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ABSTRACT. The first result establishes a fixed point theorem for three maps of a
complete metric space. The contractive definition is a generalization of that of
Hardy and Rogers, and the commuting condition of Jungck is replaced by the concept

of weakly commuting. The other results are extensions of some theorems of Kannan.
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1. INTRODUCTION

There is a multitude of metrical fixed point theorems for mappings satisfying
certain contractive type conditions. In each of these results one considers sequences
of iterates, which, due to the contractive condition, becomes a Cauchy sequence whose
limit is a fixed point of the mapping. In the case of a common fixed point theorem,
a joint sequence of iterates is usually suitable for the purpose.

In this paper we prove some common fixed point theorems using sequences which
are not necessarily obtained as a sequence of iterates of certain mappings. In
doing so we are motivated by the following result of Jungck [1], who replaced the
identity mapping with a continuous function in order to generalize the celebrated
Banach contraction principle. Jungck [1] showed that a continuous selfmap T of a

complete metric space (X,d) has fixed point if and only if there exsits a
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q € (0,b1) and a map A : X » X which commutes with T and satisfies:

(a) AX) ¢ T(X) (b) d(Ax,Ay) < qd(Tx,Ty) , for all x , y ¢ X . Indeed, A and
T have a unique common fixed point. It should be noted that in all extensions and
generalizations of Jungck's theorem, a family of commuting mappings has been consid-
ered. Our first result deals with mappings satisfying a condition weaker than commu-
tativity. The technique of our proof can also be used to prove other results in the
literature and thus one need not consider the sequence of successive approximations
in order to prove the existence of fixed points. Other results in compact spaces

are also given. The structure of the set of common fixed points is also studied.

2. PRELIMINARIES.

Throughout this section (X,d) stands for a metric space.

Definition 2.1. Let A and B be two selfmaps of X and {xn} a sequence in

X . Then {xn} is said to be asymptotically A-regular with respect to B if
lim d(Bx_,Ax ) = 0 .
n’ ' n

n->-o
When B is the identity map, the above definition reduces to that of Engl [2].
The following notion was introduced by Sessa [3].

Definition 2.2. Let f and g be two selfmpas of X . Then {f,g} is said

to be a weakly commuting pair if

d(fgx,gfx) < d(gx,fx) , for all x ¢ X .

Clearly, a commuting pair is weakly commuting, but the converse is not neces-—

sarily true as is shown by the following simple example in Sessa [3].

EXAMPLE 2.3. Let X = [0,1] with the usual metric. Define f(x) = x/2 and
g(x) = x/(24x) . Then, for all x in X , one obtains

2 2
X X

=X _ X _ =
d(fgx,gfx) = ltx 442% (4+x) (4+2x) < 44+2x

% = d(fx,gx) ,

_ X
2+x
and f and g commute weakly.

But, for any non-zero x ¢ X , we have

gfx = = fgx

xS X
44x T 4+2x
and f and g do not commute.

Definition 2.4 (Hardy and Rogers [4]). A mapping T : X » X 1is said to be

generalized nonexpansive if for all x , y in X the inequality

d(Tx,Ty) < ald(x,Tx) + azd(y,Ty) + a3d(x,Ty) + aAd(y,Tx) + asd(x,y)
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1,2,3,4,5 and

ai <1 . Due to symmetry, one can

I c~—>o;

holds, where a, 20 , 1
i .
i=1
choose al =a, and a3 =a, .
Mappings of the above type were first introduced by Hardy and Rogers [4]. Since
then these contractive conditions have been extensively studied by many mathemati-

cians for single valued as well as multivalued mappings.

Definition 2.5 (Kannan [5]). A mapping T is said to have property (K) on a
subset G of X if for every closed subset F of G which contains more than one
point is mapped into itself by T , there exists an x ¢ F such that d(x,Tx) <

sup, d(y,Ty) -

3. RESULTS IN COMPLETE SPACES.
Now we present our main theorem which is motivated by the contractive conditions
studied by Hardy and Rogers [4], Mukherjee [6] and Fisher [7], and is a natural

extension of the result of Jungck to these maps.

