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ABSTRACT. Explicit formulae, in terms of sugraphs of the graph, are given for the
first six coefficients of the simple path polynomial of a graph. From these, explicit
formulae are deduced for the number of hamiltonian paths in graphs with up to six
nodes. Also simplified expressions are given for the number of ways of covering the

nodes of some families of graphs with k paths, for certain values of k.
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path covenr.
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1. INTRODUCTION

The graphs considered here will be finite, and will have no loops nor multiple
edges. Let G be such a graph. With every path a in G, let us associate an
indeterminate or welght LA With every path cover (a spanning forest whose elements
are all paths) C of G, let us associate the monomial

w(C) =TT w
o @

where the product is taken over all the elements of C. Then the path pofynomial of
G 1is
L w(c) ,
where the summation is taken over all the path covers in G.
Let us assign a weight w to every path in G. Then the path polynomial of G
would be a polynomial in w. If we denote it by P(G;w), then
p-1

P(Gyw) = I a v .
k=0

where p 1is the nodes in G and a is the number of path covers of G with p-k

k
components. P(G;w) 1is called the sdimple path pofynomial of G, because of the
simple manner in which weights are assigned. The basic properties of path polynomials

are given in Farrell [17.
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In this paper, we will use a simple combinatorial technique in order to derive

expressions for the coefficients in terms of subgraphs of G . From these re-

a_ ,
sults, we will deduce explicit formﬁlae for the number of hamiltonian paths in graphs
with up to 6 nodes. We will also give formulae for the number of ways of covering
the nodes of some families of graphs with node-disjoint paths, for certain values of
k , (the results parallel those given in Farrell [27),

2. PRELIMINARY RESULTS

We will refer to the path with one node (an isolated node) as the trivial path.

LEMMA 1. Let G be a connected graph with p nodes. Let C be a path cover
of G, with p-n components. Then C contains exactly n edges.

PROOF. The result holds trivially for n=0 . We will therefore consider the
case when n > 0 . It is clear that the number of edges in C will be maximum, when
the number of non trivial components is minimum, and vice versa.

The minimum number of non trivial components that C can have is 1 . Since
C has p-n components, it must contain p-n-1 isolated nodes. But C has p
nodes in all. Therefore the non trivial path must contain n + 1 nodes, and hence
n edges. It follows that the maximum number of edges in C is =n .

C will have the maximum number of non trivial components when they are all
independent edges. Suppose that there are r independent edges. Then C must
contain p-n-r isolated nodes. Therefore

(pn-r) + 2r = p .
Hence n = r , and therefore the minimum number of edges in C is n . The result
then follows.

THEOREM 1. Let G be a graph with p nodes and q edges. Then

p-1 _
P(Gyw) = & a, WP k .
k=0

with

ak=(§)—vk,
where Yy is the number of subgraphs of G with k edges and containing a com-
ponent which is not a path.

PROOF. By definition, a, is the number of path covers of G with p-k com-
ponents. From Lemma 1, any path cover with p-k components, must contain k edges.
The number of sets of k edges in G is (ﬁ) . Those which form graphs with com-
ponents that are not paths, are counted by Y - The result therefore follows.

3. THE COEFFICIENTS OF P(G;w)

By a nonpath graph we will mean a graph containing a component which is not a
path. Let G be a graph. We combine a graph H with G by either (i) identifying
a node of H with a node of G or (ii) making H a component of the graph origi-

nally consisting of G only. We will use Theorem 1 in order to establish aur results.
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The First Three Coefficients

Let G be a graph with p nodes and q edges. It is clear that in P(G;w) ,

a =1, and a; =4q. Since every spanning subgraph of G with two edges, must be

a path cover, Yy = 0 . Hence
= (4
2, = (P

The Fourth Coefficient

The nonpath graphs with 3 edges are the triangle and the 3-star (the graph con-
sisting of 3 edges joined to a common node). Let A be the number of triangles in
G . Any choice of 3 edges at a node will yield a 3-star. Therefore the number of

3-stars in G is

P V.
B= I (5,
i=1
where vy is the valency of node i in G . Therefore
= + .
Y3 A+ 8

Hence, trom Theorem 1,
= (3 - -
ag (3) A B .

