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ABSTRACT. The points of Gateaux and Fréchet differentiability of the norm in

C(T, E) are obtained, where T is a locally compact Hausdorff space and E is a
real Banach space. Applications of these results are given té the space Km(E) of
all bounded sequences in E , and to the space B(E], E) of all bounded Tinear
operators from Z] into E .
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1.  INTRODUCTION.
In [1], Banach proved that if T 1is a compact metric space and C(T) is the
Banach space of all continuous real valued functions on T , with the supremum norm,

then
i I gl - lifl
A0 A

exists for all g e C(T) if and only if there exists a t0 e T such that
|f(t0)| > |[f(t)] forall teT, t# ty -
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This theorem, however, is no longer true if T 1is a locally compact, non-
compact, Hausdorff space; as can easily be seen by considering the Banach space £
of all bounded real valued sequences with the supremum norm.

In fact, if N is the set of positive integers equipped with the discrete
topology, then £ =C (N) , the space of all bounded continuous functions on IN .

= - n-1
e £, , where x; =1 and x = —

If we Tet x = {x 1} for n > 1, then
x peaks at n =1 , but because of the behaviour of x at infinity and the
existence of Banach limits, it is possible to find two distinct support functionals
to the ball in £ at x , so that x is not a smooth point.

In this note, we characterize the points of Gateaux and Fréchet differenti-
ability of the norm function in C(T, E) , the space of all bounded continuous
E-valued functions on the locally compact Hausdorff space T , where E is a real
Banach space.

Two applications of these results are given. The first is to the space Zw(E)

of all bounded sequences in E , and the second to the space B(ﬂ], E) of all

bounded linear operators from K] into E .

2. DEFINITIONS AND NOTATION.

In the following, E denotes a real Banach space and E* denotes the dual of
E. The unit ball of E is Bg = {xe E | [l =1} and its boundary
SE={XeE||jxl|=1} is the unit sphere of E .

A Banach space E is said to be smooth at x ¢ E ~ {0} 1if and only if there

exists a unique hyperplane of support to BE at that is, there exists only

X .
1
one continuous linear functional ¢ ¢ E* with [i¢f| =1 such that ¢(x) = |x] .

Such a linear functional ¢ € E* 1is called the support functional to BE at ﬂ%ﬂ ,

and ¢-]({1}) is called the hyperplane of support to BE at A Banach space

X
Xl
E is said to be a smooth Banach space if it is smooth at every x e S

£
The norm function |.jj : E ~R" is said to be Gateaux differentiable at

x ¢ E~ {0} if and only if there exists a functional ¢ e E* with

| TN
1im |L§_i_ﬁglL__hﬁh -oh) ] =0

x>0

) (*)
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for every h e E . The functional ¢ is called the Gateaux derivative of the norm

at x e E . The norm function |.] : E >R" s said to be Fréchet differentiable

at x e E ~ {0} if and only if there exists a functional ¢ ¢ E* such that

vim Ll il = = s () |2
o nli

> (**)

that is, the Timit in (*) exists uniformly for h ¢ BE .

It is well known, Mazur [8], that E 1is smooth at x ¢ E ~ {0} 1if and only if
Tim ﬂﬁ—i-iﬂ§ﬁi;ibiﬁ exists for all h e E , if and only if the norm function
x>0
[ E >R is Gateaux differentiable at x .

3. SMOOTH POINTS IN C(T, E) .

If T 1is a topological space and E 1is a real Banach space, then C(T, E)
denotes the Banach space of all bounded continuous E-valued functions on T , with
the supremum norm; that is,

C(T, E) = {f: T+E | f 1is bounded and continuous} ,
and [[f]| = sup {|if(t)]|: te T}, for fe C(T, E)

As mentioned earlier, Banach [1] proved that if T is a compact metric space,
then C(T) = C(T, R) is smooth at f# 0 if and only if f 1is a peaking function,
that is, there exists a point ty e T such that IIEll = lf(to)l > |f(t)] for all
teT, ti‘to.