THEOREM 3.1. Let A, S, and T be selfmaps of a complete metric space X

satisfying

(i) d(Ax,Ay) < ald(Sx,Ax) + azd(Tx,Ax) + a3d(Sy,Ay) + aad(Ty,Ay)
+ asd(Sx,Ay) + a6d(Tx,Ay) + a7d(Sy,Ax)
+ asd(Ty,Ax) + agd(Sx,Ty) + alod(Sy,Tx) N
where the a, = ai(x,y) are nonnegative functions of x and y satisfying

Pars Al \]
(ii) max {Squ,yeX(b3+b3+b +b, +b

Al
PRIV

+b,+b! +b

sup 27 P37 P, T oy

[ '
x,yeX(b1+b +b5) s

Al Al
s (bl+b +b +b4)}< 1,

qu,yeX 2 3

and b1 s b2 are bounded, the bi . b; as defined in (vi),

(iii) S and T are continuous,
(iv) {A,S} and {A,T} are weakly commuting pairs,
and

(v) there exists an asymptotically A-regular sequence with respect to both

S and T .

Then A, S, and T have a common unique fixed point. Further A 1is continuous at

the fixed point if sup, ygx(bl-+b2-+bé-+b2) <1
’
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PROOF. Interchanging the roles of x and y and then adding the two

resulting inequalities yields

(1') d(Ax,Ay) < b, (x,y)d(Sx,Ax) + b, (y,x)d(Sy,Ay) + b, (x,y)d(Tx,Ax)
+ b, (y,x)d(Ty,Ay) + by(x,y)d(Sx,Ay) + by(y,x)d(Sy,Ax)
+ b, (x,y)d(Tx,Ay) + b, (y,x)d(Ty,Ax) + bg(x,y)d(Sx,Ty)
+ be(y,x)d(Sy,Tx) ,

where

]

(vi) 2b1(h,y) dl(x,y) + a3(y,X) , 2b2(x,y) = az(x,y) +a,y,x) 2b3(x,y)

as(x,y) + a7(y,X) s

2b, (x,y) = a6(x,y) + a8(y,X) , 2b5(x,y) ag(x,y) + alo(y,X) , and

=K'
bi(y,X) bi(x,y)
Let {xn} satisfy (v). Then, from (i'")

_ _R' - R _Rt
(1-b b b b b bs)d(AXn ,Axm) < (bl+b

37 P37 b, =b, =By +hg)d(Sx , Ax )

3

' ' '
+ (bl +b3 +b5)d(Sxm N AXm)

]
+ (b24-b -Fbs)d(Txn,Axn)

4

1 '
+ (b2-+b4-+b5)d(Txm ,Axm)

From (ii) and (v), taking the limit as m , n > < shows that {Axn} is Cauchy,
hence convergent. Call the limit =z . d(an,z) < d(an,Axn) + d(Axn,z) -+ 0 as

n > ® so an > z . Similarly, Txn -+ z . The continuity of S and T imply

SAx - Sz , Szx > Sz , STx ~» Sz , TAx ~» Tz , sz > Tz and TSx_ ~> Tz .
n n n n n n
d(ATxn,Tz) < d(ATxn,TAxn) + d(TAxn,Tz) < d(Txn,Axn) + d(TAxn,Tz) >0,
so ATxn - Tz . Similarly, Aan > Sz .
d(STxn,Tan) < d(STxn,Aan) + d(ASXn,ATxn) + d(ATxn,Tan)
Using (i'),
2
< ' +
d(ASx_, ATx ) < bld(S x> ASx ) + b1d(STx , ATx ) + b,d(TSx ASXn)

