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ABSTRACT. Let [C,D], -1 (_ D ( C i, denote the class of functions

$(z), S(0) S’(0) I 0, analytic in the unit disk U (z: Jz < 1]

such that I + (zg’’(z)/g’(z)) is subordinate to (l+Cz)/(1+Dz), z s U.

We investigate the subclasses of close-to-convex functions f(z),

f(0) f’(0) I 0, for which there exists S s }([C,D] such that

f’/g’ is subordinate to (l+Az)l(l+Bz), -I (_ B ( A I. Distortion and

rotation theorems and coefficient bounds are obtained. It is also

shown that these classes are preserved under certain intesral

operators.

WORDS AND PHRASES, Univalent, convex, starlike, subordination,
convolution.
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1 INTRODUCTION,

Let S denote the class of functions f(z) z + a z analy-
nn--.

tic and univalent in the unit disk U (z: ]z I). For functions

and G analytic in U we say that S is subordinate to G, denoted

< G, if there exists a Schwarz function w(z), w(z) analytic in U

with w(0) 0 and ]w(z) ( I in U, such that g(z) G(w(z)). If G

is univalent in U then S G if and only if (0) G(0) and s(U) c
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G(U). For A and B, -1 <_ B A _< 1, function p analytic in

with p(O) I is in the class [A,B] if p(z) (l+Az)/(l+Bz). This

class was introduced by Janowski [4]. Given C and D, -I i D <

C I, ][C,D] and J [C,D] denote the classes of functions f anlyric

in U with f(0) f’(0) -I 0 such that I + zf’(z)/f’(z) s [C,D]

and zf’(z)/f(z) s [C,D], respectively. The classes JS[C,D] were in-

troduced by Janowsci [4] and studied further by Goel and Mehrok ([1]

and [3]). For C i and D -I, }[i,-I] ( (,/ [I,-I] ,/ ), the

well-known subclass of convex (starlike) functions.

A function f(z) z + a z analytic in
nn--.

U is said to be in

the class C[A,B;C,D], -I <_ B < A <_ I, -I <_ D C ! I, if there exists

g s ){[C,D] such that f’/g’ e .[A,B]. The well-known (Kaplan [5])

class of close-to-convex functions is C[I,-I;I,-I] C while

and [A,B] c [i,-I] shows C[A,B;C,D] C C c S. Since

, zg s ,/ [C,D] if and only if g()
0

-1
d e [C,D], we also note that

C[I,-I;C,D] was studied by Goel and Mehrok ([2] and [3]).

In Section 2 Of this paper we obtain distortion and rotation

theorems for f’(z) wheever f s C[A,B;C,D] and a subordination result

relating C[A,B;C,D] and [A,B]. In Section 3, it is shown that the

class C[A,B;C,D] is preserved under certain integral operators. We

conclude with coefficient inequalities.

2. DISTORTION AND ROTATION THEOREMS.

Unless otherwise mentioned in the sequel, the only restrictions

on the real constanta A, B, C and D are that -i D < C I and

-1 .i B < A .i 1.

THEOREM 1.

_
f s C[A,B;C,D], Izl i r < 1,

(1-At) (1-Dr)
(C-D)/D

< if (z)l < (l+Ar)(l+Dr)
(C-D)/D

D 0
1-Br I+Br
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and

(-A) x,-Cr) 1+Ar)ex{Cr)< If’(z)l <l-Br
D O.

Th___e bounds are sharp.

PROOF. For f 8 C[A,B;C,D], there exists a g 8 [C,D] and

p e [A,B] such that

f’(z) g’(z)p(z). (2.1)

"Since g e [C,D] if and only if zg’ e [C,D], for z ! r i [4]

(1-Dr) (C-D)/D
! Ig’(z)l -- (l+Dr)

exp(-Cr) <_ Ig’(z)l _< exp(Cr)

(C-D)/D D 0, and

(2.2)

For p z [A,B], Iz]
_

r, the univalence of (I+Az)/(I+B) gives

l-At < Ip(’-)l +A (2.)
I-Br I+Br

The result follows immediately upon applying (2.3) and (2.2) to (2.1).

