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ABSTRACT. An integral transform involving the associated Legendre function of zero

order, P ;+iT(x), x € [1,o), as the kernel (considered as a function of t1), is called
-2

Mehler-Fock transform. Some generalizations, involving the function Pﬁ%+it(x), where

the order u is an arbitrary complex number, including the case when u = 0,1,2,... ,

have been known for some time. In this present note, we define a general Mehler-Fock

transform involving, as the kernel, the Legendre function PE%+t

. 1 . .
u and an arbitrary index - E-+ t, t = o0+ it, —© < T < », Then we develop a symmetric

inversion formulae for these transforms. Many well-known results are derived as

(x), of general order

special cases of this general form. These transforms are widely used for solving many

axisymmetric potential problems.
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1. INTRODUCTION.

To solve many axisymmetric potential problems, integral transforms involving
associated Legendre functions as kernels, are used widely. When the associated
Legendre function of the first kind, P_%+ir(x), x € [l,), is used as the kernel, the
transform is called Mehler-Fock transform of order zero, [1, p.175(8,9)], and index
- %>+ i1, -» < T < ©», Some generalizations of Mehler-Fock transformation involve
more general associated Legendre function, namely, PT%+iT(x), m, a non-negative
integer [2, p.390] and PE%+i1(x)’ where u # 0 [3], have been known for some time,
[cf 4]. 1In all these generalizations, the emphasis has been to generalize the order
u of the Legendre function P:(x), but no attempt has been made to extend the results
for an arbitrary index v. In this note we define transforms, involving a more
general form of the kernel function, the associated Legendre function of the first
kind P" (x), with index ¢ = ¢ + 21, == < T < B and u an arbitrary complex number.

L+t
An inversion formula is developed, also, involving the Legendre function Pu;+t(x) as
-2
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kernel, thus establishing a symmetric inversion theory for general Mehler-Fock trans-
formation. Also, a Parseval type relation for these general transforms is produced.
All the well-known results are derived as special cases.
2. THE PRELIMINARY RESULTS.

We note below, for future reference, some of the properties of the associated
Legendre function of the first kind, Pt(z) of order v and index v for unrestricted v,u
and 2 [1,III]. The function is one-valued and regular in the complex plane supposed

cut along the real axis from 1 to -w«.

Wy o
Pv(z) = P—v—l(z) (2.1)
Hl(a) = ggv— “_'m+’”8 PMz), m=0,1,2,... (2.2)

An important case is when u = 0 and v is an non-negative integer. Then

-
2" dx
the Legendre polynomial.

=2-1)",

P (x) =

Now, consider the representation, [1, p.128 (28)],

R R AL
PM(z) = 2" (z2-1) u iﬁi—é—:ll—“"2F1{—V-u, 112 _2v/2%-1
v r= 2 a+/z71
Re 2 > 1 and Re p < 1.
Also, [2,p.78(1)],
cmen) = r2(e) bogm c-a-1
2Fy(a,bse;z) = @ T BIT (o-a)T (6=5) JO T T (1-7) dt
1 b-1 e-b-1
X J QA=) P dt,
0 (1-tt2)
Re ¢ > Re b > 0.
Using the inequality
1 > = 1 P c >0,
(1-t12) (1-2)
it is clear that
1
F.(a,b;e32) = ———— .
2 l ’ ’ ’
(l-z)c
Thus 4l
M) < M (z+/z7-D) VT 1
\)(z) - Ean 1-2y Re u < 2
T (1-n) (22-1)*" (2-v2%-1)
whence,
PS(x) ~z as x> (2.3)
and
P@ ~ @D asazo1+. (2.4)
Also, that
,F, (ot bsesz) = 0(1), as |t] » =,
whence
u = «©
Plyir (&) = 0D as |t| » =, (2.5)

provided Re u < % .
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We shall also need the following result, [5, p.75(76)].

Lemma 1.
Let f(v) = O(e-v), as v > o
= O(v%), as v > 0.
1f o+ie
f@ =L [ w@ewmar, s -1, (2.6)
o-1®
then  g(t) = J I 1 wav 2.7
0

where Kt(v) and It(v) are the Macdonald function and the Bessel function respectively

of order ¢, a complex number. Next let us consider the contour integral
I = J z K_(wg(z)dz ,
c z

where C is the closed contour in the z-plane as shown. Now Kz(u) is an entire func-
tion of 2z and it is clear that g(z) is Y
regular inside and on C from (2.7) above.