' 2 2 '
bzd(T X, ,ATxn) + b3d(S X, ,ATxn) + b3d(STxn ,Aan) +
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o2 2 2
bad(Tan R ATxn) + bad(T X Aan) + bsd(S X s T xn)

Al
+ bSd(STXn s Tan)

2 ' 2 '
< bld(S X Aan) + bzd(T X ATxn) + b3d(STxn N Aan)

+ (by +b, +b

Hence

+ b4d (Tan R ATxn)

Al 1
9 3 +b4 +b5 +b5)max{d(STxn . ATxn) . d(Tan , Aan) R

2 2
d(s X s ATxn) , d(T X Aan)

2 2
d(s X T xn) . d(STXn R Tan)}

. . 1] 1] 1]
lim supnd(S’I‘xrl s Tan) < 0+ lim supn(b1+b2+b +b! +b +b5)d(Sz , Tz) ,

d(Sz , Tz) < sup_ y
’

which, from (ii) implies that S

From (i'),

eX 2 3

z =Tz .

4

374 75

(bi+b +b,+b, +b +bé)d(Sz,Tz) ,

5

2
Al
d(ATxn ,Az) < bld(STxn . ATxn) + bld(Sz , Az) + b2d(T X ATXn)

1 A}
+ bzd(Tz , Az) + b3d(STxn , Az) + b3d(Sz . ATxn)

2 '
+b,d(T"x_, Az) + b,d(Tz, ATx )

IA

2
bld(STxn , ATxn) + b2d(T X s ATxn)

A
+ b4d(Tz . ATxn) + b5d(STxrl s Tz)

+ (bi+b' +b +b4)max{d(Sz , Az)

273

Taking the 1lim sup of both sid
d(Tz , Az) < lim sup_

<
< supx’yeX

which, from (ii), implies that

s

2
1]
+ bSd(STXn , Tz) + bsd(Sz , T xn)

Al
+ b3d(Sz . ATxn)

2
Al
+ b5d(Sz s T xn)

s d(TZ ’AZ) >

2
d(STxn ,Az) , d(T X ,Az)} .

es yields

(bi+b'+b +b4)max{d(Tz ,Az) , d(Sz , Az)}

2 73

' '
(bl+b2+b3

Tz = Az , since

+b4)d(Tz , Az)

d(Sz,Az) < d(Sz,Tz) + d(Tz,Az)

.

79
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From (1'),

a(az,A%z) < b,d(sz,42) + bi(SAz,Azz) + byd(Tz,Az) + béd(TAz,Azz)

+ b3d(Sz,A22) + bld(sAz,Az) + b4d(Tz,Azz)

+ bad(TAz,Az) + bsd(Sz,TAz) + béd(SAz,Tz)

d(sAz,A%z) < d(SAz,ASz) + d(ASz,A%z) . Since Sz = Az , ASz = A
d(SAz,ASz) < d(Az,Sz) = 0 , and SAz = Azz . Similarly, TAz = A"z . Therefore

From (iv),

d(Az,Azz) < b3d(Sz,Az) + b3d(Az,Azz) + béd(SAz,Azz) + béd(Azz,Az)
2 ' 2 ' 2

+ bAd(Tz,Az) + bAd(Az,A z) + bad(TAz,A z) + bad(A z,Az)

+ bd(sz,a2) + bd(az,a%2) + bld(a’z,A2) + bld(Az,T2) .

Thus (l-b3—b§-b4—bl"—bS—bé)d(Az ,Azz) < 0 which, from (ii), implies Az = Azz

Set p = Az .
d(Sp,p) = d(SAz,Az) < d(SAz,ASz) + d(ASz,Az) < d(Az,Sz) + d(A’z,Az) = O .
Similarly, Tp =p .