Equality is obtained for f e C[A,B;C,D] satisfying

_l+Az) (1+Dz) (C-D)/D

I + Bz

f’(z)

I+Az) exp(Cz)
I + Bz

D 0

D 0

(2.4)

and z + r.

REMARK. For A 1 and B -1, Theorem 1 agrees with Theorem 3 of

Gee1 and Mehrok [2].
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THEOREM 2. For f , CtA,B;C,D], Izl <-- r < I,

Jars f’ (z)

arcsin(Dr) + arcsin
(A-B); D 0
I_ABr2

(A-B)r D 0arcsin(Cr) + arcsin
2I-ABr

PROOF. From (2.1) we have

(2.5)

Since zg e [C,D], we know [2] that for ]zl
_

r < 1

arcsin(Dr) D 4 0

(2.6)

For p s [A,B], P(IZl < r) is contained in the disk

I" --I-AB;21 < (A-B)r frm which it f11’’that22
1-Br 1-B r

larg P(z) ! arcsin
(A-B)r

2"I-ABr
(2.7)

Substituting (2.6) and (2.7) into (2.5) gives the result.

REMARKS 1. For A 1, B -1, Theorem 2 agrees with Theorem 4 of

Goel and Mehrok [2].

2. For A C 1, B D -1, Theorem 2 reduces to the

result of Krzyz [7] that

]arg f’(z)] ! 2(arcsin r + arctan r),
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The convolution or Hadamard product of two power series

f(z) a z and g(z) b z is defined as the power seriesn nn=O n=O

n(f’g) (z) a b z
n=O

In order to obtain a subordination result

linking C[A,B;C,D] and [A,B] we need the following

LEMMA A (Ruscheweyh and Shell-Small, [11]).

and b_e convex i__n U and suppose f < . Then

THEOREM 3. I___f f C[A,B;C,D] then there exists p e [A,B] such

that for all s and t with

I+Dsz!C-D)/D
() D 0

f’ (sz)p(tz)_
f’(tz)p(sz) (2.8)

exp[C(s-t)z] D 0.

PROOF. We will use an approach due to Ruscheweyh [10]. From (2.1)

we have zf’’(z zg’’(z)
+ zv’ (z)

f’(z) g’(z) p(z) for g e [C,D] and p s [A,B].

Therefore,

zf’’ z.L_ z’(z) (1 + zx"(z)
(2 9)f’(z) p(z) g’(z) 1 <

1 + Dz

For s and t such that Isl
__

I, tl ! I, the function

Z

h(z) (l-su 1-tu0
------)du is convex in U. Applying Lemma A to (2.9)

with this h, we have

(zf’’(z) zp’(z)) * h(z) < (C-D)z . h(z)f’ (z) p(z) 1 + Dz (2.10)

Given any function (z) analytic in U with (0) O, we have
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(’h)(z)
SZ

tz

du(u) z 8 U, so that (2.10) reduces to

’(sz)v(tz))-) < (C-D)lg(p(sz)f’ (tz

SZ

tz

du
1 + Du

(2.11)

Integrating the righthand side of (2.11) and exponentiating both sides

leads to (2.8).

COROLLARY 1. If f 8 C[A,B;C,D] then there exists a_ p e f[A,B]

and a Schwarz unction w(z) such that

f’(z)

p(z) (1 + Dw(z))

p(z)exp(Cw(z)

(C-D)/v D 0

PROOF. The result follows directly upon substituting s 1 and

t 0 into Theorem 3.

COROLLARY 2. If f(z) z + a z e C[A,B;C,D] then
n

n=2
(C-D) + (A-B)1"21 ! 2

PROOF. If g < F then Ig’(O)

we take g(z) f’(z)/p(z) and

[8] From Corollary I,

F(z)

l+Dz)
(c-D)/D

D 0

xp(Cz) D 0

Then g’(0) 2a
2

c I for p(z) 1 + c z and F’(0) C D.
n=l

n

(C-D) +I Cll (C-D) + (A-B)
Therefore 21a21- l1{ <- {C-D{ and la2l <_ 2 <- 2

as claimed.
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3. INVARIANCE PROPERTIES.

