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i. INTRODUCTION.

In [i] and [2] analytic solutions to differential equations with linear trans-

formations of the argument are studied. The initial values are given at the fixed

point of the argument deviation. Integral transformations establish close connec-

tions between entire and distributional solutions of such equations. Profound links

exist also between functional and functional differential equations. Thus, the study

of the first often enables one to predict properties of differential equations of

neutral type. On the other hand, some methods for the latter in the special case

when the deviation of the argument vanishes at individual points has been used to

investigate functional equations [3]. Functional equations are directly related to

difference equations of a discrete (for example, integer-valued) argument, the theory
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of which has been very intensively developed in the book [4] and in numerous subse-

quent papers. Bordering on difference equations are also impulse functional differ-

ential equations with impacts and switching, loaded equations (that is, those inclu-

ding values of the unknown solution for given constant values of the argument),

equations

x’(t) f(t, x(t), x(h(t)))

with arguments of the form [t], that is, having intervals of constancy, etc. A sub-

stantial theory of such equations is virtually undeveloped [5]

In this article we study differential equations with arguments h(t) [t] and

h(t) [t+n], where [t] denotes the greatest-integer function. Connections are

established between differential equations with piecewise constant deviations and

difference equations of an integer-valued argument. Impulse and loaded equations

may be included in our scheme too. Indeed, consider the equation

x’(t) ax(t) + a0x([t ]) + alx([t+l])
and write it as

x’(t) ax(t) + Y (a0x(i) + alx(i+l))(H(t-i) H(t-i-l)),
i----

(i.l)

where H(t) i for t > 0 and H(t) 0 for t < 0. If we admit distributional deriva-

tives, then differentiating the latter relation gives

x"(t) ax’(t) + Z (aoX(i) + alx(i+l))((t-i) (t-i-l)),

where 6 is the delta functional. This impulse equation contains the values of the

unknown solution for the integral values of t. In the second section Eq. (I.I) is

considered. The initial-value problem is posed at t 0, and the solution is sought

for t > 0. The existence and uniqueness of solution and of its backward continuation

on (_oo, 0] is proved. Furthermore, an important fact is established that the initial

condition may be posed at any point, not necessarily integral. Necessary and suffi-

cient conditions of stability and asymptotic stability of the trivial solution are

determined explicitly via coefficients of the given equation, and oscillatory proper-

ties of solutions to (i.I) are studied.

In the third part the foregoing results are generalized for equations with many

deviations and systems of equations. We show that these equations are intrinsically

closer to difference rather than to differential equations. In fact, the equations
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considered in this paper have the structure of continuous dynamical systems within

intervals of unit length. Continuity of a solution at a point joining any two con-

secutive intervals then implies recursion relations for the solution at such points.

The equations are thus similar in structure to those found in certain "sequential-

continuous" models of disease dynamics as treated in [6]. We also investigate a

class of systems that depending on their coefficients combine either equations of

retarded, neutral or advanced type.

In the last section linear equations with variable coefficients are studied.

First, the existence and uniqueness of solution on [0, ) is proved for systems with

continuous coefficients. A simple algorithm of computing the solution by means of

continued fractions is indicated for a class of scalar equations. Then, a general

estimate of the solutions growth as t + is found. Special consideration is given

to the problem of stability, and for this purpose we employ a method developed

earlier in the theory of distributional and entire solutions to functional differen-

tial equations. An existence criterion of periodic solutions to linear equations

with periodic coefficients is established. Some nonlinear equations are also

tackled.

Consider the nth order differential equation with N argument delays

(m0x (t) f(t, x(t) x(mo-l)(t), x(t-Tl(t)) x(ml)(t-Tl(t))
x(t-rN(t)) x(mN) (t-rN(t))), (1.2)

where all Ti(t) _> 0 and n max mi, 0 <_ i <_ N. Here x (k)(t-Ti(t)) is the kth deriva-

tive of the function x(z) taken at the point z t-Ti(t). Often equations that can

be reduced to the form (1.2) by a change of the independent variable are also dis-

cussed. A natural classification of functional differential equations has been

suggested in [7]. In Eq. (1.2) let max mi, i _< i _< N, and % m0 D. If % > 0,

then (1.2) is called an equation with retarded (lagging, delayed) argument. In the

case % O, Eq. (1.2) is of neutral type. For % < O, (1.2) is an equation of

advanced type. Retarded differential equations with piecewise constant delays (EPCD)

have been studied in [8, 9, i0]. Some results on neutral EPCD were announced in [9]

and [i0]. Together with the present paper, these works enable us to conclude that

all three types of EPCD share similar characteristics. First of all, it is natural

to pose the initial-value problem for such equations not on an interval but at a
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number of individual points. Secondly, in ordinary differential equations with a

continuous vector field the solution exists to the right and left of the initial

t-value. For retarded functional differential equations, this is not necessarily the

case [ll]. Furthermore, it appears that advanced equations, in general, lose their

margin of smoothness, and the method of successive integration shows that after seve-

ral steps to the right from the initial interval the solution may even not exist.

However, two-sided solutions do exist for all types of EPCD. Finally, the striking

dissimilarities between the solutions growth of algebraic differential and difference

equations are well-known [12, 13]. Since EPCD combine the features of both differen-

tial and difference equations, their asymptotic behavior as t resembles in some

cases the solutions growth of differential equations, while in others it inherits the

properties of difference equations. In conclusion, we note that the separate study

of Eq. (1.1) and more general equations with many argument deviations is motivated

not only by instructive purposes and the possibility of obtaining some deeper results

in this special case but, mainly, by the fact that (I.I) possesses properties of both

advanced and neutral equations.

2. EQUATIONS WITH CONSTANT COEFFICIENTS.

Consider the scalar initial-value problem

x’(t) ax(t) + a0x([t]) + alx([t+l]) x(0) co (2.1)

with constant coefficients. Here [t] designates the greatest-integer function. We

introduce the following

DEFINITION 2.1. A solution of Eq. (2.1) on [0, oo) is a function x(t) that

satisfies the conditions:

(i) x(t) is continuous on [0,oo).

(ii) The derivative x’(t) exists at each point t [0, oo), with the possible

exception of the points [t] e [0, o) where one-sided derivatives exist.

(iii) Eq. (2.1) is satisfied on each interval [n, n+l) C [0, oo) with integral

ends.