Suppose p and q are common fixed points of A , S, and T . Then

d(p,q) = d(Ap,Aq) < b3d(p,q) + byd(q,p) + b,d(p,q) + b,d(q,p) + bsd(p,q) + béd(q,p)

which, from (ii), implies p = q and the fixed point is unique.
Let {yn} be any sequence in X with limit p and assume that

(b1+b +b'+bl") <1 . From (i'),

Ssup 27 %3

xX,yeX
Al Al
d(Ayn » Ap) < b, d(Sy > Ayn) + bld(SP » Ap) + b,d(Ty , Ay ) + byd(Tp, Ap)
1 ]
+ b3d(syn » Ap) + b3d(SP Ay ) + b,d(Ty Ap) + bAd(Tp > Ay )

1
+ bsd(Syn , Tp) + bsd(Ap , Tyn)

A

< b,d(Sy , Ap) + bld(Ap s Ayn) + b,d(Ty_ Ap) + b,d(Ap , Ay )
+ 1 Al
b3d(Syrl , Ap) + b3d(Sp » Ap) + b3d(Ap s Ayn) + bl,d(Tyn » Ap)

Al Al 1
+ b[‘d(Tp , Ap) + b4d(Ap s Ayn) + bSd(Syn , Tp) + bsd(Ap s Tyn)

In

bld(Syn » Ap) + b,d(Ty Ap) + b3d(Syn » Ap) + b, d(Ty Ap)

! + +b, +b) !
+ bsd(Syn , Tp) + bSd(Ap s Tyn) (bl b2 b3+b4)d(Ap s Ayn)
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Taking the 1lim sup of both sides yields

. . 1 Al 2
lim supnd(Ayn , Ap) < lim supn(bl-+b2-+b3-+b4) lim supnd(Ap ,Ayn)

1 1 :
< su (b1<+b +b -+b4) lim supnd(Ap ,Ayn)

Px,yeX 2 3

which, from, the assumption, yields 1lim supnd(Ap,Ayn) = 0 . Therefore

limnd(Ap,Ayn) =0 and A 1is continuous at p .

COROLLARY 3.2. Let S be a complete metric space, A a self-map of X satis-
fying

(vii) d(ax,Ay) < c;(x,y)d(x,Ax) + c](x,y)d(y,Ay) + ¢, (x,y)d(x,Ay)
+ ) (L, y)d(y,A%) + ey (x,y)d(x,y)
where the c, are nonnegative and bounded and satisfy

+c!+ !
max{supx’ycx(c2 5 c3) ) Squ,yeX(Cl

regular sequence X , then A has a unique fixed point.

+c2)} < 1 . 1If there exists an asymptotically

Remarks. 1. Corollary 3.2 is an extension of the fixed point theorem of
Hardy and Rogers [4] since the functions c; ci need not satisfy

A 1
c1 + c1 + <, + y + c3 <1

2. Putting S =T in Theorem 3.1 yields a generalization of a result of

Mukherjee [6].

3. For a, = 0, i=1,...,8, ajg = 0, a9 =a and S =T in Theorem ;.|
yields the result in Fisher [7]. It then follows that the continuity assumption

in A in Fisher [7] is not needed, as noted in Fisher [8].

4. A condition analogous to (a) in Jungck's theorem is not required. Further,

the continuity of A is neither assumed nor required in Theorem 3.1.

5. In Goebel et al [9] it has been shown that uniform convexity in a Banach
space implies the existence of asymptotically regular sequences. Thus Corollary 3.2

can be used to obtain fixed point theorems in such spaces.

6. A result similar to Corollary 3.2 appears in Mukherjea [10] under different
conditions but with the added hypothesis that the map x - d(x,Tx) be lower semi-

continuous.
We now give an example of three maps satisfying (i) of Theorem 3.1.

