SOME REMARKS ON THE SPACE $R^{2}(E)$

CLAES FERNSTRÖM

Department of Mathematics University of Stockholm SWEDEN

(Received on April 26, 1982 and in revised form on September 28, 1982)

ABSTRACT. Let E be a compact subset of the complex plane. We denote by R(E) the algebra consisting of the rational functions with poles off E. The closure of R(E) in $L^{P}(E)$, $1 \leq p < \infty$, is denoted by $R^{P}(E)$. In this paper we consider the case p = 2. In section 2 we introduce the notion of weak bounded point evaluation of order β and identify the existence of a weak bounded point evaluation of order β , $\beta > 1$, as a necessary and sufficient condition for $R^{2}(E) \neq L^{2}(E)$. We also construct a compact set E such that $R^{2}(E)$ has an isolated bounded point evaluation. In section 3 we examine the smoothness properties of functions in $R^{2}(E)$ at those points which admit bounded point evaluations.

KEY WORDS AND PHRASES. Rational functions, compact set, L^p-spaces, bounded point evaluation, weak bounded point evaluation, Bessel capacity.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 30A98.

L. INTRODUCTION.

Let E be a compact subset of the complex plane \mathbb{C} . For each p, $1 \leq p < \infty$, let $L^{p}(E)$ be the linear space of all complex valued functions f for which $|f|^{p}$ is integrable with the usual norm

 $\left\{ \int_{E} |f(z)|^{p} dm(z) \right\}^{1/p}, \text{ where } m \text{ denotes the two dimensional}$

Lebesque measure. Denote by R(E) the subspace of all rational functions having no poles on E and let $R^{p}(E)$ be the closure of R(E) in $L^{p}(E)$. A point $z_{0} \in E$ is said to be a bounded point evaluation (BPE) for $R^{p}(E)$, if there is a constant F such that

$$\left|f(z_{0})\right| \leq F\left\{ \begin{cases} \left|f(z)\right|^{p} dm(z)\right\}^{1/p}, \text{ for all } f \in R(E) \end{cases} \right.$$

$$(1.1)$$

In [1] Brennan showed that $R^{p}(E) = L^{p}(E)$, $p \neq 2$, if and only if no point of E is a BPE for $R^{p}(E)$. The theorem is not true for p = 2 (See Fernström [2] or Fernström and Polking [3].) In this paper we show that if the right hand side of (1) is made slightly larger a corresponding theorem is true for p = 2. We also show that this theorem is best possible.

If $z_0 \in E$ is a BPE for $\mathbb{R}^{p}(E)$ there is a function $g \in L^{q}(E)$, $\frac{1}{p} + \frac{1}{q} = 1$, such that $f(z_0) = \int_{E} f(z)g(z)dm(z)$ for all $f \in \mathbb{R}(E)$. The function g is called a representing

function for z_0 . Let $B(z,\delta)$ denote the ball with radius δ and centre at z. We say that a set A, A $\subset \mathbb{C}$, has full area density at z if $m(A \cap B(z,\delta))m(B(z,\delta))^{-1}$ tends to one when δ tends to zero.

Suppose now that z_0 is a BPE for $\mathbb{R}^{P}(E)$, 2 < p, represented by g $\in L^{q}(E)$ and $(z-z_0)^{-S} \phi(|z-z_0|)^{-1}$ g $\in L^{q}(E)$, where s is a nonnegative integer and ϕ is a non-decreasing function such that r $\phi(r)^{-1}$ 0 when r^N0. Then for every $\varepsilon > 0$ there is a set E_0 in E having full area density at z_0 such that for every f ε R(E) and for all $\tau \in E_0$,

$$\left| f(\tau) - f(z_0) - \frac{f'(z_0)}{1!} (\tau - z_0) - \dots \frac{f^{(s)}(z_0)}{s!} (\tau - z_0)^s \right|$$

$$\leq |\tau - z_0|^s \phi(|\tau - z_0|) \left\{ \int_E |f(z)|^p dm(z) \right\}^{1/p}.$$
 This theorem is due to Wolf [8].