Denote

la0(eat -1 tb0(t) e
at + a- i), bl(t) a al(e

a
i), (2.2)

k b0(1)/(1 b1(1)).
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THEOREM 2.1. Problem (2.1) has on [0, oo) a unique solution

x(t) (bo({t}) + bl({t}))),It]cO, (2.3)

where {t} is the fractional part of t, if

bl(1) i. (2.4)

PROOF. Assuming that x (t) and x (t) are solutions of Eq. (2 l) on the inter-
n n+l

vals [n, n+l) and [n+l, n+2), respectively, satisfying the conditions x (n) c and
n n

Xn+l(n+l) Cn+l, we have

X’n(t) aXn(t) + a0cn + alCn+I, (2.5)

since Xn(n+l) Xn+l(n+l). The general solution of this equation on the given inter-

val is

x (t) e
a(t-n)

a
-I

c +
n (a0Cn alcn+l)

with an arbitrary constant c. Putting here t n gives

-lao -1
c (i + a )c + a

n alcn+l
and

Xn(t) b0(t-n)Cn + bl(t-n)cn+I (2.6)

For t n+l we have

Cn+l b0(1)Cn + bl(1)Cn+I, n _> 0

and inequality (2.4) implies

b0(1)
Cn+l 1 bl(1) Cn

With the notations (2.2), this is written as

Cn+1 Xc n > 0.
n

Hence,

%nc c
n 0

This result together with (2.6) yields (2.3). Formula (2.3) was obtained with the

implicit assumption a # 0. If a 0, then

a
0
+ a

I
I + a

0
x(t) (I +

i a
I

{t})(l al)[t] Co’

which is the limiting case of (2.3) as a 0. The uniqueness of solution (2.3) on

[0 ) follows from its continuity and from the uniqueness of the problem x (n) c
n n

for (2.5) on each interval [n, n+l]. It remains to observe that hypothesis (2.4) is

equivalent to
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a # a/(ea I).
1

In the particular case b0(1) 0 we have % 0, and formula (2.3) holds true assuming

00= i.

REMARK. If bl(1) i, two possibilities may occur: the case bo(1) # 0 implies

x(t) 0, and for b0(1) 0 problem (2.1) has infinitely many solutions.

COROLLARY. The solution of (2.1) cannot grow to infinity faster than exponen-

tially as t + .
PROOF. The values b0({t}) and bl({t}) in (2.3) are bounded. Therefore,

ix(t) <_ mlll [t]
with some constant m

THEOREM 2.2. The solution of (2.1) has a unique backward continuation on

(_oo, O] given by formula (2.3) if

b0(1) # 0. (2.7)

PROOF. If x (t) and x (t) denote the solutions of Eq. (2 I) on the inter-
-n -n+l

vals I-n,-n+l) and [-n+l,-n+2), respectively, satisfying x (-n) c and
-n -n

X_n+l(-n+l) C_n+l, then by virtue of the condition X_n(-n+l) X_n+l(-n+l), it

follows from the equation

that

x’ (t) ax (t) + a0c +
-n -n -n alC-n+l

x (t) e
a(t+n) -i

c a (a0c + a Ic-n -n -n+l

where

-la0 -i
c (l+a c +a

-n alC-n+l
Therefore,

a(t+n) a-la0 -I
a

(t+n)
x (t) (ea(t+n) + (e I) )c + a (ea
-n -n i

l) C_n+l.

With the notations (2.2), we have

X_n(t) bo(t+n)C_n + bl(t+n)C-n+l
Putting t -n+l gives

(2.8)

and

Finally, we write

Cun+l bO(1)c_n + b l(1)c_n+I

1 bI(I)
C
-n b

0
(i) C-n+l

-i
c =I c n> I
-n -n+l
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and

c %-nc
0-n

which together with (2.8) proves (2.3) for t < 0.

The initial-value problem for Eq. (2.1) may be posed at any point, not necessa-

rily integral.

THEOREM 2.3. If conditions (2.4) and (2.7) hold, and

bo({t0}) + %bl({t0}) # 0,

then the problem x(t0) x
0

for Eq. (2.1) has a unique solution on (_oo, ).

PROOF. By virtue of (2.4) and (2.7), the problem x(0) co for (2.1) has a

unique solution on (-co, oo) given by (2.3). Hence,

and

x(t0) (b0({t0}) + %bl({to}))%[tO]c0

co (b0({t0}) + %bl({t0}))-l%-[t0]Xo
It remains to substitute this result in (2.3), to obtain

x(t) (b0({t}) + bl({t}))(b0{t0} + bl({t0})) -I [t]-[t0] xO.

THEOREM 2.4. The solution x 0 of Eq. (2.1) is stable (respectively, asympto-

tically stable) as t + oo, if and only if I%I _< i (respectively, I%I < i).

Proof follows directly from (2.3).

THEOREM 2.5. The solution x 0 of Eq. (2.1) is stable (respectively, asympto-

tically stable) as t + oo, if and only if

(a + a
0
+ al)(aI a

0

(respectively, > 0).

a(ea + i))_> 0
a

e I
(2.9)

PROOF. The inequality I%1 <_ i can be written as

bo(1)
< I.I bI(I)

If I bl(1) > O, then

and

bI(I) i <_ b0(I) <_ I bI(I)

bl(1) + b0(1) < i, bl(1) b0(1) < i. (2.10)

Since (2.10) implies bl(1) <_ i, we analyze only (2.10). Taking into account (2.2)

gives
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-i
e
a -i

a al(ea i) + + a a0(e
a

i) <_ I,

-i a -i
e
a

a al(e
a

i) e a a0( I) < i.

From here, we have

-i
e
a a

a (a
0
+ al)( i) < i- e

that is,

a + a
0
+ aI _< 0,

and

-i
a (aI a0)(ea i) <_ e

a + i

which is equivalent to

a(e
a + i) < 0al- ao- a

e i

(2.11)

(2.12)

If I bI(I) < 0, then

bl(1) + b0(1) > i, bl(1) b0(1) _> 1.

These inequalities imply b1(1) > 1. Therefore, we consider only

-lal(ea e
a a-la0 eaa i) + + i) _> i,

-I a -i
e
a

a al(e
a

i) e a a0( i) _> I.

These relations yield inequalities opposite to (2.11) and (2.12) and prove the theorem

COROLLARY. The solution x 0 of the equation

x’(t) ax(t) + a0x([t])
is stable (asymptotically stable) iff the inequalities

-a(ea + l)/(ea i) <_ a
0 <_- a

(strict inequalities) take place.

(2.13)

THEOREM 2.6. In each interval (n, n+l) with integral ends the solution of Eq.

(2.1) with the condition x(O) c

if

# 0 has precisely one zero0
a
0
+ alea

t =n+l/n
n a a+a0+aI

a

(a0 + aae )(al aa > 0. (2.14)
e i e i

If (2.14) is not satisfied and a
0

# -aea/(ea i), co # O, then solution (2.3) has no

zeros in [0,
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PROOF. For # 0, cO # O, the equation x(t) 0 is equivalent to

bo({t}) + %bl({t}) O.

Hence,

and

bo({t})/bl({t}) bo(1)/(bl(1) I)

e
a{t) + a-lao(ea(t)

-I (ea(t}a aI i)

a a-la
0

e
ai) e + l)

-i
al(ea- i) ia

It follows from here that

a{t}
e (a

0
+ alea)/(a + a

0 + al).
If a > 0, then

alea a0
ai < (a

0
+ /(a + + aI) < e

and, by virtue of (2.4), the equality sign on the left must be omitted. The case

a+ao+al>0 (2.15)

leads to

a
0

> aea/(ea i), aI
> a/(ea i).