EXAMPLE 3.3. Let X = [0,3) with the usual metric. Define
A,S,T: [0,3) >[0,3) by putting Ax = (1+x)/2 , Sx + (1+3x)/4 ,
Tx = (1+7x)/8 . Then for all x , y ¢ [0,3) we have:
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d(Ax , Ay) = 1/2 |x-y|

_ 4 1+6x-7 2 _ x-1

=1/2 |3 G + -5 - G5O

_4 1+6x-7y 2 x-1

—7| 8 |+7ll.|

_ 4 2

-7d(SX,Ty) +’7'd(AX,Sx) .
So the family {A,S,T} satisfies (i) of Theorem 3.1 with a) = 2/7 , a; = o,
i=2,...,8, a, = 4/7 alO = 0 . The following example contains three maps satis-

fying condition (iv) of Theorem 3.1.

EXAMPLE 3.4. Let X [0,2/3] be with usual metric and A, S, T : X > X
given A(x) = x/18 , S(x) = s/6 + x , T(x) = x/2 for any x € X . Of course, A

and T commute whereas the pair (A,S) is weakly commuting since, for any x € X ;

2
X _ X _ 17x
108 +x 108 +18x 18(108 +x) (6 +x)

d(SAx , ASx) =

x(A2-x) _ _x _ x _
< 186%x)  6+x 18~ dax,5x%)

Since 6 + x < 12 - x for any x € X , we have for x 2y :

_X-y R 12 -x _
d(Ax , Ay) 8 <18 6T % d(Ax , Sx) .

If x <y , we achieve:

_ 1
d(Ax , Ay) =y1—8xs%-%=% & -2 =§d(Ty,Ay)

Therefore condition (i) holds if we assume a, =1, a,=a, =0, a, =1/2,
a, =0, 1i=5,...,10 .
i
Now we quote an example from Pal and Maiti [11] of a map T : X » X which

satisfies Corollary 3.2 but not Definition 2.4.

EXAMPLE 3.5. Let X = {1,2,3,4,5} be a finite set with metric d defined as

d(1,2) = 4.3 , d(1,3) = 0.6 , d(1,4) = 3.65 , d(1,5) = 2.8 ,
d(2,3) = 3.95, d(2.4) = 3.7 , d(2.5) =5, d(3,4) = 3.9,
d(3,5) = 3.35 , d(4,5) = 1.9

and T : X > X givenby Tl =2 ,T2=3, T3 =4, T4 =T5=25.
One can verify all the assumptions of Corollary 3.2 with c1 =1.17 , ci = 0.3,
c,=0.2,c!=0.3,c,=0.2. T 1is not a generalized nonexpansive mapping, since

2 2 3
for x =1 and y = 4 we obtain:
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d(Tl ,T4) = 5 < a; * 4.3 + a, * 1.9 + az * 2.8 + a, - 3.7 + ag - 3.65

< (a1+32+a3+ a['+a5) - 4.3 4.3,

a contradiction.

4. RESULTS IN COMPACT SPACES.
In this section a few theorems of Kannan [5], [12] are extended to generalized
nonexpansive mappings defined over compact metric spaces. Our first result is an

extension of Theorem 1 of Kannan [5].

THEOREM 4.1. Let X be a compact metric space, T a self-map of X satisfying

(vii) with supx’y(cl~+ci<+c2-+cé~+c3)(x,y) < 1, and having property (K) over X .

Suppose also that, if Y c¢ X such that Ty c Y , xn > x implies Txn > X , x € Y .

Then T has a unique fixed point in X , provided c, = cé and
supx’yex(ci-+c2)(x,y) <1.

PROOF. Let CL(X) denote the collection of subsets K c X which are non-empty,
closed and invariant under T . Introduce the following partial ordering < on the
space CL(X) : Let K1 N K2 c X . Then Kl < K2 if Kl c K2 , Kl # K2 . Using

Zorn's Lemma, we can obtain a set K which is minimal with respect to < , and which

is non-empty, closed and invariant under T .

If K 1is singleton, then it is a fixed point of T . If K contains more than

one point then, by property (K) , there is an x € K such that

(*) d(x,Tx) =1 < supyeKd(y,Ty)

Let Kl = {x e K:d(x,Tx) < r} . Then by (%), Kl is a non-empty proper subset of

K . Also, for x ¢ Kl , since T satisfies (vii) we have:
2 ' 2 2 '
d(Tx,T"x) < cld(x,Tx) + cld(Tx,T x) + czd(x,T x) + czd(Tx,Tx) + c3d(x,Tx) .