(c)

We shall show that the theorem of Wolf is not true for p = 2. We shall also show that a slightly weaker result is true and that this result is best possible. The main tool to show this is to construct a compact set E with exactly one bounded point derivation for $R^2(E)$. A point $z_0 \in E$ is a bounded point derivation (BPD) of order s for $R^p(E)$ if the map $f + f^{(s)}(z_0)$, $f \in R(E)$, extends from R(E) to a bounded linear functional on $R^p(E)$.

2. BPE'S AND APPROXIMATION IN THE MEAN BY RATIONAL FUNCTIONS. Denote the Bessel kernel of order one by G where G is defined in terms of its Fourier transform by

$$\hat{G}(z) = (1 + |z|^2)^{-\frac{1}{2}}$$

For f ε L²(C) we define the potential

$$u^{f}(z) = \int G(z-\tau) f(\tau) dm(\tau).$$

The Bessel capacity C_2 for an arbitrary set X, X $\subset C$, is defined by $C_2(X) = \inf \int |f(z)|^2 dm(z)$, where the infimum is taken over all $f \in L^2(C)$ such that $f(z) \ge 0$ and $u^f(z) \ge 1$ for all $z \in X$. The set function C_2 is subadditive, increasing, translation invariant and

$$C_2(B(z,\delta)) \approx \left(\log \frac{1}{\delta}\right)^{-1}, \delta \leq \delta_0 < 1.$$

For further details about this capacity see Meyers [5].

The BPD's can be described by the Bessel capacity. Let $A_n(z_0)$ denote the annulus $\left\{z; 2^{-n-1} < |z-z_0| \le 2^{-n}\right\}$. The following theorem is proved in [3]:

Theorem 2.1 Let E be a compact set. Then z is a BPD of order s for $R^2(E)$ if and

nly if
$$\sum_{n=0}^{\infty} 2^{2n(s+1)} C_2(A_n(z) - E) < \infty$$

Definition Set

0

Set

$$L_{z_0}(z) = \begin{cases} \log \frac{1}{|z-z_0|} & \text{for } |z-z_0| \leq \frac{1}{e} \\ 1 & \text{for } |z-z_0| \geq \frac{1}{e} \end{cases}$$

A point $z_0 \in E$ is called a weak bounded point evaluation (w BPE) of order β , $\beta \ge 0$, for $\mathbb{R}^2(E)$ if there is a constant F such that $|f(z_0)| \le F \left\{ \int_E |f(z)|^2 L_{z_0}^{\beta}(z) dm(z) \right\}^{\frac{1}{2}}$

for all f ϵ R(E) .

We are now going to generalize theorem 2.1 in two directions.

<u>Theorem 2.2</u> Let s be a nonnegative integer and E a compact set. Suppose that z_0 is a BPE for $\mathbb{R}^2(E)$ represented by $g \in L^2(E)$ and that ϕ is a positive, nondecreasing function defined on $(0,\infty)$ such that $r \phi(r)^{-1}$ is non-decreasing and tends to zero when $r \rightarrow 0^+$. Then z_0 is represented by a function $g \in L^2(E)$ such that

$$\frac{g}{(z-z_0)^{s}\phi(|z-z_0|)} \in L^2(E)$$

if and only if

$$\sum_{n=0}^{\infty} 2^{2n(s+1)} \phi(2^{-n})^{-2} C_2(A_n(z_0) - E) < \infty.$$

Theorem 2.3 Lot E be a compact set. Then z is a w BPE of order β for R^2 (E) if and

only if

$$\sum_{n=1}^{\infty} n^{-\beta} 2^{2n} C_2(A_n(z) - E) < \infty$$

The proofs of theorem 2.2 and theorem 2.3 are almost the same as the proof of theorem 2.1. We omit the proofs. Wolf proved in [8] that the condition

$$\sum_{n=0}^{\infty} 2^{2n(s+1)} \phi(2^{-n})^{-2} C_2(A_n(z_0 - E)) < \infty \text{ is necessary in theorem 2.2.}$$

The compact sets E for which $R^2(E) = L^2(E)$ can be described in terms of the Bessel Capacity. The following theorem is proved in Hedberg [4] and Polking [6]. <u>Theorem 2.4</u> Let E be a compact set. Then the following are equivalent.

