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ABSTRACT. This paper is concerned with sequences that satisfy a class of fourth order
linear recurrence equations. Basic properties of such sequences are derived. In

addition, we discuss ‘the oscillatory and nonoscillatory behavior of such sequences.
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1. INTRODUCTION.

This paper is concerned with sequences that satisfy the recurrence equation
y (k+4) =4y (k+3)+(6+p (k+2) )y (k+2) =4y (k+1)+y(k) = O (1.1)

for k>0, where the coefficient function p is real, positive and defined on the set
of consecutive integers {2,3,4,...}. Using the difference operator in Finite Calculus,

we may write (1.1) in the form
A%y () +p (k+2)y (k42) = 0, k = 0,1,2,... (1.2)

A sequence or (discrete) function which satisfies (1.1) for all nonnegative integers
is said to be a solution of (1.1). We shall discuss in this paper various properties
of the solutions of (1.1) over the set of positive integers I+. In particular, we
shall discuss the oscillatory properties of the solutions over I+. In this paper,
the oscillatory behavior of a solution is described by means of the distribution of
its nodes. The concept of a node is defined as follows. Let f be a real valued
function defined on a set {a, a+l, ..., b} of consecutive integers. If the points

(k, £(k)), a s k < b, are joined by straight line segments to form a broken line, then
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this broken line gives a representation of a continuous function, henceforth denoted
by £°(t), such that f°(k) = f(k) for k = a,...,b. The zeros of f°(t) are called the
nodes of f(k).

Studies concerning our equation (1.1) do not seem to appear anywhere in literature.

Fortunately, the properties of the continuous analogue of equation (1.2),
4
y @ (©)4p(0)y(0) = 0, (1.3)

have been explored to some extent in a number of studies. We shall thus model part of
our investigations after some of these studies. Needless to say, techniques different
from those employed to deal with (1.3) have to be developed in order to study (1.1).
For related studies which provide background material and motivation to write this
paper, we refer the readers to the works listed in the references [1-6].

In the sequel, I denotes the set of nonnegative integers and I+ the set of positive
integers. If r € [k,k+l) where k is a nonnegative integer, we define r+ to be k+l. If
s € (k,k+1] where k is a nonnegative integer, we define s to be k. A node t of f(k)
is said to be simple if £(t ) # 0 and f(t+) # 0.

The following result is elementary but fundamental throughout our subsequent
development.

LEMMA 1.1. Two vectors (xl,yl), (xz,yz) and the origin are collinear if and only
if X1Y,7%,¥, = 0. Furthermore, X1Y)"Xy¥ is positive ;f and only if the vectors (0,0,1),
(xl,yl,O) and (xz,yz,O) form a right handed triad in R™.

LEMMA 1.2. Let f and g be real functions defined on a set of consecutive integers.
If f(ct+l) is positive, f(c) is nonpositive and g(c+l) is positive for some integer c,
and if g(k)f(k+l)-g(k+1)f(k) is nonpositive at k = c, then g(k) has a simple node t in
[r, ct+l), where r is the (simple) node of f(k) in [c,c+l).

PROOF. The vector (f(c+l),g(c+l)) is in the interior of the first quadrant of the
plane. By Lemma 1.1, the vector (f(c),g(c)) must lie in the set {(x,y)|0 > x> v} .
Consequently, g°(t) must have a unique zero in [r,c+l). Q.E.D.

We shall assume the reader is familiar with the notions used in the Finite Calculus
and the elementary theory of linear recurrence equations (see Fort [2]). In particular,
we note the existence and uniqueness theorem hold for our equation (1.1) and that the
solutions of (1.1) are continuously dependent on their initial values. We shall use

[f(k)](m) to denote the generalized factorial function, i.e.
0T ™ = £ (k1) £ (km2). .. £ (kmm+l).

We shall also need the following discrete analogue of Rolle's Theorem, the proof of
which is elementary.
LEMMA 1.3. Suppose the function f(k) has two nodes s and t where t > N > s for

some integer N, then the function Af(k) has at least one node in [s+—1, t+—l].

2. PRELIMINARY CONSIDERATIONS.

It is helpful to view equation (1.1) as a pair of second order difference equations



CLASS OF FOURTH ORDER LINEAR RECURRENCE EQUATIONS 133

AZx (k) = -p(k+l)y(kctl) 2.1)

A2y (k) = x(kHl), K=1,2,...