Thus, by Cauchy's theorem of residues,

I=o0, . .
-0+t o+ T
or .
0=1 J‘T (o+iy) K0+iy(u)g(0+¢y)dy | L x
-0 21 1
+ 1) K. w+it)dx 2 2
Jo (@HiT) x+1T(U)g( v -0-11 o-1T

e

+

-T
JT (-8+1y) K_c+iy(u)g(—o+iy)dy

o
+ J_G (x-71) Ké_ir(u)g(x—zr)dx
=I, +I,+1I;+1,, say,

Now the existance of the integral in (2.6), implies that

| (z+i1) Kx_'_iT(u)g(aH'iT)l >0 as [t] » =,
thus

|I2] and |Iu|both vanish as |t1| + .
And we now have,

I, = -I3or [t] » =

or,

-00

i J (o+iy) Kip;, (Wglotiy)dy = —i J (CoHYK 4y, 0 g(-otiy)dy

=]
on simplifying, we obtain

o+ie o+io
j ) sz(u)g(z)dt —f sz(u)g(—z)dz
g-1% g=-1®

if(u),
using (2.6) and the fact that K_z(u) = Kz(u).
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Thus, G

1
fw =55 Jo_im 2K, (W) [g(2)-g(-2) ]dz (2.8)
From the definition of the function g given by (2.7),
9(2) - g(-3) = J IO 17 vy - 1 wav
0o Vv 2 -z

or

_1g@-ga) _ [T £
2 sin(mz) fO v Kz(v)dv 4 (2.9)
If we let

- 248 9B | ps), say,

sin(mz)

then (2.8) and (2.9) reduce to

: o+Lw
fu) = -z J z sin (nz)Kz(u)F(z)dz
0=
and -
F(z) = J MK wdv ,
o Y 2
respectively.

Now we have a generalized Kontorovich-Lebedev transforms in a symmetrical form,

(cf. 6]. Thus, we have shown:

Lemma 3. Let f(v) = 0™y, as v > @
%
= 0(@°), as v > 0.
If . (Ot
F) = & z sin(rz)K (V)F(2)dz (2.10)
o-7®
then -
o) = [ Ik ma (2.11)
0
where |o| < % .

If we set 0 = 0, the above pair reduces to

@) =% JO T sinh(TOX, ())F(GT)dT
where

F(it) = J f(v—v) KiT(v)dv,
0

giving us the usual Kontorovich-Lebedev transformation [2, p.361].
Lemma 4. If y(t) € L(o-i», o+iw), |G| < %3 and Re p < 1,
then

o -xy ot o+l
e U 2 _u-%
—_—dy J y(t)P (y)dt = //: x J V(E)K, (x)dt .
1 (yz—l)u/2 o-1% ¥t " o-7® t

Proof. Consider the double integral

00 -xy g4 )
H ey J L"(t)PL_Ft(y)dt‘
1 (y2%-1) o-i 2
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00 pg47 —xy X
< J J % P‘_’%t(y)ldtdy
Ug_ge | (y52-1) 2
= J“ [w i Y (o+it) P! (y) |dtdy
1) (yz_l)u/z ~H+o+iT
§ o 00 0
= J J I« |dwdy + J J | « |dwdy , ¢ > 1.
1l /o § /=0
§ (o -xy 0 00 -xy
= J J I ———fi———7§ w(c+iT)(y2—l)U/2 dtdy + J J ‘ ~——£—~—73»w(c+ir) dtdy
1w | 2-1)* §em | (y2-1)¥
8 -xY © [~ -y
= J —e—dy J Iw(O-H,T)|dT + J e—/zdy x
1 (y2-n” —oo 5 (y2-1)"

J | (o+i1) |dT < ©, due to the hypotheses.

Hence

;,It Yy Y
1 O—iw (y -l)U/z 2

is absolutely convergent, and therefore the change of order of integration is possible.

And, .
Jm DR Jmm &P, (dt
e— ] v Y
1 (y2-1)“/2 e -5+t
™ epras r e o oa
- JO—’L“’ v 1 (yZ_l)U/z -5+t y)ay
/2— 1—";2' o+t
=/ ] w(t)Kt(x)dt, Re u < 1.
g=1®

by evaluating the y-integral, [6,p.179(1)].
3. The main results and special cases.

Theorem 1.

