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ABSTRACT. An inequality is proved in abstract separable Hilbert space H where A
and B are bounded self-adjoint positive operators defined in H such that R(A) =

R(B) and R(A) 1is closed.
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1. INTRODUCTION AND PRELIMINARIES.

Let H be an abstract separable Hilbert space and T a linear bounded operator
from H into H.
We denote the null space of T by N(T), the range of T by R(T) and assume that
R(T) is closed.
We define the generalized inverse (or Moore-Penrose inverse) operator T of T as
the unique linear extension of (T/N(T)l)_1 to H such that N(TH)=R(T)?'.

The linear bounded operator T+ fulfills the following "Moore-Penrose equations'

Tt T =T
™mrrt=r1t
(rthH *=1 1"
(v 1) * =1t T

which could also be used as a definition of Tt.

Penrose used these relations to define the generalized inverse of a matrix in [1],

For a systematic treatment of generalized inverses and their properties in an operator
- theoretic setting, we refer to Nashed and Votruba [2], For an extensive annotated

bibliography on the theory and applications of generalized inverses, see [3]. Kaffes

in [4] proved the following inequality:

[Aa+(1-0)BTY < aat + (1-n)B+ .
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where A,B are positive semi-definite matrices of the same order and R(A) = R(B).
In this paper we shall prove that the above inequality holds in an abstract separable
Hilbert space H, where A,B are bounded self-adjoint positive operators defined in

H such that R(A) = R(B) and R(A) 1is closed.

2. PROOF OF THE INEQUALITY.

THEOREM 2.1. Let A and B be bounded self-adjoint positive operators from a Hilbert
space H into H. Assume that R(A) is closed and R(A) = R(B).

Then for 0 < X <1 we have

Da+(1-0)B1Y < aat + (-nst (2.1)

PROOF. The above inequality (2.1) is trivial when A=0 or A=1l, Let 0 < X <1 and
A) =XA+(1-)1)B. Then it is not difficult to prove that R(A) = R(A,) =R(B).

From theorem 2 of [5] we can deduce that A" = At* if A=A* | and that if Range A
is closed so is Range AT (when A=A*, Dom A=H). From these we can prove that R(A) =
R(A+). To prove (2.1) it suffices to show that

(ab£,6) <a @t £,6) + 1) 67D Y feH

where ( , ) means scalar multiplication in H,

Let feH. Then f=f1 + f2 with f; eR(A) and £, eN(A).

Since R(A)=R(B)=R(Ax)

and (Af,f)=(Afl,fl) , (Bf’f)=(B£Pf1)’(Akf’Ax):(Axfl’fl)’
it is enough to prove that:
+ + +
(AAf,f)sx(A £f,6)+(1-1) (B f,f) ¥ feR(A). (2.2)
Given that feR(A)=R(B)=R(AK) there are gleH, gzeH, g3eH
such that
Ag

=f,Ag,=f, A,g,=f (2.3)

283

By means of relation (2.3) the above inequality assumes the following form

1

+ + +
=> - —
< (885 5 Aygqy) < A(A'Ag,,Ag))+(1-)) (B'Bg,,Bg,) <=>
s + + + .
= (A\A3Ay84,85) <A (AATAg g )+(1-)) (BB Bg,8,) <=>
<':')> (A)\83:g3)SA(Agl»gl)"'(l-)\) (Bgzigz) (2.4)
Provided that the operators A,B are positive we have
(A(g1=84) 587 5-84)=(Ag 8 ) +(Ag5,84)-2(Ag4,8;) = 0 (2.5)

(B(g,-84),8,78)=(Bg,,8,) + (Bgy,85)-2(Bgy,8,) > 0 (2.6)
and (Ag4,8,)=(Ay84584) 5 (Bg358,)=A, 84,85) 2.7
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If we multiply (2.5) by A, (2.6) by (1-A) and add the resulting equations and if we take

(2.7) under consideration then the desired inequality (2.4) is obtained.
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