By adding inequalities (2.16) it is easy to see that (2.15) is a consequence of
(2.16). If

(2.16)

then

and

a > 0, a + a0 + aI
< 0,

e
a

(a + a
0 + aI) < a

0
+ alea < a + a

0
+

a
0
<- aea/(ea i), aI

< a/(e
a

i). (2.17)

Again, the inequality a + a
0
+ aI

< 0 follows from (2.17). The case a < O, together

with (2.4), gives

a a
e < (a

0
+ ale )/(a + a

0
+ aI) < I,

and assumption (2.15) yields (2.16). And if a + a
0
+ aI

< 0, then we obtain (2.17).

Hypothesis (2.14) can also be written as b0(1)(bl(1) i) > 0 which is equivalent to

k<O.

COROLLARY. In each interval (n, n+l) the solution

a0 a0 a0 a0 [t]
x(t) (ea{t}(l +- - )(ea(l +- - cO

(2.18)

of (2.13) satisfying the condition x(0) co 0 has precisely one zero
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if

a
0

t =n+lln
n a a+a

0

a
0

< aea/(ea i).

If (2.19) is not satisfied, solution (2.18) has no zeros in [0, ).

(2.19)

From the last two theorems we obtain the following decomposition of the space

(a, ao, al).
i. If

a
ae a(e

a + i) > 0,(a
0
+ a

0a (al a
e -I e -i

(2.20)

solution (2.3) with cO # 0 has precisely one zero in each interval (n, n+l) and

lira x(t) 0 as t / + o.

In fact, the solution possesses the required properties iff -I < % < O, that is

%(% + i) < O. With the notations (2.2), we have bo(1)(bo(1) bl(1) + i) < 0 which

yields (2.20).

2. If
(a + a

0 + al)(a0 + aea
< 0, (2.21)

e 1
solution (2.3) with cO # 0 has no zeros in (0, ) and lim x(t) 0 as t + .

The properties take place iff 0 < % < i. Hence, we consider the inequality

%(% i) < 0 leading to (2.21).

3. If

a a(e
a + i) < 0, (2.22)(aI a

0a (al a
e I e i

solution (2.3) with cO # 0 has precisely one zero in each interval (n, n+l) and is

unbounded on [0, ).

The proof follows from the inequality % < i which is equivalent to (bl(1) i)

(bl(l -b0(1) I) < 0 and gives (2.22).

4. If

a < 0, (2 23)(a + a
0
+ al)(aI a

e i

solution (2.3) with co # 0 has no zeros in (0, oo) and is unbounded.

Relation (2.23) results from % > i which can be written as (bl(1) l)(b0(1) +

bI(I) i) < 0.
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5. If aI a
0

a(eaa + i) O, a0 + aaea
e I e i

# 0, solution (2.3) with co # 0

has precisely one zero in each interval (n, n+l) and is bounded on [0, oo) (but does

not vanish as t m) since, in this case, % -i.
aa(ea + i) ae

0, a
0
+6. If aI a0 a a

e i e i
0, then aI a/(ea i), and

problem (2.1) has infinitely many solutions.

7. If a + a
0
+ aI 0, aI # a/(ea I), then x(t) co Indeed, here we have

% i and

-i ea{t}x(t) (b0({t}) + bl({t}))c0 a (a + a
0
+ aI) a

0 al)c0.

8. Finally, if a
0
+

a
ae a

=0, a
1a a

e i e I
# 0, then x(t) b0(t)c0, for

0 <_ t < I, and x(t) 0, for t >_ i.

For Eq. (2.13) we have the following decomposition of the plane (a, a0).
i. If -a(e

a + l)/(ea i) < a
0

< -aea/(ea i), solution (2.18) with c
0

0 has

precisely one zero in each interval (n, n+l) and lim x(t) 0 as t

2. If -aea/(ea i) < a
0

< -a, then x(t) has no zeros in (0, oo) and lim x(t)

0 as t /o.

3. For a
0
<-a(ea + l)/(e

a
i) the solution has precisely one zero in each

interval (n, n+l) and is unbounded on [0, oo).

4. For a
0

> -a the solution has no zeros in (0, oo) and is unbounded.

a a
The case a

0
-a yields x(t) co If a

0
-ae /(e I), then x(t) bo(t)c0

on [0, I), and x(t) 0 on [i, ). For a
0

-a(ea + l)/(e
a

i) the solution x(t)

if bounded and oscillatory.

3. SOME GENERALIZATIONS.

For the problem

x’(t) Ax(t) + A0x([t]) + AlX([t+l]), x(0) co
in which A, A0, AI

are r x r matrices and x is an r-vector, let

B0(t) e
At + (eAt I)A-IA0 Bl(t) (eAt I)A-IAI.

THEOREM 3.1. If the matrices A and I BI(1) are nonsingular, then problem

(3.1) has on [0, ) a unique solution

(3.1)
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x(t) (B0({t}) + Bl({t})(I BI(1))-IBo(1))(I Bl(1))-[t]B0[t](1)c0
and this solution cannot grow to infinity faster than exponentially.

Consider the equation

x’(t) ax(t) + a0x([t]) + alx([t+l]) + a2x([t+2]), a
2 # 0

with the initial conditions

(3.2)

x(O) co x(1) c1.

Let hI and 2 be the roots of the equation

b2(1)%
2 + (bl(1) i) + b0(1) 0,

where b0(t) and bl(t) are given in (2.2) and

-i (eatb2(t) a a
2 i).

THEOREM 3.2. Problem (3.2) (3.3) has on [0, oo) a unique solution

(3.3)

(3.4)

x(t) 50({t})c[t + bl({t})c[t+l + b2({t})c[t+2], (3.5)

where

It] [t]
c[t] (hi (2c0 Cl) + (Cl %1c0)2 )/(2 hi)’ (3.6)

and this solution cannot grow to infinity faster than exponentially.

PROOF. For n < t < n+l, Eq. (3.2) takes the form

x’(t) ax(t) + a0x(n) + alx(n+l + a2x(n+2
with the general solution

x(t) e
a(t-n)

a
-I

c (a0x(n) + alx(n+l) + a2x(n+2))
where c is an arbitrary constant. Hence, a solution x (t) of Eq. (3.2) on the given

n

interval satisfying the conditions

x(n) Cn, x(n+l) en+l, x(n+2) Cn+2
is

x (t) e
a (t-n) -I

n
c a (a0cn + alCn+I + a2Cn+2).

To determine the value of c, put t n; then

-la0 -i -i
c (i + a c + a + a a

n alcn+l 2Cn+2
and

Xn(t) b0(t-n)cn + bl(t-n)cn+I + b2(t-n)cn+2.
By virtue of the relation

(3.7)

x (n+l) (n+l)
n Xn+l Cn+l

we have
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whence

Cn+l b0(1)Cn + bl(1)Cn+I + b2(1)Cn+2

b2(1)Cn+2 + (bl(1) l)Cn+I + b0(1)c 0 n > 0 (3 8)n

We look for a nontrivial solution of this difference equation in the form c xn.
n

Then

b2 (1)In+2 + (bl(1) 1)Xn+l + b0(1)X
n

0,

and X satisfies (3.4). If the roots 1 and X2 of (3.4) are different, the general

solution of (3.8) is

n nc kilI + k212n

with arbitrary constants kI and k2. In fact, it satisfies (3.8) for all integral n.