A solution of the system (2.1) is a vector valued function Z(k) = fx(k),y(k)} defined
on I+ and satisfies (2.1) there. Clearly, (2.1) is equivalent to (1.1) in the sense
that y(k) satisfies (1.1) on 1t if and only if {Azy(k—l),y(k)} = {x(k),y(k)} satisfies
(2.1) on I+. The system (2.1) is introduced because of its evident geometrical
significance. A solution Z(k) of the system (2.1) is a sequence of points in the x,y-
plane whose behavior is evidently dependent upon the initial values as well as the
function p(k). To facilitate discussion, we shall join the sequence of points Z(k),
k = 1,2,..., whenever possible, by straight line segments. The resulting continuous
polygonal curve shall be termed the continuous motion of the solution Z(k). Since the
parametric representation of the motion is x = x°(t), y = y°(t), we shall therefore
use 2°(t) to denote it.

Suppose Z(k) = {x(k),y(k)} is a nontrivial solution of (2.1). For each k > 1,

denote
x(k)y (k+1) =y (k)x (k+1) = x (k) Ay (k) -y (k) Ax (k)

by W(k) or W(k,Z). The geometrical interpretation of W(k) is clear. It is the signed
area of the triangle with vertices (0,0), (x(k),y(k)) and (x(k+l),y(k+l)) multiplied
by two.

LEMMA 2.1. W(k) = 0 at k = N if and only if the points (0,0), (x(N),y(N)) and
(x(N+1),y(N+1)) are collinear. Furthermore, W(k) > 0 at k = N if and only if the
vectors (0,0,1), (x(N),y(N),0) and (x(N+1),y(N+1),0) form a right-handed triad.

The above Lemma follows directly from Lemma 1.1. Note that
AWK = x(k+1)AZy (k) -y (1) AZx (k) = x2 (kt1)+p (k1) y2 (kHl), Kk = 1,....

Since p(k) is positive for k = 2,3,..., W(k) is monotone increasing for k = 1,2,...
and AW(k) = 0 if and only if Z(k+l) = 0. Consequently, AW(k) cannot vanish at two
consecutive integers. It follows that

THEOREM 2.2. W(k) cannot vanish at three consecutive integers, furthermore, it
is a strictly increasing function for k > 1 with the possible exception of two
consecutive integers N and N+l at which W(N) = W(N+1).

It is possible that W(k) = W(k+l) = 0 at k = N (so that Z(N+l1) = 0), however,

THEOREM 2.3. If W(k) = W(k+l) = 0 at k = N, then 2°(t) # O for any t € [N,N+1).

For otherwise Z(N) must vanish which contradicts our assumption that Z(k) is
nontrivial. Since the vectors (x(k),y(k)), (x(k),x(k+l)) and (y(k),y(k+l)) cannot be
zero whenever W(k,Z) # 0, as a corollary of Theorem 2.2, we have

THEOREM 2.4. Let Z(k) = fx(k),y(k)} be a nontrivial solution of (2.1). Then the
vectors (x(k),y(k)), (x(k),x(k+l)) and (y(k),y(k+l)) cannot vanish at two nonconsecutive
integers.

In particular, if one of these vectors vanishes at k = N, then the nodes of x(k)

and y(k) in [1,N-1) and (N+2,*) must be simple.
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If the continuous motion of a nontrivial solution Z(k) is free of (vector) zeros

over & subinterval J of [1,®), we may introduce the usual polar coordinate (R(t),8(t))
of any point on the curve over this subinterval. Since Z°(t) is continuous over J,
6(t) is also continuous there. Furthermore, if W(k,Z) is positive at k = N, then 0(t),
in view of Lemma 2.1, is continuous and strictly increasing on [N, N+1]. By finite
induction, we easily conclude that if W(k,Z) is positive (W(k,Z) is negative) for
k = M,...,N where M, N belongs to I, then 6(t) is continuous and strictly increasing
(resp. strictly decreasing) on [M,N+1]. In view of Theorem 2.2, W(k,Z) is negative for
k =1,... or else W(k,2) has at least one node in [1,®). In the first case, 2°(t) # O
for any t in [1,») so that 8(t) is well defined, continuous and strictly decreasing on
[1,2). In the latter case, we infer from Theorem 2.2 and Theorem 2.3 that Z°(t) may
only vanish at some point T but 2°(t) = 0 for t Z.T+ and 1 <t < T+—l. Suppose 9(T+-1)
belongs to [Mm,(M+2)T) for some integer M, and GO = arctan(y(T+)/x(T+)), we shall
define 6(t) for t ¢ [T+—1,T) to be 0(T+-l) and 6(t) for t € [T,T+] to be 60+(M—2)ﬂ.
The function 6(t) so defined on [1,*) shall be called the phase function of Z(k). We
shall also call R(t) the norm function of Z(k). Note that R(t) and 6(t) are piecewise
differentiable functions on [1,%).