The Fifth Coefficient

The nonpath graphs with 4 edges are (i) the triangle with an edge attached to it,
(ii) the triangle together with an independent edge, (iii) the quadrilateral, (iv) the
4-star, (v) the 3-star with an edge attached to a terminal node and (vi) the 3-star
together with an independent edge. See Harary [3] (Appendix 1).

The graphs (i) and (ii) are the only graphs that can be formed by combining an
edge with a triangle. Therefore the number of such subgraphs in G is (q-3)A. Let
B be the number of quadrilaterals in G . Then the number of graphs in category (@iii)
is B . The graphs (iv), (v) and (vi) can be formed by combining an edge with a 3=star.
The number of different ways of combining an edge with a 3-star is (q-3)8 . Now,
there is only one other graph that can be formed by combining an edge with a 3-star.
It is the triangle with an edge attached to it. The number A of subgraphs of G

consisting of a triangle, together with an independent edge is counted, by finding

the number of edges Gijk in G-{i,i,k} , the graph obtained from G by removing the
nodes i, j and k of triangle Tijk . Therefore
A= Gijk N
with
Gijk =q+ 3 - (\)i + vj + vk) R (3.1)
where Vi Vj and Vk are the valencies of the nodes of a triangle Tijk in G ,
and the summation is taken over all the triangles in G . Hence the number of sub-

graphs which are triangles with an edge attached, is (q-3)A-A . Any choice of 4 edges
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at a node yields a 4-star. Therefore the number of 4-stars is

P V.

A= T (D) .
. 4
i=1
The quantity (q-3)B8 counts each 4-star four times, since any of the 4 possible

sets of 3 edges of a 4-star can be attached to the fourth edge to yield the same
4-star. In order to compensate for this, we must subtract 3A from (q-3)8 . Thus

we have

Yy (q-3)A + B + (q-3)B - 3N - [(g-3)A - 4]

(q-3)B + B+ A - 3\ .
Hence from Theorem 1,
= (Y - (q- - B -
a, = () - (3B +30-B-A.

The Sixth Coefficient

The nonpath graphs with 5 edges are shown below in Figure 1. The graphs have
all been numbered. We will refer to the graph numbered k , as graph (k). The num-
ber of different graph (k)'s in G will be denoted by N(k). We refer the reader to
[37 for a list of these graphs.

AASL AX

e
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18 19

Figure 1
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Let CLass 1 be the set containing graphs (1), (2),..., (9), (12), (13), (14),
(15), (16) and (18). It is clear that Class 1 contains all the graphs that can be
formed by combining two edges with a 3-star. The number of ways of combining two
edges in G , with a 3-star in G , is (q;3)8 . However, in this quantity, each of
graphs (4), (9) and (16) will be counted 4 times. Each of graphs (6), (13) and (15)
will be counted twice and graph (7) will be counted 10 times. Therefore the number

of subgraphs of G of the types described in Class 1 is

ctass 1] = (4378 - 3IN() + N(9) + N(16))

[N(6) + N(13) + N(15)] - 9 N(7)

P Vi
N(7) = I 5] =y
1

i=

The number of 5-stars in G is

Graphs (4), (7), (9) and (16) represent all the possible graphs that can be formed by
combining an edge with a 4-star (N.B. Graph (7) will be counted 5 times). Therefore
N(4) + 5N(7) + N(9) + N(16) = (q-4)A .
N(4) + N(9) + N(16) = (q-4)A - 5u .
Let

v =1(" 1, (3.2)

where i and j are adjacent nodes of valencies vi(23) and vj(23) in G , and
the summation is taken over all pairs of adjacent nodes of valencies 23 in G .
Then Y counts the graphs formed by combining two edges taken at each of a pair of
adjacent nodes in G . These graphs will be precisely graphs (6), (13) and (15).
Hence

N(6) + N(13) + N(15) = ¥ .