In particular, for n 0 and n 1 this formula gives

k
1
+ k

2
c
O IlkI + X2k2 c1,

and

kI (%2c0- Cl)/(%2 %1), k
2

(c I %ic0)/(%2- %1).
These results, together with (3.7), establish (3.5) and (3.6).

If %1-- %2 l, then

c It] I It-l]
(c l[t] %Co[t-l])

which is the limiting case of (3.6) as %2 / %1" Formula (3.5) was obtained with the

implicit assumption a # 0. If a 0, then

x(t) c[t + (a0c[t + alc[t+l + a2c[t+2]){t},
which is the limiting case of (3.5) as a 0. The uniqueness of solution (3.5) on

[0, m) follows from its continuity and from the uniqueness of the coefficients c
n

for each n >_ 0. The conclusion about the solution growth is an implication of the

estimates for expressions (3.6).

THEOREM 3.3. If b0(l # 0, the solution of (3.2) (3.3) has a unique backward

continuation on (-oo, O] given by (3.5) (3.6).

Theorem 2.3 establishes an important fact that the initial-value problem for Eq.

(2.1) may be posed at any point, not necessarily integral. A similar proposition is

true also for Eq. (3.2).

THEOREM 3.4. If b0 (I) # 0 and

2
80 + (1- bl(1))8081 + ((1 bl(1))

2
2b0(i))8082

2 2 2+ b0(1)81 + b0(1)(l bi(i))8182 + b0(1)B 2
# 0, (3.9)
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B0 b0({t0})’ B1 bl({t0})’ B2 b2({t0})’
then the initial-value problem x(t0) x0, x(t

0 + i) xI for (3.2) has a unique

solution on (-oo,

PROOF. With the notation

(t) (h
t][

i )l(h2
we obtain from (3.6) the equations

c[t0+i] =-b0(1)(t0-1+i)c0 + (t0+i)cl, i 0, i, 2, 3.

Substituting these values in (3.5) for t t
O and t to + 1 and taking into account

{to + i} {to gives the system

(-b0(1)((t0 I)B
0
+ (to)BI + (t0

+ i)2)c0 +

+ ((t0)B0 + #(t
0
+ i)

i
+ #(t0 + 2)B2)cI Xo,

(-b0(1)((t0)0 + #(t
0
+ i)

i
+ (t0 + 2)2)c0 + (3.i0)

+ ((t
0
+ I)

0 + (t
0
+ 2)BI + (t0 + 3)B2)cI x

I

for the unknowns co and cI. Computations show that

(t0
+ m) (t + n)

0 -(b0(I)) [t0]+n+p-m(h-P
(t0

+ p) (t0 + n + p m)

m-p) h-n m-n 2
h
i

)/(h
2 hi)

for any integers m, n, p. This result leads to the conclusion that the determinant

of (3.10) coincides with the left-hand side of (3.9). Hence, we can express the

coefficients co and cI via the initial values x
0

and xI and substitute in (3.5) and

(3.6), to find the solution x(t).

THEOREM 3.5. The solution x 0 of Eq. (3.2) is stable (respectively, asympto-

tically stable) as t + , if and only if lhl < i (respectively, lhl < i), i 1,2.

Proof follows from (3.6) and from the boundedness of the values b.({t}).

THEOREM 3.6. The solution x 0 of Eq. (3.2) is asymptotically stable if

a

(a0 +
a
ae

)a
2

< 0
e 1

(3.11)

and either of the following hypotheses is satisfied:

(i) (a + a
0 + aI + a2)(aI

a
)<0,a

e 1
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a(ea + i) < 0,(ii) (aI
a )(_ ao + al a2a a

e I e -i

where the first factors in (i) and (ii) retain the sign of a2.

PROOF. With the notations b. b.(1), it follows from (3.11) that

D
2

(1 bl)2 4b0b2
> O,

hence the roots

hi, 2
(I- bI

+ D)/2b
2

of (3.4) are real. If a
2

> 0, the inequalities I%iI < 1 are equivalent to

and

i b
I + D < 2b

2
(3.12)

I b
I

D > 2b2.

From (3.12) we obtain

(3.13)

and (3.13) yields

b
I + 2b

2
> I, b

0
+ b

I + b
2

> I,

b
I 2b

2
< i, b

0
+ b

I
b
2

< I.

The inequalities b
I + 2b

2
< b

0
+ b

I + b
2

and b
0
+ b

I
b
2

< b
I

2b
2

contradict to

b
0

< 0 and b
2

> 0 which are consequences of (3.11) and a
2

> O. Therefore, it remains

to consider only

b
0
+ b

I + b
2

> i, b
0
+ b

I
b
2

< i,

that is,

b
2

> I b
0 bl, b

2
> i b

0 + b I.

If i b
0

bI
> I b

0 + bl, then b
I

< i. In this case, a sufficient condition of

asymptotic stability is

b
0 + b

I + b
2

> i, b
I

< i

which, in terms of the coefficients aj, coincides with hypothesis (i). If i b
0

bI
< 1 b

0
+ bl, then b

I
> I, and (ii) follows from the inequalities

b
I

> i, b
0
+ bI b

2
< I.

The case b
0

> 0, b
2

< 0 is treated similarly.

Let x (t) be a solution of the equation

N
x’(t) ax(t) + Z a.x([t+i]) a

N # 0, N > 2
i=0

(3.14)
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with constant coefficients on the interval [n, n + i). If the initial conditions for

(3.14) are

x(n + i) Cn+i, 0 < i _< N

then we have the equation
N

x’(t) ax (t) + 7, a-Cn+’zzn n
i=0

the general solution of which is

x (t) e
a(t-n)

n

N
-i

c- l a aiCn+i
i--O

For t=n this gives

N
-i

c c 7, a a-Cn+-zzn

and

a#0

N
x (t) eat_n,t, (t-n)

c + (e
a

I) I a a.cz n+in n
i=0

(3.15)

Taking into account that Xn(n+l) Xn+l(n+l) Cn+l we obtain

N
a

e
a l)a-iCn+ e c + l a c

n i n+i
i=0

With the notations

b
0

e
a + a-la0(ea I), b. a

-Ia.(e
a

i) i > i
I i

this equation takes the form

bNCn+N + bN-ICn+N-I + + b2Cn+2+ (bl-l)Cn+l + b0Cn 0. (3.16)

Its particular solution is sought as c then
n

bN%N + bN_I%N-I + + b{%
2 + (bl-l)% + b

0
0. (3.17)

If all roots %1’ 2’ AN of (3.17) are simple, the general solution of (3.16) is

given by

Cn kl% + k2% + + %’ (3.18)

with arbitrary constant coefficients. The initial-value problem for (3.14) may be

posed at any N consecutive points. Thus we consider the existence and uniqueness of

the solution to (3.14) for t 0 satisfying the conditions

x(i) ci, i 0, i N- i. (3.19)
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Then letting n 0, i, N- I and c x(n) in (3.18) we get a system of equa-
n

Vandermond’s determinant det () which is different from zero. Hence,tions with

the unknowns kj are uniquely determined by (3.19). If some roots of (3.17) are

multiple, the general solution of (3.16) contains products of exponential functions

by polynomials of certain degree. The limiting case of (3.15) as a 0 gives the

solution of (3.14) when a 0. We proved

THEOREM 3.7. Problem (3.14) (3.19) has a unique solution on [0, ). This

solution cannot grow to infinity faster than exponentially.