Kondagunta [6], and Cox and Nadler [3], have characterized the points of
Gateaux and Fréchet differentiability of the norm in C(T, E) when T is compact
Hausdorff. Cox and Nadler, in the same paper, give a characterization of the points
of Fréchet differentiability of the norm in C(T,R) when T is locally compact
Hausdorff.

In this section, we generalize these results to the space C(T, E) when T
is locally compact Hausdorff. The techniques used by Cox and Nadler will not work
in this case, since, in general, the range of f e C(T, E) 1is no longer relatively
compact and hence no extension to an f e C(8T, E) is possible. However, a slight
modification of the argument given in K8the [7], (page 352), for the corresponding

result in £_ , does work.
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As usual, the results on smoothness are the more difficult, and the results on
Fréchet differentiability follow as a corollary.
THEOREM 3.1. Let T be a locally compact Hausdorff space and E a Banach
space. A point fe C(T, E), f # 0, 1is a smooth point of C(T, E) if and only if
(i) there exists a ty e T such that llf(t0)||> If(t)]|| for all te T,
t# ty »
(ii) there exists a compact neighborhood K of t0 such that
tz#gKllf(t)H < Il s
(iii) f(to) is a smooth point of E .

PROOF.
A.  Assume first that the norm ||.]| : C(T, E) >R" is Gateaux differentiable at
fe C(T, E) , where we may (and do) assume that [[f[f=1 .

(I) We show first that if the mapping [ f(.)]: T »>R" achieves its maximum
at tO e T, then to is unique. Suppose there exist to, t] e T, tO # t],
such that Hf(to)H: lIf(t])II =1. For teT and ¢ e E* , let % ¢ € C(T, E)*
denote the evaluation functional given by 6¢ t(g) = ¢(g(t)) for g e C(T, E) ;
then ||cS¢ tH= 1 forall teT, ¢¢ Sgx - Using the Hahn-Banach theorem,

s

choose ¢g, ¢; ¢ E* with [logll =1lle;ll =1 such that do(Flty)) = oy (flt) = 1.

Then §

0 and ¢ are distinct support functionals to the ball in C(T, E)
0

5t0 ¢'| t] t'l
at f , which contradicts the fact that f 1is a smooth point in c(T, E) .
(IT) We show next that given any compact set K< T , either

sup || f(t)]| <1, or there exists a tge T~ K such that [[f(t))]|=1 .

e T~
To the contrary, suppose there exists a compact set K < T , such that

sup |If(t)]|=1 and [[f(t)|] <1, forall te T~K° . Let Fo(t) =l f(t)]
KO

te T~

for all te T . Then F0 is a bounded continuous function on T and thus has
an extension, F , to BT , the Stone-Cech compactification of T . Since

sup  ||f(t)]|=1, we have A = F'](]) NBT~T)#¢ . Also
teT~K®

A

NteT-K: Ft)»>1-1,
n=1
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and thus A is a Ga set in BT . By Cech [2], singletons in BT~T are not G
sets, so A contains at least two distinct points p and q .
Let {pu} and {qv} be disjoint nets contained in T such that P, p

and q ~>q in gT . Foreach u , let o, € E* , with H¢u||= 1 and

¢u(f(pu)) = F(pu) . Also, for each v , choose v, e E* , with va||= 1 and
v, (fla))) = F(a ) . Let o, = 6¢u,pu and ¥ = Gwv,qv , for each u and v .
Then o —and v e C(T, E)* and H¢u||= va||= 1, for each u and v .