Therefore
|class 1] = (9378 - 3(a-0)A + 6u - ¥ .

Graphs (10) and (11) are formed by combining with a triangle Tijk , any two edges
of the graph obtained from G by removing the nodes of Tijk i.e. G-{ i,j,k } .

Therefore
Gi.k
N(10) N1 =5 (P =, (3.3
where sijk and the summation are as defined above in Equation (3.1).

N(17) 1is counted by the number of edges in the graphs obtained from G by re-
moving the nodes of each of its quadrilaterals. Let S be a subset of the nodes of
G . Let us denote by G-S , the graph obtained from G by removing the nodes in S .
Let E(G-S) be the number of edges in G-S . Then

N(17) = £ [q + 4 - (vh+vi+vj+vk)1 = w , (3.4)
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Where h,i,j and k are the nodes of a quadrilateral in G,vh,vi,vj and Vi and
their valencies, and the summation is taken over all the quadrilaterals in G .
N(19) = C , the number of pentagons in G .

Thus we have,
- (9473
Yg = (5,708 = 3(q-8)A + 6u - ¥+ n+w+C.
Hence from Theorem 1, we get
ag= () - (B +3@N+¥-bu-n-w-cC.
5 5 2
The following Theorem summarizes our discussions.
THEOREM 2. Let G be a graph with p nodes and q edges. Let
p-1 _
PGiw) = I ay wP k
k=0
be the simple path polynomial of G . Then

(i) ag = 1,

(ii) a, =4,

(iii) (G N

(iv)

[
]

P -a-s8,

M e, = () - (@NB+M-B-2,

and

=D - B3Ny - bu-n-w-C,

where A, B and C are the numbers of triangles, quadrilaterals and pentagons re-

(vi) a

spectively in G, B, A and yu are the numbers of 3-stars, 4-stars and 5-stars re-
spectively in G, and A, ¥, n and ®w are the summations defined in above in
Equations (3.1), (3.2), (3.3) and (3.4).
4. AN TLLUSTRATION

Let G be the complete graph with 6 nodes. We will use Theorem 2 in order to
find its simple path polynomial. In this case,
6, q =15, A =20, B=45and C = 72

P
Also

B =60, A =30, pu==6.

A =60, ¥ =540, n =60 and w = 45 .
From Theorem 2,
_ _ _ - (15 _ _ _
a, = 1, a; 15, a, = 105, a, ( 3) 20 60 = 375
a, = () - 12(60) + 3(30) - 45 - 60 = 630 .
15 12
ag = (5 ) - (2 )60 + 3.11.30 + 546 - 6.6 — 60 - 45 - 72

3003 - 3960 + 990 + 540 - 213
+ 4533 - 4173 = 360 .
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Hence we get

4

P(Rg3w) = WO+ 15w° + 105" + 37560 + 630w + 360w .

5. HAMILTONIAN PATHS IN SMALL GRAPHS
It is clear that the coefficient of w in P(G;w) 1is the number of hamiltonian
paths in G . The following corollaries of Theorem 2 are therefore immediate.
COROLLARY 2.1. The number of hamiltonian paths in a graph G with 5 nodes and
q edges is

) - @NB+3M-B-s.

COROLLARY 2.2. The number of hamiltonian paths in a graph G with 6 nodes and

q edges is
@ - (e + 3@ +Y -6u-n-u-C.