REMARK. If (3.17) has a zero root of multiplicity j, then (3.16) contains only

the terms with Cn+j, Cn+N. The substitution of n for n + j reduces the order of

the difference equation (3.16) to N j. In this case, the solution x(t) for t >_ j

depends only on the initial values x(j), x(j+l) x(N-l).

Consider the initial-value problem

N
x’(t) Ax(t) + l A.x i)""([t]), x(0) c (3.20)

i=0
I 0

with constant r x r matrices A and A
i

ahd r-vector x. If A
i

0, for all i I,

then (3.20) is a retarded equation. For A # 0 and A
i

0(i 2), it is of neutral

type. And if A
i

0, for some i 2, (3.20) is an advanced equation.

N
THEOREM 3.8. If the matrices A and B I Z AiAi-I are nonsingular, then

i=l

problem (3.2on [0, ) has a unique solution

x(t) E({t})E [t]
(1)c0,

where

E(t) I + (eAt I)S

(3.21)

and

S A-IB-I(A + A0).
PROOF. Assuming that x (t) is a solution of Eq. (3.20) on the interval n < t <

n

n + I with the initial conditions

x(i)(n+) Cni i 0 N

we have
N

X’n(t) Axn(t) + Z AiCni.
i=O

(3.22)
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Since the general solution eA’t-nc( of the homogeneous equation corresponding to

(3.22) is analytic, we may differentiate (3.22) and put t n. This gives
N

Cnl ACn0 + g AiCni,
i-0

c =Ac i= 2 N
nl n, i-i

Ai lCnlFrom the latter relation, c and from the first it follows that
nl

N

Cnl (A + A0)Cn0 + A.A
i-1

nl
i-1

Hence,

Ai-IB-Icnl (A + A0)Cn0, i _> i.

The general solution of (3.22) is

N
x (t) e

A (t-n)
c l A-IA.c

n
i=0

I nl

with an arbitrary vector c. For t n we get c SCn0 and

Xn(t) E(t n)CnO. (3.23)

Thus, on [n, n+l) there exists a unique solution of Eq. (3.20) with the initial con-

dition x(n) Cn0 given by (3.23). For the solution of (3.20) on [n-l, n) satisfying

x(n-l) Cn_l, 0
we have

Xn_l(t) E(t n + 1)Cn_l, 0"

The requirement Xn_l(n) Xn(n) implies Cn0 E(1)Cn_l, 0
from which

E
n

Cn0 (1)c 0"

Together with (3.23) this result proves the theorem. The uniqueness of solution

(3.21) on [0, ) follows from its continuity and from the uniqueness of the problem

x(n) CnO for (3.20) on each interval [n, n+l). It is easy to see that the res-

triction det A # 0 is required not in the proof of existence and uniqueness bu.t only

in deriving formula (3.21).

THEOREM 3.9. If the matrix B is nonsingular, problem (3.20) on [0, oo) has a

unique solution

x(t) V0(t)c0, 0 <_ t < I

x(t) V
i

[t] (t) Vk_l(k)c0, t > i
k=[t]

where
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and

eA(t_sVk(t) e
A(t-k) + Cds

k

-I
C B (A + A0) A.

COROLLARY. The solution of (3.20) cannot grow to infinity faster than exponen-

tially.

PROOF. Since IVk_l(k) <_ m and lV[t (t) ll <_ m, where m (I + lCl l)e IAI I,
we have

Ix( )ll <_ mt+l I=oII"
REMARK. It is well known that if the spectrum of the matrix A lies in the open

left halfplane, then for any function f(t) bounded on [0, ) all solutions of the

nonhomogeneous equation

x’(t) Ax(t) + f(t)

are bounded on [0, oo). In general, this is not true for (3.20) which is a nonhomo-

geneous equation with a constant free term on each interval [n, n+l). For instance,

the solution

x(t) (i + (i e-{t})6)(l + (i e-l)6)[t]
of the scalar problem

x"(t) =-x(t) + (i + 6)x([t]), x(0) i, 6 > 0

is unbounded on [0, =) since

-i) [tlIx(t) _> (i + (i e 6)

The reason for this is the change of the free term as t passes through integral

values.

THEOREM 3.10. If, in addition to the hypotheses of Theorem 3.8, the matrix E(1)

is nonsingular, then the solution of (3.20) has a unique backward continuation on

(-oo, 0] given by formula (3.21).

PROOF. If x (t) denotes the solution of (3.20) on [-n, -n+l) with the initial
-n

condition x (-n) c then
-n -nO’

X_n(t) E(t + n)C_n0,
and changing n to n-i gives

X_n+l(t) E(t + n l)c
-n+l, 0"

Since

x (- n + I) x (- n + i) c-n -n+l -n+l, 0
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we get the relation

C-n0 E-l(1)C-n+l, 0

which proves the theorem.

THEOREM 3.11. If the matrices A, B, E(1) and E({t0}) are nonslngular, then

Eq. (3.20) with the condition x(t0) x
0

has on (-, 0o) a unique solution

x(t) E({t})g[t]-[t0](1)E-l({t0})x0.
PROOF. From (3.21) we have co E-[t0](1)x([t0] and

x(t) E({t})g[t]-[t0](1)x([t0]).
Furthermore, from (3.23) it follows that

x([t0] E-l({t0})x0.
It remains to substitute this result in the previous relation.

4. EQUATIONS WITH VARIABLE COEFFICIENTS

Along with the equation

N
x’(t) A(t)x(t) + 7. Ai(t)x([t+i]), N >_ 2, (0 <_ t < )

i=0
(4.1)

x(i) c i, i 0 N- i

the coefficients of which are r x r matrices and x is an r-vector, we also consider

x’(t) A(t)x(t). (4.2)

If A(t) is continuous, the problem x(0) cO for (4.2) has a unique solution x(t)

U(t)c0, where U(t) is the solution of the matrix equation

U’(t) A(t)U(t), U(0) I. (4.3)

The solution of the problem x(s) cO s E [0, ) for (4.2) is represented in the

form

-ix(t) u(t)u (s)c0.

Let

B0n(t) U(t)(u-l(n) + U-I (s)A0(s)ds)

Bin(t) U(t) u-l(s)Ai(s)ds, i i N. (4.4)

THEOREM 4.1. Problem (4.1) has a unique solution on 0 _< t < if A(t) and A.(t)
1

1210, ), and the matrices BNn(n+l) are nonsingular for n O, 1,
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PROOF. On the interval n <_ t < n + i we have the equation

N
x’(t) A(t)x(t) + l Ai(t)Cn+i, Cn+ x(n+i)

i=0

Its solution x (t) satisfying the condition x(n) c is given by the expression
n n

x (t) U(t)(U-I
n

t
U-I

N

(n)Cn + (s) Z Ai(S)Cn+ids).
n i=0

(4.5)

Hence, the relation Xn(n+l) Xn+l(n+l) Cn+I implies

Cn+I U(n+l) (U-I
n+l

U
I

N

(n)Cn +-n (s) i=07" Ai(S)Cn+ids).