Since the ball in C(T, E)* is w*-compact, there exist ¢, ¥ e C(T, E)* ,
with |le|| <1 and |[¥|| <1, such that & is a w*-accumulation point of the net
{¢u} and ¥ 1is a w*-accumulation point of the net {Wv} . By construction,

o(f) = ¥(f) =1 and, thus, ¢ and ¥ are support functionals to the ball in

C(T, E) at f . Since f 1is assumed to be a smooth point in C(T, E) , it must
be that ¢ = ¥ . We will show that this is impossible. Let P = {pu}LJ{p} and
Q= {qv} U{q} . Then P and Q are disjoint closed subsets of BT , which is a
compact Hausdorff space and therefore normal. Let h], h2 e C(BT) with

0= h], hy <1, h] + h2 =1 and h](P) = hz(Q) =0 . Use hi for the restriction
of hi to T, as well.

Clearly, if ge C(T, E) , then hyg € ker ¢ and hog e ker ¥ . Since ¢ =v,
and ge C(T, E) can be written as g = h]g +h,g , we have ¢ =v =0 . But, this
contradicts |¢|| = ||¥||= 1 . Therefore, we must have that either

sup  |[f(t)]| <1, or there exists t
teT~K®

g€ T~ K with ||f(t0)||= 1, for any

compact set KeT.

g in (II),

(III) Finally we show that (i), (ii), (iii) hold. Taking K
since ||[f||=1 , we see that there exists a tge T with ||f(t0)||= 1 ; and from
(1), llf(tO)H > || f(t)|| for all t # ty . Again by (I1), if K& T is a compact

set with t, e K° , then  sup |[f(t)|| <1 . If there exist distinct functionals
teT~K

0
91> 9, € E* with H¢]l|= H¢2[|= 1 such that ¢](f(t0)) = ¢2(f(t0)) =1, then

this implies that e C(T, E)* are distinct support functionals to

§ , 8
b1at0" “op0ty
the ball in C(T, E) at f , which contradicts the fact that f s a smooth point.

Therefore f(to) is a smooth point of E .
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B.. Conversely, suppose that f e C(T, E) , ||[f||=1, and (i), (ii), and (iii)
hold; then there exists a unique t; e T such that ||f(t0)|l= 1 , there exists a
compact set K& T with t;e K> such that ti#gK [[f(t)| <1, and E is smooth
at f(to) .

let geC(T,E), g#0, and Tet & >0 be such that |[f(t)]| < Hf(to)[]- §
§
2llgll

IEe) + ag(e) [ IF T+ Ia] Hlg(e)ll < IFed l+ 1Al Hlgll= 6 < [If(tg)]] - 5

for all teT~K. If 0 < |A] < , then for te T - K we have

Thus, |If(t) + Ag(t)]] < Hf(to)ll— g— for all t e T ~ K whenever 0 < |)] < éji;n
On the other hand,
[
IF sl Il - Il = IFGeQ) Il = Il lisl > Heeg)li- 3 for 0 < o < g
[
Therefore, for 0 < |A]| <
2llall
sup [[F(t) + ag(t)]| = sup |f(t) + ag(t)]| .
teT €
Since K 1is compact, by Kondagunta's result [6] ,
sup [|f(t) + Ag(t) || - sup [[f(t)]| T .
lim teK teK = g U ,Ag -
A0 A A+0
exists for all ge C(T, E) . Hence C(T, E) is smooth at f .
q.e.d.

An analogous result holds for the Fréchet differentiability of the norm in
(T, E) .

COROLLARY 3.2. Let T be a locally compact Hausdorff space and E a Banach
space. The nomm function ||.||: C(T, E)> R" is Fréchet differentiable at
feCT,E), f#0, if and only if

(i) there exists a unique tye T such that Hf(t0)||> sup JIf(t)]
t#t
0

(i1) {to} is an open subset of T , that is, t, 1is an isolated point

0
of T ;
(iii) the nom function ||.||: E~R" s Fréchet differentiable at f(ty) -

(Note: (i1) follows from (i) . )
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PROOF.