We will need the followins lemmas.

LEMMA B (Ruscheweyh and Shell-Small, [ii]).

and g starlike i__n U. Then for F analytic in

*Fg(u) is contained in the convex hull of,g

Le_._t q b_e convex

U with F(0) 1.

F(U).

LEMMA C (Silverman and Silvia, [12]).

s , *g ./ [C,D].

e /[C,D] then for

THEOREM 4. l__f cp K, and f e C[A,B;C,D] then 0*f s C[A,B;C,D].

PROOF. For f s C[A,B;C,D] there exists g / [C,D] and

F s [A,B] such that zf’(z) g(z)F(z). Since (l+Az)/(l+Bz) is convex

in U, by Lemma B,

z(0sf) 0*Fg .< I+Az
o,g o,g l+Bz

(z e U) (3.1)

for 0 v . From Lemma C, 0,g e *[C,D] so that (3.1) is equivalent to

0*f e C[A,B;C,D].

REMARK. For A C i, B D -1, Theorem 4 was proved by

Ruscheweyh and Sheil-Small [11].

COROLLARY. I__.f f e C[A,B;C,D] then so are

and

(i) V l(z) rjZ tT-If(t)dt Re 7 > 0
z 7 0

z
(ii) F 2(z) f(_)-f(x.) d, x 1 1.

o -x
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PROOF. Observe that F. (z) (h.*f) (z), j 1,2, where
J

n

n i n+ z Re > 0, and (z)
(l-x)n

n--1
1

log[ l-xz], Ix i, x I. Since hI was shown to be convex,
l-x l-z

by Ruscheweyh [9] and h
2

is clearly convex, the result follows

immediately from Theorem 4.

REMARK. Goel and ]/ehrok [3] showed that C[1,-1;C,D] was

preserved under Fl(Z) when 7 1,2,3 and under F2(z) when x =-1

by a different method.

4f,. COEFFICIENT INE(UALITIES

We begin with coefficient inequalities for ][C,D].

LEblt/A. For g(z) z + b z s E[C,D] and Ix complex
n

n;2

C-Db21
_ --- and

PROOF. For g(z) z + bnZ
n--2

n e-’--’tU,VJ, there exists a

Schwarz function w(z) 7n
n--1

n
such that 1 + (zg’’(z)/g’(z))

(l+Cw(z))/(l+Dw(z)) or zg’’(z)/g’(z) (C-D)w(z)/(l+Dw(z)).

Substitution of the series expansions and comparison of the

coefficients leads to

C-D C-D 2
b2- 2 71 and b3- 6 (72 + (C-2D)71 }"

Therefore, Ib C-D2] ! -- and

2 C-D
b3 Ixb2 6 {2 + (C-2D) -", Ix(C-D) ]71 ). (4.1)
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We know [6] that for s complex

2
(4.2)

Combining (4.2) and (4.1) yields the result.

REMARK. If we apply the inequality

(4.1), the same proof shows that

[8] to

22[ +Ib3-11b 2 I(C-2D)- ,(C-D) i} Ib2l 2

THEOREM 5. For f(z) z + a z s C[A,B; C,D]
n

n=2

,la21 (C-D)+(A-B) and
2

+ (A-B)(C-D+1) C-2D[ I

(C-D) (C-2D) +
(A-B) (C-D+1) C-2D 1

nPROOF. There exists a g(z) z + b z R[C,D] and a Schwarz
n

n=2

function w(z) z such that f’(z)Ig’(z) (l+Aw(z))l(l+Bw(z))
n=l

n

A-Bz e U. Comparing series expansions, we see a^ b
2 +--:-- i and

2
a3 b3 + (A_B)b271 +

(A-B)
( -By 2

3 2 1
)" (4.3)

The bound for a2 follows from the Lemma.

Lemma (p 0) to (4.3), we have

Applying (4.2) and the
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C-D (A-B)
3

max(l, IB[

C-D
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