(i)
$$R^{2}(E) = L^{2}(E)$$
.
(ii) $C_{2}(B(z,\delta)-E) = C_{2}(B(z,\delta))$ for all balls $B(z,\delta)$.
(iii) $\lim_{\delta \to 0} \sup \frac{C_{2}(B(z,\delta) - E)}{\delta^{2}} > 0$ for all z.

If we combine theorem 2.3 and theorem 2.4 we get the following theorem. <u>Theorem 2.5</u> Let $\beta > 1$ and E be a compact set. Then $L^2(E) = R^2(E)$ if and only if E admits no w BPE of order β for $R^2(E)$.

Now we shall show that theorem 2.5 is not true for $\beta \leq 1$. We first need the following theorem.

Theorem 2.6 There is a compact set E such that

(i)
$$C_2(B(0, \frac{1}{2}) - E) < C_2(B(0, \frac{1}{2}))$$

(ii) $\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z) - E) = \infty$ for all z.

The proof is a modification of a proof in [2] or [3], where a weaker theorem is proved. Since we shall need the construction of E later, we give some details. Proof. There are constants F_1 and F_2 such that

$$\mathbf{F}_1(\log \frac{1}{\delta})^{-1} \leq \mathbf{C}_2(\mathbf{B}(\mathbf{z}, \delta)) \leq \mathbf{F}_2(\log \frac{1}{\delta})^{-1} \quad \text{for all } \delta, \ \delta \leq \delta_0 < 1.$$

Choose α , $\alpha \ge 1$, such that

$$\frac{F_2}{\alpha} \quad \sum_{n=2}^{\infty} \quad \frac{1}{n \log^2 n} < C_2(B(0, \frac{1}{2})).$$

Let A_0 be the closed unit square with centre at the origin. Cover A_0 with 4^n squares with side 2^{-n} . Call the squares $A_n^{(i)}$, $i = 1, 2, ..., 4^n$. In every $A_n^{(i)}$ put an open disc $B_n^{(i)}$ such that $B_n^{(i)}$ and $A_n^{(i)}$ have the same centre and the radius of $B_n^{(i)}$ is $exp(-\alpha 4^n n \log^2 n)$. Repeat the construction for all $n, n \ge 2$. Set

$$E = A_0 - \bigcup_{n=2}^{\infty} \bigcup_{i=1}^{4^n} B_n^{(i)}$$

The subadditivity of C_2 now gives (i).

In order to prove (ii) it is enough to prove

$$C_{2}(A_{n}^{(i)} - E) \geq \frac{F_{1}}{32\alpha \ 4^{n}\log n} \quad \text{for all } n, \ n \geq n_{0}. \tag{2.1}$$

Consider all $B_{k}^{(i)}, \ n \leq k \leq n^{2}$, such that $B_{k}^{(i)} \subset A_{n}^{(i)}.$

We get 4^{ℓ} discs with radius exp $(-\alpha 4^{n+\ell}(n+\ell)\log^2(n+\ell))$, $0 \le \ell \le n^2 - n$.

2

Call the discs

$$\mathcal{D}_{n}^{(r)}$$
, $r = 1, 2, \dots, \frac{4^{n^{2}-n+1}-1}{3}$

Thus

$$\frac{F_1}{\alpha 4^n} \sum_{j=n}^{n^2} \frac{1}{j \log^2 j} \leq \sum_{i} c_2(D_n^{(r)}) \leq \frac{F_2}{\alpha 4^n} \sum_{j=n}^{n^2} \frac{1}{j \log^2 j}$$

Set $D_n = \bigcup_{r} D_n^{(r)}$.

Since the distances between the discs are large compared to their radii, it can be shown that

$$C_2(D_n) \ge \frac{1}{8} \sum_r C_2(D_n^{(r)})$$
, if n is large.

(See theorem 2' in [2] or theorem 2 in [3] for a proof.)

Thus if n is large,

$$C_2(A_n^{(i)} - E) \ge C_2(D_n) \ge \frac{F_1}{8\alpha 4^n} \sum_{j=n}^{n^2} \frac{1}{j \log^2 j} \ge \frac{F_1}{16\alpha 4^n \log n}$$

which is (2.1)

Theorem 2.7 There is a compact set E such that

(i)
$$L^{2}(E) = R^{2}(E)$$

(ii) E has no w BPE of order one for $R^{2}(E)$.

