Bk) such that B (k) Anm l<n< and l<m<Jn)
We have , 22n(s+l) -nC2(An(0) E) <_ 2 <

n=! n=l

(k) (k)
Let z 0. If is large all Bj B] C A(z) differ fro Anm
I < n < and i < m < jn._

Now exactly as in proof of theorem 2.6 it follows

:.. n
-I 22n C2(An(Z)-EI)

q.e.d.

2
Corollary 3.3 There is a compact set E with exactly one BPD of order s for R (E).

Proof Just combine theorem 3.2 and 2.1.

Remark The situation for p # 2 is different. In [i] Brennan showed that if almost

R2all points z E, E compact, are not BPE for RP(E), E admits no BPE’s for (E).

Theorem 3.4 Let s be a nonnegative integer and be as in theorem 2.2. Then there

is a compact set E such that

(i) z0 is a BPE for R2(E).

(ii) There is a representing function g for z0 that satisfies
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(z-z0)-s (Iz-z01)-i 2
geL(E)

(iii) For every T e E, T z0 and every positive integer n there is a

function f e R(E) such that

f, (z0) f(s) (z0)
f()-f(z0)-i(r-z0) s’ (-z0)Sl >

> n If(z) Lz0 (z)dm(z) 11/2
Proof Theorem 3.2 gives that there is a compact set E such that

n-I 22nC2(An(z) E) z z0

n=l

2n (s+l) (2-n) -2
C2(An(z0) E) <

n=l

Now theorem 2.1 gives (i) and theorem 2.2 gives (ii). Moreover theorem 2.1 gives that

R2z0 is a BPD of order s for (E) and theorem 2.3 that is not a w BPE of order i for

R2(E) This gives (iii).
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