With the notations (4.4), this difference equation takes the form

BNn(n+l)Cn+N + + B2n(n+l)Cn+2 + (BIn(n+l)-l)Cn+l+ B0n(n+l)Cn 0.

Since the matrices BNn(n+l) are nonsingular for all n _> O, there exists a unique

solution c (n >N) provided that the values Co, CN_I are prescribed. Substitu-
n

ting the vectors c in (4.5) yields the solution of (4.1).
n

For the scalar problem

x’(t) a(t)x(t) + ao(t)x([t]) + al(t)x([t+l]) + a2(t)x([t+2])

x(O) Co, x(1) c
I

with coefficients continuous on [0, m) we can indicate a simple algorithm of compu-

ting the solution. According to (4.4) and (4.5), we have

x (t) (t)c
n
+ (t) + B2n(t)n Bon Bin Cn+l Cn+2 (4.6)

with
t

U(t) exp( a(s)ds).
0

The coefficients c satisfy the equationn

B2n(n+l)Cn+2 + (Bln(n+l) l)Cn+I + Bon(n+l)c 0 n > 0
n

Denote

d0(n+l) -B0n(n+l)/B2n(n+l), dl(n+l) (I Bln(n+l))/B2n(n+l),

Then from the relation

n Cn+l n
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cN+2 dl(n+l) cn+I + d0(n+l) c
n

it follows that

do (n+l)
rn+I dl(n+l) +

r
n

which yields

rI dI(I) + d0(1)/r0,

r
2 dl(2) + d0(2)/rI

d0(2)
dI(2) +

do(l)
dI (i) +

r
0

and continuing this procedure leads to the continued-fraction expansion

do(n) do(n-l) do(2) do(l)
r dl(n) +
n dl(n-1)+ dl(n-2)+ d1(1)+ Cl/C0

and to the formula

Cn rlr2 rn-lC0

for the coefficients of solution (4.6).

THEOREM 4.2. Assume that the matrices A(t), A0(t), +/-A’(t) are continuous on

0 <_ t < , and let

(t) max ]A(s> I] i(t) max] IAi(s) II 0 _< s _< t, i 0, I.

If for all t [0, ),

l(t)e
(t) <_ q < I, (4.7)

then the solution of the problem

x’(t) A(t)x(t) + A0(t)x([t]) + AI (t)x([t+l]), x(0) c
O

(4.8)

satisfies the estimate

lx(t) II <-- (l-q)-t-l(o(t+l) + l)t+l (t+l)(t+l)
e llc011, 0 <_t < o. (4.9)

PROOF. According to (4.5), the solution x (t) of Eq. (4.8) on n < t < n + i
n

with the condition x(n) c is given by
n

x (t) (t)c + (t)
n B0n n Bin Cn+l" (4.10)

Since x (n+l) x
n n+l

(n+l) Cn+l, we have

Cn+I Bon(n+l)cn + Bln(n+l)Cn+I,

and

(I Bln(n+l))Cn+I Bon(n+l)Cn" (4.11)
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-I
The matrix U(t, s) U(t)U (s) is the solution of Eq. (4.3) satisfying U(s, s) I.

Therefore, it is the sum of the absolutely convergent series

U(t, s) I + A(Sl)dSl + A(Sl)dSl
i

S S S
A(s2)ds2 +

whence

(t-s) (t)flU(t, s) II _< e

and turning to (4.4) we find that for n <_ t _< n + i,

lB0n(t) II _< (0(t) + l)e(t), llBln(t) ll _< el(t)e
(t)

(4 12)

By virtue of (4.7) and the latter inequality, the matrices I Bln(n+l) have

inverses for all n > 0 and

II(I Bln(n+l))-lll _< I + lBln(n+l) II + llBln(n+l) II 2 + _< (i q)-l.

From the relation

Cn+I (I Bln(n+l))-IB (n+l)c
On n

it follows that

and

lCn+ll < (i q)-l(000(n+l) + l)e(n+l) llc I]n

lcn If <_ (1 q)-n(0(n) + i)
n end(n) ICol I.

The application of this result together with (4.12) to (4.10) yields

llXn(t) ll --< (e0(t) (o(t) + i)(I q)-n(o(n) + i) nen(n)

+ q(l q)-n-le(t) (0 (n+l) + I) n+le (n+l) (n+l)

This inequality implies (4 9) since the functions (t) 0(t) and (I q)-t are

increasing.

THEOREM 4.3. The solution of

x’(t) ax(t) + a0(t)x([t]) + al(t)x([t+l]) x(0) cO (4.13)

tends to zero as t + if the following hypotheses are satisfied: (i) a is con-

stant, a0(t) al(t) E C[O, ); (ii) suplal(t) ql < i on [0, oo) and, starting with

some to 0,

a(ea + i ql aql
< m0< M

0
< a (4 14)a a

e -i e -i
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where m
0

inf ao(t), M
0

sup ao(t), t >_ to
Proof. The solution of Eq. (4.13) is given by (4.10), with

t

Bon(t) e
a(t-n) + e

a(t-s)

n

t (t-s)
a0(s)ds, Bin(t) e

a
al(S)ds

and n _< t < n + i. Since the functions Bon(t) and Bin(t) are bounded on [0, ), it

remains to show that lira c 0 as n . The condition x (n+l) c implies
n n n+l

(4.11) from which Cn/Cn_I B0, n_l(n)/(l BI, n-l(n)) and

where

c r.r..., r__.c,n u

r
i

(ea + e
a(i-s)

i-i

i

ao (s) ds)/(i
i-i

ea(i-s) aI (s)ds).

By virtue of (i) and the first part of (il),

a(i-s)
Ii e

i-I
(s)ds.l > 1aI i-i

lal(s) Ids _> 1 ql"

Therefore, I BI, i_l(i) 0 for all i >_ I. Let j be a natural number such that

j _> to, then due to (4.14) we have

i

BO i-l(1) ea + I ea(i-S)ao(s)ds < ea + MO(ea l)/a,
i-I

and

B0, i-i

B0,

(i) _> e
a + mo(ea l)/a, i _> j

(1) < e
a a(ea l)/a aql(e

a l)/a(ea i) I ql

a( + I- ql)( l)/a( i) (I ql).BO, i-i
(i) > e

a
e
a

e
a e

a

Hence,

and

{B0, +/-_(i) < q( ql II BI, f_l(f) >_ i ql’ 0 <_ q < i

]r+/-] <_q, i_>j.

On the other hand, for i < j we use the inequalities

ISo, i_Ci) l-< + e- )/ p, suplao()I, [o, )

and

r l< Pl/( 1 ql P-
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The boundedness of the function [a0(t) on [0, =o) is a result of its continuity and

of (4.14). To finish the proof, we write

Icnl Iol I+/-l ]--[ ]ril < pj-1 qn-j {Col n > j + 1
i=l

and here the second factor vanishes as n / m. The method of proof suggests also the

following

THEOREM 4.4. The solution of (4.13) tends to zero as t / + if the coefficient

a is constant, the functions a0(t) al(t) e C[O, ), al(t) <_ 0 for all t e [0, )

and, starting with some t
O _> 0,

-a(ea + l)/(ea i) < m
0

<_ M
0

< a.