Then

cl+c2+c
— - d(x,Tx) < d(x,Tx) ,
-<,

d(Tx ,sz) <
1- c1

and Kl is invariant under T .

Let x be a limit point of K, . Then there exists a sequence {xn} c K

1
with X -+ X . By hypothesis Txn > X .

1

d(x,Tx) < d(x,Txn) + d(Txn,Tx)
A
< d(x,Txn) + cld(xn,Txn) + cld(x,Tx) + czd(xn,Tx)

\l
+ czd(x,Txn) + c3d(xn,x)
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1
< d(x,Txn) + c,r + cld(x,Tx) + czd(xn,x) + czd(x,Tx)

1

A
+ czd(x,Txn) + c3d(xn,x) .

Therefore
1 cr
S +c! e
d(x,Tx) < 7o [dGGTx ) + e d(x %) + cpd(x,Tx ) + cqad(x »x)] + =g
1 2 1 2
(l+c2+c:'2+c3)
< T ld e max{d(X,Txn) s d(xn,x)} +r
1 2
< 1~ su 2 ETR) max{d(x,Tx ) ,d(x ,x)} + r .
px,yeX 17 %2 n n
Taking the limit as n > «» yields d(x,Tx) < r and Kl is closed. Thus the mini-
mality of K is contradicted, so K contains only one point, which is the unique

1
fixed point of T .

1

If, in Theorem 4.1, T 1is assumed continuous, then the condition X > X

implies Tx_ > x for x_ € Y can be dropped.
n n

EXAMPLE 4.2. Let X = [0,1] with usual metric and T : X - X defined by

Tx = 3x/8 if x 2 1 and T1 =1/2 .
Clearly X 1is a compact metric space and T satisfies Theorem 4.1 with
cp = ci =1/4 , c, = cé =0, cy = 1/2 . With x =0 and y = 1/3 , d(T0,T1/3) =

1/8 > 1/2 - 5/24 = 1/2[{d(0,T0) +d(1/3,T1/3)] and T is not a Kannan map. Further,
T 1is not a contraction either, because it is discontinuous at 1.

Further results about generalizations of Kannan maps can be found in Taskovic
[13].

The next theorem generalizes Theorem 1 of Kannan [12].

THEOREM 4.2. Let X be a compact metric space, T a continuous selfmap of x

satisfying (vii) with sup (2ci-+c <+c'-+c3)(x ,y) <1, ¢y = c! and

2 2 2
(ci-+c2)(x ,¥) <1 . Suppose that T satisfies property (K) over X and

X,yeX

Squ,yeX
that d(Tx,p) < d(x,p) for each x # p , p the unique fixed point of T . Then,

for each x in X , ™x > P .

PROOF. From the remark following Theorem 4.1, T has a unique fixed point p

n .
Let x € X . Then, from the compactness of X , {T x} contains a convergent subse-

n, n,
quence {T 14} . Let 2z = limiT x . Using (vii),
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d(p,Tnx) = d(Tp,Tnx) < cld(p,Tp) + cid(Tn—lx,Tnx) + czd(p,Tnx)

+ céd(Tn_lx,Tp) + c3d(p,Tn-1x) s

or

Al \]
(c1 +c2 +c3)

- ' _—
1 cl c2

1 1

d(p,Tnx) < d(p,Tn— x) < d(p,Tn_ X) .

n . . :
Therefore {d(p,T x)} 1is a nonnegative decreasing sequence and hence converges.

This, along with the convergence of {Tnix} implies d(Tnx,p) > d(z,p)

If z = p , then the hypothesis of the theorem is contradicted.