A. Suppose that ||.||: C(T, E) R’ is Fréchet differentiable at

feC(T, E), |Ifll =1 ; then the ball in C(T, E) is smooth at f , so there

exists a t, e T and a compact neighborhood K of tO such that

0
(M) e > 1IFE)] forall teT, t#t

(2) sup [If()ll <1,
teT~K

0 bl

(3) E 1is smooth at f(to) .

Now sup || F(t) + rg(t)]| - sup [|f(t)]]

teK te
A

Yim L2 lk‘ fll = i
A=>0 x>0

exists uniformly for g e BC(T £) ° and since K 1is compact, an appeal to the

result of Cox and Nadler [3] shows that {t;} is open and o]l E >R s
Fréchet differentiable at f(to) . Also, since {to} is open and K ~ {to} is
compact, the uniqueness of ty shows that sup |IF(t)] <1
t#t
0

B. Conversely, suppose that (i), (ii), and (iii) hold. Using the previous theorem,

we see that ||.]| : C(T, E) » R"  is Gateaux differentiable at f , and taking
K = {to} ,
I+ agll - sl ) gl - I f ()]

Tim y = lim Y

A>0 x>0
exists uniformly for ge B since ||.|l: E> R s Fréchet differenti-

C(T, E)
able at f(tO) .
q.e.d.

4.  APPLICATIONS.

A. ¢ _(E) . If E {is a Banach space, then

x ¢ E for nz21 and sup Hxnll < e}
nx1

with the supremum norm, |[|x|]| = sup lIx,
nz
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THEOREM 4.1. Let E be a Banach space, then the norm function
.= 2 (E) » R" is Gateaux (Fréchet) differentiable at x = {x_}
if and only if

(1) there exists an ng such that |[x |[>[[x || for n #ng,
ny n 0
(1) sup llx, Il < fixll »
n#n0
(ii1) the norm function ||.]]: E =~ R"  is Gateaux (Fréchet)

differentiable at x
o

PROOF.  Let M denote the set of positive integers equipped with the discrete
topology, then £ _(E) = C(IN, E) the space of bounded continuous E-valued
functions on the Tocally compact Hausdorff space N .

q.e.d.
B. B(Z], E) . Let E be a Banach space, let ﬂ] be the Banach space of all

absolutely summable real valued sequences with  |la]| = [ [anl for
a-= {an}nzl € K] , and let B(K], E) be the space of all g;lnded linear operators
from Z] into E . For n2 1, let s" be the nth basis vector in Z] .
that is §" = {62}

k21

THEOREM 4.2. Let E be a Banach space, then the norm function

.

B(£;, E) » R* s Gateaux (Fréchet) differentiable at T e B(£y, E) ,
T#0, if and only if

n
(i) there exists an n, such that |[[T(s O)H > IT(s")|l for n #n

0 5
(i) sup (TN < ITIl 3
n#n0

(i1) the nom function ||.||: E >R’ s Gateaux (Fréchet)
differentiable at T(Gno)

PROOF.  The mapping o : B(K], E) ~ £ _(E) given by o(T) = {T(én)}nzl
for T e B(K], E) , is a linear isometry of B(K], E) onto £ _(E) .

REMARKS.
1. In connection with the second example, it should be mentioned that Kheinrikh

[5] has given a complete characterization of the points of Gateaux and Fréchet
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differentiability of the norm in K(E, F) , the space of compact linear operators
from E into F , where E and F are Banach spaces. He has also given a
characterization of the points of Fréchet differentiability of the norm in B(E, F),
the space of bounded linear operators from E into F (no proofs are given in

this paper). However, the more difficult question of smoothness in B(E, F) is
still unanswered.

2. Regarding Theorem 3.1. perhaps this will clear up the popular misconception
that, for T locally compact Hausdorff, C(T, E) (or C(T, R)) is smooth at f
if and only if f peaks at some ty e T . (See e.g. Holmes [4], p. 232, #4.10).

A result which is obviously false, as the example in the intrcduction demonstrates.
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