THEOREM 4.5. The solution of the scalar problem

N
x’(t) ax(t) + F.

i=0
ai(t)x([t+i]) N _> 2 (4.15)

x(i)(0) ci, i-- 0, N- i

tends to zero as t / + if the following hypotheses are satisfied.

(i) The coefficient a is constant, the functions ai(t) E C[0,

(ii) The functions a.(t)(i 0, i, N I) are bounded on [0,
1

(iii) The function aN(t) is positive, monotonically increasing, and

lira aN(t) as t / .
Proof. The solution of Eq. (4.15) on the interval n t< n+l is given by the

formula

N
x (t) 7. Bin(t)Cn+i,_ Xn(n)_ cn ni=0

where

Bon(t) ca(t-n)+ Jt Itea(t-S)a0(s)ds B (t) e
a(t-s)

inn n
ai(s) ds,

(i i, N).

Since the functions Bi, [t](t) are bounded on [0, =o), it remains to prove that

c 0 as n oo. The continuity of the solution to (4.15) implies x (n+l) cn n n+l

and leads to the equation

N-I

Cn+N Z di(n+l) Cn+i, (4.16)
i=O
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with

dl(n+l) (i Bln(n+l))/BNn(n+l), di(n+l) -Bin(n+l)/BNn(n+l)

(i 0, 2, N 1).

We have

n+l a (n+l-s)
eBNn (n+l) ]n aN(s) ds a

a

aN(n) n < n < n + I,

hence, by virtue of (iii), BNn(n+l) > 0 for all n >_ 0 and lira BNn(n+l) as

n oo. On the other hand, due to (ii), the values

n+l a(n+l-s)
Bin (n+l) e

-n
a.ts)es, u,
1

are uniformly bounded for all n >_ 0 since

IBin(n+l) <_ elal suplai(t)I, t [0, o).

Therefore,

Idi (n+l) --< M/aN(n),

with some constant M > 0. The positive variable

6
n M/aN(n)

is monotonically decreasing to zero as n oo. From (4.16) it follows that

N-I

ICn+N! < r.
n Cn+i

i=0

To evaluate the coefficients c we employ the method developed in [14] for the
n

study of distributional solutions to functional differential equations. Denote

Mn max cjl, 0 _< j _< n.

Then

Cn+Nl <-- NMn+N_I.n

Starting with some natural k,

N<I, <
n Cn+N Mn+N-1

and

Mn+N Mn+N_I, n > k.

Hence,

Mn+N Mk+N, n >_ k.

(4.17)

(4.18)
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The application of (4.18) to (4.17) successively yields

Ck+N+l I-< 6k+iNMk+N, ;Ck+N+21 --< k+2NMk+N

Ck+2Nl --< 6k+NN+N-
Since the sequence {6 is decreasing it follows thatn

ICk+N+i+I I<--6k+IN+N, i O, N i.

Now we put n k+N+l, k+N+2, ..., k+2N in (4.17) and use the latter inequalities to

obtain

ICk+2N+l --< (6k+iN)2 +N’ ICk+2N+21 -< (6k+iN)2 +N’
2Ck+BNl <-- (6k+iN) Mk+N,

that is,

Ck+2N+l+il < (6k+IN)2 Mk+N i 0, N I.

Continuation of the iteration process shows that

ICk.+jN+l+i (k+IN)
j
Mk+N,

for all natural j and i 0, N I, and the inequality 6k+IN < i implies

+0 asj /oo.Ck+j N+l+i

THEOREM 4.6. Assume that the coefficients in (4.1) are continuous periodic

matrices of period I. If there exists a periodic solution x(t) of period i to Eq.

(4.1), then % I is an eigenvalue of the matrix

N
S Y Bio(1)

i=0

where Bi0(t) are given in (4.4), and x(O) is a corresponding eigenvector. Conversel

if 1 is an eigenvalue of S and co is a corresponding eigenvector and if the

matrices BN0(1) and B00(1) are nonsingular, then Eq. (4.1) with the conditions

x(i) Co, i O, N- 1 (4.19)

has a unique solution on < t < oo, and it is 1-periodic.

PROOF. Suppose that x(t) is a solution of period i to Eq. (4.1) and let x(0)

co # 0. Since x(n) x(O), for all integral n, we have Cn Co and, according to

(4.5), the assumption co 0 would mean x(t) 0. Putting t n+l in (4.5) gives
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cO
U(n+l)(u-l(n) +

N [n+l7. u-l(s)Ai(s) ds) c0
iffi0 -n

From the relation A(t+n) A(t) it follows that U(t+n) is a solution of Eq. (4.3).

Hence, U(t+n) U(t)Cn, and to determine the matrix C we put here t 0 which
n

yields U(n) U(0)C that is C U(n). Now we can writen n

U(t+n) U(t)U(n), U(n+I)U-I (n) U(1), u-l(t+n) u-l(n)u-l(t)
and since Ai(t+n) Ai(t) we observe that

U- (s)At(s)ds U-l(s-t)Ai(s)ds u-l(n) U-l(s)i(s)ds
0 0

Therefore,
N 1

(U(1) + 7. U(1) I u-l(s)Ai(s)ds I)co 0
i=0 0

and, taking into account (4.4), we conclude that

N
Z Bio(1) I)c

0
O.

i=O
(4.20)

This proves the first part of the theorem.

According to (4.5), the solution of problem (4.1) for t > 0 is

x(t) U(t)(u-l([t])c[t] +
i=O It

U-I(s)Ai(s) ds) c it+i]), (4.21)

and if the coefficients of (4.1) are 1-perlodlc, it has a unique backward continua-

tion on (_oo, 0] given by the same formula (4.21). Indeed, on the interval [-n, -n+l)

Eq. (4.1) becomes

N

X’_n(t) A(t)X_n(t) + 7. A
i‘_(t)c_n+i

i=0

where C_n+i x (-n+i), and its solution-n

x (t) U(t)(u-l(-n)c + 7. u-l(s)Ai(s)ds)c_n+i-n -n
i=O -n

(4.22)

can be written in the form (4.21). It remains to show that the coefficients c[t
satisfy the same difference equation for both positive and negative values of t.