In Theorem 4.2, the continuity of T can be replaced by orbital continuity at
the point x , by adding the hypothesis that the unique fixed point of T exists.

5. RESULTS IN BANACH SPACES.
This section deals with the structure of the set of common fixed points of
three mappings. Our theorem extends Theorem 29 of Rhoades [14] and 7 of Rhoades

[15].

THEOREM 5.1. Let X be a strictly convex Banach space, K a closed convex
subset of X . Let A, S, and T be selfmaps of K satisfying:
(a) S and T are continuous
. . s e . 5
(b) (i') is satisfied with Xi=1 (bi-Fbi)(x »y¥) <1, and
(viii) sup

(bi+bé+b3+b4)(x,}’) <1.

x,yeX
Then the set F of common fixed points of S , T, and A 1is closed.

PROOF. Let {xn} be a Cauchy sequence in F with limit x . From (ii),

d(x , Ax) < d(xn , X) + d(Axn , AX)

A

1
d(xn , X) + bld(Sxn ,Axn) + bld(Sx , Ax) + b2d(Txn ,Axn)
1 Al
+ bzd(Tx , Ax) + b3d(an , Ax) + b3d(Sx ,Axn) + b[‘d(Txn , Ax)

1 Al
+ b4d(Tx ,Axn) + bSd(an , Tx) + bsd(Sx ,Txn)

IA

' 1 [ [ 1 .
[(l+b1+b2+b3+b4)d(xn , X) + (bl+b3+b5)d(S‘< ,xn)
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' ' - —h' K _
+ (b2-+b4-+b5)d(Tx ,xn)] (1 bl b2 b3 bA)

< [2d(xn , x) + d(Sx ,an) + d(Tx ,Txn)] + M,

e - A} \]
where M 1 sup (b1-+b2-+b3-+b4)(x s Y) .

X,yeX
Taking the limit as n > « yields d(x,Ax) = 0 . Hence x = Ax and F 1is closed.

COROLLARY 5.2. Let X, K, A, S, and T be as in Theorem 5.1 with
[ = p' = = p' = 'y '
bl b2 b3 b4 b5 o, (bl+b2 b3+b4+b5)(x,y) <1, and

1 + 1 . 'y .
supx’yd((bz-'-b3 bA)(X ,y) <1 . If T 4is linear and S commutes with A and T ,

then F is closed and convex.

PROOF. That F is closed follows from Theorem 5.1. Let X5 x2 e F and
x = (x; +x,)/2 . Without loss of generality we may assume that ||x2-Ax” <
i[xl-Ax“ .
- axl < 1/7200x) - x|l + lx, - Ax]]] < []x; - ax|| = [Jax, - ax||
< b1HSx1-Ax1|| + by ||Tx - ax]| + by llsx, - Ax|| + b) || Tx - Ax, ||
+ bSHle—TX”
= béHTx-AxH + b3||Axl—Ax|| + bUITx—xl]I + b e -1l
lITx - Ax[| = 1/2||Tx| +Tx, - 2Ax|| < |lAx) -ax]|| .
Therefore
(b[:+b5)
1%, - ax|| < Tohyoh, llxy -] < flxg - Tx|| < 1/72]}%; - x|«
Also,
HXl‘XZ“ < Hxl—AxH + ”X2_Ax” < 2||X1_AX” < “XI‘XZH
Since X 1is strictly convex, x1 - Ax , and hence Ax , must lie in the line segment
joining xl and Xy - The inequalities imply that Ax is the midpoint. Therefore
X = Ax .

Since x =Tx , and S and T commute, Sx = STx = TSx . Using the contractive

condition, and the commutativity of S and A ,

[|x - asx|| = ||ax - asx||

A

< bl“Sx—ASx” + béHTx—ASx“ + b3HSx—ASx“

+ bU]TSx—Ax]] + b5”Sx—TSxH

bé”x—Sx“ + b“le-x” s
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which implies x = Sx . Therefore x ¢ F and F is convex.
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