Let f(y) = O(e_y), as y >
= 0(1), as y »~ 1+
t 7 o+l 1 1 "
fy) = 2_nJ _ tsin(OIG - w - DTG - vt t)P_%+t(y)F(t)dt (3.1)
o=t
then -
_ H
F(t) = jl f(y)P_%t(y)dy (3.2)
where t = 0 + 771, - < T < ® lo| < %-- U, Re p < 1.
u

Proof. Using the estimates (2.3) and (2.4) of the function P Lat
=2

conditions imposed on f, the integral in (3.2) defining the function g, exists.

(y), along with the

Note

that in order to ensure the existence of the integral in (3.1), representing the func-

tion f, one must have tl—zuF(t) € L(0-i»,0+i) at least.

Now let,

48 =3 TG - u - DTG - u+ OFE) 3.3)

then from (3.1)
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. o+
7 . U
fy) = s Jc-iw t sln(nt)¢(t)P_%+t(y)dt . (3.4)

Next, we define an integral operator.

o _xy

Lf = Lu[f(y); y >x] = f fyay, Re u < 1.

2
1 (yz—l)“/
Note that this is a linear, self adjoint operator, a sort of generalized incomp-
lete Laplace operator. Now applying this operator to both sides of the equation

(3.4) above, we obtain

e N o+t . u
L W fydy = — I 7z dy I t sin(nt) ¢ (¢) -P_;ﬁ_t(y)dt

™ h (y?-1) g-1®
_ifTouE [T
=z /7% t Sln(ﬂt)é(t)Kt(x)dt,

o-1®
due to lemma 4.

Y =T i
v(x) = //;.xz Jl z;;:;;ajg fydy = —~ J

whence, according to lemma 3, we have the inversion,

or, a+ioe

t sin(1)¢(D)K, (x)dt,
o-1%

AT
o(t) = JO - K.,

provided the integral exists. Also,

_ i -%-u T e
o(t) = /; Jo K, ()v dv Jl Wf(y)dy
= @J — L& )/2 dy J e pTEH K,(dv .
1 (y2-»" 0

The change of order of integration can be justified due to absolute convergence, by
making use of the estimates of the Macdonald's function Kt(v) along with the condi-
tions imposed on the function f. Now the v-integral can be evaluated, [6,p.198(27)],
to give,

4B =G TG - u - DTG - w+ B Jl PP,y -

And from (3.3), we have finally,

]

© M
P = [ R 0

as required.

Thus we have a symmetric transformation, in that, if

L ot 1 1
) - z—ﬂj B smOBIG - - OG- w4 DR R0y,
then - ot
_ M
F(t) = Jl FWP_,, Wy,

defining a more general form of the Mehler-Fock transform of order p and arbitrary

index - %—+ t, where ¢t = 0 + Z1, - < T < o,
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Corollary: If the function f, satisfies the conditions of the above theorem, then

e S
. 1 1
@) = gi J ) Jl t 51n(nt)r(§-— T t)r(a-- u o+ t)Pﬁ%+t(y)PE%+t(u) fwdudt.
o+
(3.5)
Note that from the definition of g, in (3.3), we have
g(-t) = g(¥) (3.6)

Now we shall look at some of the special cases.

Let ¢ = 0. Then (3.1) reduces to

i
= J t sin(re)T(3 - u - t)I‘(% I RO

f = e it
1 (7 ) 1 sl T .
=5 J T 51nh(ﬂT)F(§-— T zT)T(E-- u o+ zT)P_%+¢T(y) F(it)dt .
Hence -
) = % J T sinh(vr)F(% -y - iT)F(% -u+ iT)PE%+iT(y)F(iT)dr,
0

using the properties (2.1) and (3.6),
N L “ u
where F(iT1) = Jl f(y)P_%+iT(y)dy,

giving us a generalized Mehler-Fock transformation [3].
Further if we put u = 0, then the above pair is reduced to

W)F(Zt)dr

fly) = Jo T coth(nT)P_%+iT

and

0

F(it) = L f(y)P_%M;T(y)dy;

the usual Mehler-Fock transformation of zero order [2, p.389]. Next, we shall derive,
formally, a Parseval type relation. Let us define the function F(%Z) and G(t) te be

the generalized Mehler-Fock transforms of the function f(y) and g(y) respectively, so

that -
- H
F(t) = [1 FWIP,, W)y
and -
G(t) = Jl g(y)P‘i%,rt(y)dy,

where ¢t = ¢ + <1, |0l < %3 Re y <1 and -» < 1 < », And of course, as proved above