6. APPLICATIONS

We define the wheel wp to be the graph obtained by joining an isolated node to
all the nodes of a circuit with p-1 nodes. The fan FP is the graph obtained by
joining an isolated node to all the nodes of a path with p-1 nodes. The short
Ladden Sn is the graph obtained by joining the corresponding nodes of two equal paths
with n nodes. The Long Ladder L is the graph obtained by joining the corre-
sponding nodes of two equal circuits with n nodes. Sn and Ln will therefore con-
tain 2n nodes each. Sn will contain 3n-2 edges and Ln , 3n edges.

THEOREM 3. The number of ways of covering the nodes of the wheel wp , with
p-3 node disjoint paths, is

2p-2
3

With p-r node disjoint paths, it is

(23:2) - é’(Zp—S)(P-l)(P2-5P+12) + 3(p21) - D=3,

P57 - £ (-1 (p%-5p+18)

and with p-5 node disjoint paths, it is

2p-2
5

PROOF. wp has 2p-2 edges, p-1 subgraphs that are triangles, quadrilaterals

PR%) - £ (0-3) (2p-5) (p2~6p"+17p-12) + 3(2p-6) ;) = 6(°7 1) + (-1 (p-2) .

and pentagons. (Provided of course, that the rim itself is not one of these sub-
graphs.) It has [(p-1) + (pgl)] 3-stars, (le) 4-stars, and (Pgl) 5-stars.
Also

A= (-1 (-d)
¥ = -1 + -1 OH
n= e-0®Y
and
o= (1) (-5

The result follows by making the appropriate substitutions into Theorem 2.
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THEOREM 4. The number of ways of covering the nodes of Fp with p-3 node dis-
joint paths is

2p-3

p-1
CE - P - @2p-9)

With p-4 node disjoint paths, it is

2p- - 2
PP - 3 -9 GP-3p8) - 3T - (BP-6pt9)
and with p-5 node disjoint paths, it is
) - & -3 2o-1) (P-3p48) + 3(2-7) (PN - 6(°Ch)

+ 2p2 - 34p + 21 .
PROOF. Fp has 2p-3 edges, p-2 triangles, p-3 quadrilaterals and p-4 pen-

tagons. It also has r(pgl) + (p-3)] 3-stars, (p-l 4-stars and (pgl) S5-stars.

)

In this case,

>
[}

(p-3) (p-4) ,
2

(p=5) (p=4) + 2(p=4)
®-4) + 35 (-3)

= o (Ph p-4
n=20,) + (-5 ,0

L3
]

1
3@ -8p7-19p-26) ,

2o-0) -7,

and

p2 - 9p + 20 .

w = 2(p-5) + (p-6) (p-5)
The result then follows by making the appropriate substitutions in Theorem 2.

THEOREM 5. The number of ways of covering the nodes of Sn with p-3 node dis-
joint paths, where p=2n , is

(3% 2

With p-4 node disjoint paths, it is

(31;2) - (6n% - 2In + 19) ,

) - 2n+ 4 .

and with p-5 node disjoint paths, it is

3n-2
5

PROOF. Sn has 3n-2 edges, no triangles, n-1 quadrilaterals and no pentagons.

™2y _ 9n3 4 48n” - 80n - 38 .

It has 2n-4 3-stars, no 4-stars and no 5-stars. Therefore

A=n=0,Y%Y=3n-8 and w = 3n2—13n+14 .
The result follows by substituting into Theorem 2.
THEOREM 6. The number of ways of covering the long ladder Ln with p-3 node
disjoint paths, where p=2n , is
Y-
With p-4 node disjoint paths, it is

(i?) - 6n2 + 5n ,

and with p-5 node disjoint paths, it is
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PROOF. I  khas 3n edges, o quadrilaterals (n#4) , no triangles, and no pern-

tagons (n#5) ? It has 2n 3-stars, no 4-stars, and no 5-stars. Also,
A=0,
Y = 3n ,
n=20,
and
w = (3n-8)n .

The result follows by substituting into Theorem 2.
The main results obtained in this paper are analogous to those given for chro-

matic polynomials in Farrell [27.
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