Proof The theorem follows immediately from theorem 2.3, 2.4, and 2.6.

3. BPE'S AND SMOOTHNESS PROPERTIES OF FUNCTIONS IN $R^{2}(E)$.

In this section we treat the theorem of Wolf mentioned in the introduction for the case p = 2.

<u>Theorem 3.1</u> Let ϕ be a positive, nondecreasing function defined on $(0,\infty)$ such that $r L_0(r) \phi(r)^{-1}$ is nondecreasing and $r L_0(r) \phi(r)^{-1} \rightarrow 0$ when $r \rightarrow 0^+$. Suppose that z_0 is a BPE for $R^2(E)$ represented by g and $(z-z_0)^{-s} \phi(|z-z_0|)^{-1}$ g $\varepsilon L^2(E)$, where s is a nonnegative integer. Then for every $\beta > 1$ and $\varepsilon > 0$ there is a set E_0 in E, having full area density at z_0 , such that for every f ε R(E) and every $\tau \varepsilon E_0$

$$\left| f(\tau) - f(z_0) - \frac{f'(z_0)}{1!} (\tau - z_0) - \dots - \frac{f^{(s)}(z_0)}{s!} (\tau - z_0)^s \right|$$

$$\leq \varepsilon \left| \tau - z_0 \right|^s \phi(|\tau - z_0|) \quad \left\{ \int_E |f(z)|^2 \ L_{z_0}^\beta(z) \right\}^{\frac{1}{2}}.$$

The proof of theorem 3.1 is only a minor modification of the proof of theorem 4.1 in [3]. Moreover, there is a proof of theorem 3.1 for $\beta = 2$ in Wolf [7]. We omit the proof.

<u>Remark</u>. Let $z_0 \in \partial E$ (the boundary of E) be both a BPE for $R^2(E)$ and the vertex of a sector contained in Int E. Let L be a line which passes through z_0 and bisects the secotr. Let $\varepsilon > 0$ and let ϕ be as in theorem 2.2. For those $y \in L \cap E$ that are sufficiently near z_0 Wolf showed in [9] that

$$|f(y)-f(z_0)| \leq \varepsilon \phi(|y-z_0|) \qquad \left\{ \int |f(z)|^2 dm(z) \right\}^{\frac{1}{2}} \quad \text{for all } f \in R(E).$$

Our next step is to prove that theorem 3.1 is not true for $\beta = 1$. We first need a theorem, which we think is interesting in itself.

Theorem 3.2 Let s be a nonnegative integer. Then there is a compact set E such that

(i)
$$\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z)-E) = \infty$$
 if $z \neq 0$.
(ii) $\sum_{n=1}^{\infty} 2^{2n}(s+1) C_2(A_n(0)-E) < \infty$.

464

<u>Proof</u> We shall modify the set constructed in the proof of theorem 2.6. Let $B_j^{(k)}$ denote the same discs as in that proof. Let all $B_j^{(k)}$ which intersect $A_1(0)$ be denoted by A_{11} , A_{12} , A_{13} ,... so that their diameters are decreasing. Choose j_1 so that

$$2(s+1) \sum_{j>j_1} C_2(A_{1j}) < 2^{-1}$$

and

$$diam(A_{1j_1}) < 2^{-3}$$

Suppose that we have chosen $j_1, \ldots j_n$. Let all $B_j^{(k)}$ which intersect $A_{n+1}(0)$ and which do not coincide with $A_{11}, \ldots, A_{1j_1}, \ldots, A_{n1}, \ldots, A_{nj_n}$, be denoted by A_{n+1} 1, A_{n+2} 2, A_{n+3} 3,... so that their diameters are decreasing. Choose j_{n+1} so that

$$2^{2(n+1)(2^{j})} \sum_{j>j_{n+1}} C_2(A_{n+1,j}) < 2^{-(n+1)}$$

and $\operatorname{diam}(A_{n+1} j_{n+1}) < 2^{-(n+3)}$. Let A_0 be the closed unit square with centre at the origin. Set $E = A_0^-$ (The union of all $B_j^{(k)}$ such that $B_j^{(k)} \ddagger A_{nm}$, $1 \le n \le \infty$ and $1 \le m \le j_n$). We have m

$$\sum_{n=1}^{\infty} 2^{2n(s+1)} C_2(A_n(0) - E) \le \sum_{n=1}^{\infty} 2^{-n} < \infty$$

Let $z \neq 0$. If l is large all $B_j^{(k)}$, $B_j^{(k)} \subset A_l^{(z)}$, differ from A_{nm} , $l \leq n < \infty$ and $l \leq m \leq j_n$.