IF(t)de,

P 1 1 u
@y = > . t 31n(wt)F(§ -u - t)F(E - u + t)P-%+t
o=t

and a similar formula for g(y).
Consider the integral,
P 1 1
o J t sin(nt)r(a-- T t)F(E-- u + )F(E)G(E)dE
g-1®

o+l
j V(E)F(t)G(L)dt, say

N
N|e

g-1w
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<

O-H:CD 00
%]

at y)P!
e V(E)F (L) J(1 WPy, (dy
0 o+ieo

- = Jl g(y)dy J

J g fydy .
1

e VF®PL, ()dy

Thus we have,
Theorem 2.
Let F and G be the generalized Mehler-Fock transforms of f and g. Then,
7

2

o+ 1 1
J t sin()TG - w - TG - u + DFE)GE)AE
o—im

o

= J Fygydy (3.7)
1

This is a formal derivation, but the analysis can be justified by absolute convergence,
using suitable conditions on the functions involved. If we set o = 0 in (3.7), we can
easily deduce that

% J T sinh(nr)I“(% - ir)r(% -+ LOFEDGE T
0

o

=J fWgywdy , (3.8)
1

a known result [3]. 1If, further, we put u = 0, then (3.8) reduces to [2,p.394],

L.J © tanh(mT)F(31)G(it)dr = J Fgdy
0 1

T
where,

F(i1) = Jl f(y)P‘_‘%ﬂ.(y)dy

and a similar representation for G(Zt).
Although the functions F and f satisfying (3.1) and (3.2) are defined for restricted

values of yu, one can formally extend the results as follows:

If .
U M 1 1 o
fly) = 2 J ot s1n(ﬂt)F(§ -m - t)FCE -m+ t) _%+t(y)F(t)dt, (3.9)
g=7%°
then -
F(?) = j f(y)P’_"L+t(y)dy (3.10)
1 2
where ¢t = 0 + 771, Icl < %3 ~o < 1 < oand m=0,1,2,... . And all the results derived
above hold. For instance, if o = 0, then we have from above,
o TG - m i)
fGy) = (-1) [ T tanh(rt) ————— P (y)F(iT)dt
. -3+ T
0 I'(+m+ 21)
where 2

F(iv) = fl PP )y
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If we léi F(%-— m+ i1)
G F(it),
F(§>+ m+ 711)
then - G- m i)
T = j o — PR CHETR
1 I'+m+ 21) B
or - 2
~ —m
fm(‘r) = JO f(y) P—;g"H:T (y)dy

using the property (2.2), where
fy) = " J T tanh(ﬂr)lff%HT(y)?m(T)dr
0

giving us a pair of Mehler-Fock transform of order m, [2, p.416]. It may be pointed
out here that one can prove Lemma 4, using the result of Theorem 1. In other words,

assume (3.1) and (3.2) hold one can show that if

. (otie
f@) = ?'“ZJ . & sin(n2)K, (v)F(2)dz

then . o=t
F(z) = Jo L0 g v, lof <%

the so called generalized Kontrovich-Lebedev transform. Cosequently one can say that
there is an equivalence between the generalized Mehler-Fock and generalized Kontrovich-
Lebedev transform.

A slightly different form of the Mehler-Fock transformation and its inversion,
can easily be established, by making use of the pair of Kontrovich-Lebedev transforms
[3, p.75(76)1,

1 o+iw
flz) = ﬁj ) th(x)g(t)dt (3.11)
o=1®
and o
g(#) =J O 1 wyaw (3.12)
0 v t
That is,

Theorem 3.

If o+i®
£ =1;17J P dz, oy € (1) (3.13)

O~7®

then -
g(z) = M L F) sz_'_z W) dv, Re p < 1, lo] <% (3.14)

where Pt and QS are the associated Legendre functions of first and second kind respec-

tively.

Alternatively,
F =

Zum o+iw
L) J

M —H
) J z P—%+z (y)Q_%+z (v)dvdz
o-ge 71
The proof of the above theorem is on the same lines as the proof of Theorem 1,

the linear operator used in the proof will now be
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LIf(y); y » x] = JO Ty Fray

which on applying to the equation (3.13), will reduce it to the form (3.11). Then

using the inversion (3.10), will produce equation (3.14), as desired.
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