From the derivation of (4.20) we note that
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N
Z Bio(1)Cn+i, n > O.Cn+l
i=O

(4.23)

For t =-n+l formula (4.22) gives

C
-n+l

U(-n/l) (U-1
N I-n+l 1

(-n)c + " --n
U- (s)Ai(s)ds)c_n+f)-n

i=O

Since A(t-n) A(t) and Ai(t-n) Ai(t), we have

U(t-n) U(t)U(-n), U(-h+l)U-l(-n) U(1), u-l(t-n) u-l(-n)u-l(t)

and

f-n+l -I II -i IIU (s)A. (s) U-1J-n ds (s-n)Ai(s)ds) U (-n) u-l(s)Ai(s)ds
0 0

The equat ion

U(1)(c / l l(s)Af(s)ds)c_n/f (4.24)C-n+1 -n
i=0

for the coefficients c coincides with Eq. (4.23) for c The representation of
-n n

(4.24) as

N

B00(1)C_n C_n+l iZIBi0(1)C_n+i= (4.25)

shows that since the matrix B00(1) is nonsingular, conditions (4.19) uniquely deter-

mine the values c for all n > I. This proves the existence and uniqueness of solu-
-n

tion to Eq. (4.1) satisfying (4.19). To establish its periodicity, we put n 0 in

(4.23) and invoking (4.19) obtain

N-I
7. Bi0(1) l)c

0
+ BNO(1)cN 0.

i=0

Subtracting this relation from (4.20) gives BN0(1)(c0 cN) 0, and cN co For

n I, it follows from (4.23) that

N-I
r. Bio(1) l)c

0 + BNO(1)CN_1 O,
i=O

and combining this result with (4.20) yields CN_I c0. Continuing this procedure

confirms that Cn co for all n _> O. To prove that C_n co for n _> -I, we consider

(4.25) together with (4.20). Finally, on each interval [n, n+l) problem (4.1)

(4.19) is reduced to the same equation
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N
x’(t) A(t)x(t) + 7 Ai(t))c0, x(n) cn

i=0

which concludes the proof.

The initial-value problem

N
x’(t) A(t)x(t) + 7 A.(t)x(i) (It]), x(O) co (4.26)

i=O

with r x r matrices A(t) and Ai(t) cN-I[o, oo) and r-vector x(t), can be treated

similarly to (3.20). Assuming that x (t) is a solution of Eq. (4.26) for n < t < n +
n

i satisfying the conditions

(i)
x (n) Cni i 0, N

we have

N
x’(t) A(t)x (t) + 7. Ai(t)c (4 27)n n

i=0
ni

Since the general solution of the homogeneous equation corresponding to (4.27) is N

times differentiable, we may differentiate (4.27) i i times and put t n. This

gives

i 1
c (i-.l)A(i-l-j)
ni

j=0 J

N

(0)Cnj + Z i-l)
k=O

(O)Cnk i I, N. (4.28)

The formula for x (t) is
n

Xn(t) U(t)(u-l(n)Cn0 + NitY. U-l(s)Ai(s)c ids)n
i=0 n

where U(t) is the solution of (4.3), and Xn(n+l) Cn+l, 0 implies

[n+Iu-i (s)c ids). (4.29)Cn+l 0
U(n+l) (u-l(n)Cn0 + (s)Ai n

i 0 -n

Now we solve the system (4.28) for the unknowns c (i i, N) and substitute
nl

these values in (4.29), to obtain a recursion relation between Cn+l, 0
and Cn0. Since

Co0 co is given we can find Cn0 (and Cni for all n _> I. Thus, we proved

THEOREM 4.6. Problem (4.26) has a unique solution on [0, o) if the matrices

cN-1A(t) and A.(t) e [0, oo) and system (4.28) has a unique solution with respect to
1

the vectors cni"
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THEOREM 4.7. Suppose the equation

x’(t) A(t)x(t) + B(t)x([t+N]) + f(t, x([t]), x([t+l]), x([t+N-1])),(4.30)

(N -->2)

satisfies the following hypotheses.

(i) The matrices A(t), B(t) e C[0, oo), and f is a continuous function in the

space of its variables.

(ii) The matrices|L+Iu-l(t)B(t)dt are nonsingular for all n >_ 0, where U(t) is

In

the solution of (4.3).

Then (4.30) with the initial conditions (4.1) has a unique solution on [0, oo).

PROOF. On n <_ t < n + I Eq. (4.30) takes the form

x’(t) A(t)x (t) + B(t)c + f(t c
n Cn+N_l)n n n+N Cn+l’

Hence,

c. x(j), j n, n+l, n+N.

x (t) U(t)(U-I
n

t
U-I(n)Cn + (s)B(S)Cn+Nds +

n

+ [tu-l(s)f(s, cn, Cn+I, ..., Cn+N_l)dS).
"n

For t n + i we have

Cn+I U(n+l) (U-I
n+l I

(n)Cn + U- (s)B(s)ds)cn+N +
n

(4.31)

+ I+Iu-l(s)f(s, cn, Cn+I Cn+N_l) ds).

Hypothesis (ii) allows to solve (4.31) for Cn+N and to find all coefficients c
n

successively by employing conditions (4.1).

In conclusion, we consider the scalar equation

x’(t) f(x(t), x([t]), x([t+l])), x(0) Co, (0 <_ t < oo).

If in the ordinary differential equation with parameters

(4.32)

x’ f(x, %, ), f(x, %, ) e C(R3)
f(x, %, ) # 0 everywhere, then there exists a general integral

(4.33)

F(x, %, ) t + g(%, ),
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with an arbitrary function g(%, ). If x(t) can be extended over all t >_ 0, then for

the solution x (t) of (4.32) on n < t < n + I we have the equationn

X’n f(Xn’ Cn’ Cn+I), xn(n) Cn. (4.34)

Hence, if % Cn, Cn+I, then

F(x Cn, t + g(cn’ Cn+l n’ Cn+l

For t n this gives

and

F(c c
n

n + g(c
n Cn+l)n Cn+l

F(Xn, Cn, c
n+l

t + F(Cn, Cn, cn+l n. (4.35)

Now we take the solution of (4.32) on [n+l, n+2) that satisfies x(n+l) Cn+I. Since

Xn(n+l) Xn+l(n+l) we put t n+l in (4.35) and get

F(Cn+I, cn, Cn+I) F(Cn, Cn’ Cn+l I.

This equation can be written as

cn+l
dx

Cn f(x, cn, Cn+I)
1, (4.36)

which also follows directly by integrating (4.34) from t n to t n+l. After this,

we relax the condition that f(x, , ) 0 everywhere. It is easy to see that we may

always suppose f(x, Cn, Cn+I) # 0, x e (Cn, Cn+l since the assumption f(c, Cn, Cn+l

0 for some c e _(Cn, Cn+I)_ leads to the conclusion that the constant function Xn(t)

c is a solution of Eq. (4.34) on the interval n <_ t < n + i. However, this solu-

tion does not satisfy the condition Xn(n) Cn because c # Cn. On the other hand, if

f(c Cn, Cn+I) 0, then x (t) c is a solution of problem (4.34) on [n, n+l). By
n n n

virtue of the condition x (n+l) x
n n+l

(n+l) Cn+l, we have Cn Cn+l and f(Cn, Cn’

c 0. Thus, we proved
n

THEOREM 4.8. Assume the following hypotheses:

(i) f(x, , ) e C(R3) and f(x, x, x) 0 for all real x.

(ii) The solutions of Eq. (4.33) can be extended over [0, ).

(iii) Eq. (4.36) has a unique solution with respect to Cn+I.
Then problem (4.32) has a unique solution on [0, ) given by formula (4.35) for
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t e [n, n+l], where

f(x,
dxF(x, , ) .,,^ )

If f(Cn, nCn, cn) 0, then x(t) c is a solution on [n, ) of Eq. (4 32) with

the condition x(n) c
n
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