Now exactly as in proof of theorem 2.6 it follows

$$\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z) - E_1) = \infty$$

<u>Corollary 3.3</u> There is a compact set E with exactly one BPD of order s for R^2 (E). Proof Just combine theorem 3.2 and 2.1.

q.e.d.

<u>Remark</u> The situation for $p \neq 2$ is different. In [1] Brennan showed that if almost all points $z \in E$, E compact, are not BPE for $R^{P}(E)$, E admits no BPE's for $R^{2}(E)$.

- <u>Theorem 3.4</u> Let s be a nonnegative integer and ϕ be as in theorem 2.2. Then there is a compact set E such that
 - (i) z_0 is a BPE for $R^2(E)$.
 - (ii) There is a representing function g for \boldsymbol{z}_0 that satisfies

C. FERNSTRÖM

$$(z-z_0)^{-s} \phi(|z-z_0|)^{-1} g \in L^2(E)$$
.

(iii) For every $\tau \in E$, $\tau \neq z_0$, and every positive integer n there is a function $f \in R(E)$ such that $\left| f(\tau) - f(z_0) - \frac{f'(z_0)}{1!}(\tau - z_0) - \dots - \frac{f^{(s)}(z_0)}{s!}(\tau - z_0)^{s} \right| >$ $> n \left\{ \int_{E} \left| f(z) \right|^2 L_{z_0}(z) dm(z) \right\}^{\frac{1}{2}}$.

Proof Theorem 3.2 gives that there is a compact set E such that

$$\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z) - E) = \infty , z \neq z_0$$
$$\sum_{n=1}^{\infty} 2^{2n} (s+1) \phi(2^{-n})^{-2} C_2(A_n(z_0) - E) < \infty .$$

Now theorem 2.1 gives (i) and theorem 2.2 gives (ii). Moreover theorem 2.1 gives that z_0 is a BPD of order s for $R^2(E)$ and theorem 2.3 that τ is not a w BPE of order 1 for $R^2(E)$. This gives (iii).

REFERENCES

- Brennan, J. E., Invariant Subspaces and Rational Approximation, <u>J. Functional</u> Analysis, <u>7</u> (1971), 285-310.
- Fernström, C., Bounded Point Evaluations and Approximation in L^P by Analytic Functions, in "Spaces of Analytic Functions Kristiansand, Norway 1975", 65-68, Lecture Notes in Mathematics No 512, Springer-Verlag, Berlin 1976.
- Fernström, C and Polking, J. C., Boundee Point Evaluations and Approximation in L^p by Solutions of Elliptic Partial Differential Equations. <u>J. Functional</u> <u>Analysis</u>, <u>28</u>, 1-20 (1978).
- Hedberg, L. I., Non Linear Potentials and Approximation in the Mean by Analytic Functions, <u>Math. Z.</u>, <u>129</u> (1972) 299-319.
- Meyers, N. G., A Theory of Capacities for Potentials of Functions in Lebesgue Classes, <u>Math. Scand.</u>, <u>26</u> (1970), 255-292.
- Polking, J. C. Approximation in L^p by Solutions of Elliptic Partial Differential Equations, <u>Amer. J. Math., 94</u> (1972), 1231-1244.
- 7. Wolf, E., Bounded Point Evalutions and Smoothness Properties of Functions in $R^p(X)$, Doctoral Dissertation, Brown University, Providence, R.I., 1976.
- Wolf, E., Bounded Point Evaluations and Smoothness Properties of Functions in R^P(X), <u>Trans. Amer. Math. Soc</u>. <u>238</u> (1978), 71-88.
- Wolf, E., Smoothness Properties of Functions in R²(X) at Certain Boundary Points, <u>Internat. J. Math. and Math. Sci.</u>, <u>2</u> (1979), 415-426.