Suppose Z(k) = {x(k),y(k)} and F(k) = fu(k),v(k)} are two solutions of (2.1).

Consider the linear combination

H(k) = aZ(k)+BF(k), a,B € R.

Straightforward calculations will yield the following two equalities:

Ax (k) Av (B)+y (k) Au (k) -u (k) Ay (k) -v (k) Ax (k) }

AMx (k) v (k+1)+y (k)u (k+1) =u (k) y (k+1)=v (k)% (k+1) } (2.2)
= 0

and

Wl H) = aW(k,Z)+82W (k, F)+aB f (1) v (k+1)+u (k) y (k1) -y () u (k1) v () x (k+1) ). (2.3)

THEOREM 2.5. Let Z(k) = {x(k),y(k)} and F(k) = {u(k),v(k)} be nontrivial solutions
of (2.1). If there exists a number y in [1,®) such that the points (0,0), Z°(u) and
F°(u) are collinear, then there exists a nontrivial pair {a,B} of real numbers such that
H(k) = aZ(k)+BF(k) is a solution of (2.1) satisfying H°(u) = 0. If in addition Z°(u) is
not zero, F°(u) is not zero and the corresponding phase functions 6(t) and o(t) of Z(k)
and F(k), respectively, satisfy 6(u)-o(u) = nm for some integer n, then (-l)naB <0.

PROCF. If Z°(u) = 9 or F°(u) = 0, we may choose a = B = 1. Otherwise, the

algebraic system

ax® (u)+Eu® (1)
ay® () +Hov® (1)

0

has a nontrivial solution {n,B}. Clearly, H(k) = aZ(k)+BF(k) is a solution of (2.1)
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with Z°(u) = 0. Note that of <0 if and only if x°()u’(u) > 0 or y°(u)v°(u) > O.
Consequently, if 6(u)-o(u) = nm, then (—l)naB <0.
If the behavior of a solution of (2.1) is known for k > n, then it is sometimes
possible to deduce its behavior for k = 1,..., n-1 by the following easily verified
THEOREM 2.6. Let fx(k),y(k)} be a solution of (2.1) and let m, N be positive
integers, Let k = N+m-j and let X(j) = x(N+m-j) and Y(j) = y(¥+m-j), then &X(3),Y(H)}
satisfies
8%x(3)
8%1(3)
for § = 1,2,...,N+m-1.

-p (Hm-j-1)Y(§+1)
X(3+1)

We close this section by the following remark. For any nontrivial solution

Z(k) = {x(k),y(k)} of (2.1), since the function W(k,Z) can be written as a determinant,
x(k) y(k)

x(k+1) y(k+l)

W(k,z) =

its value is thus invariant under simple coordinate rotations of Z(k) in the x,y-plane

x(k)

x(k)cosb+y (k)sinb

;(k) -x(k)sinf+y(k)cosb .

3. MONOTONICITY THEOREMS.
Let Z(k) = {x(k),y(k)} be a nontrivial solution of (2.1) and let R(t) and 6(t) be

its corresponding norm and phase function. Suppose ¢ > 1 and 60 are real numbers such
that R(0) = 0, R(¢") = 1 and 6(0) = 6, then we call Z(k) a (3,8,

of (2.1). It is easily seen that a (0 ¢} )—nr1nc1pal solution of (2. 1) exists and is

-principal solution

uniquely determined by the pair (0,0 ) In view of Lemma 2.1, W(U -1,Z) = 0 for a
(0,8 )—princlpal solution Z(k). Furthermore we infer from Theorem 2.3 that W(c ,2) is
posltlve, and therefore, by Theorem 2.2, W(k,Z) is positive for k 2_0+. From these
considerations, we see that the corresponding continuous motion Z°(t) passes through
the origin at t = 0 and if it crosses the x or y axes for t > 0, it crosses them in a
counterclockwise manner.

THEOREM 3.1. Let Zl(k) = {xl(k),yl(k)} and Zz(k) = {xz(k),yz(k)} be respectively
the (0,91)— and (0,62)-principal solutions of (2.1) with corresponding phase functions

Gl(t) and Bz(t) respectively. If nm < 62-61 < (n+l)m for some integer n, then
nm < Bz(t)—el(t) < (n#l)T (3.1)

for t > o.
PROOF. Since 9 (t) = 8 and 9 (t) = 9 on [O, 0+] hence (3.1) holds for ¢ <t < 0+.

Suppose there is a real number c in (0+ o +l] such that 6 (c) =6 (c)+nﬂ or

ez(c) = el(c)+(n+l)n, then the points Zi(c), 2(c) and the origln are collinear.

Consequently, by Theorem 2.5, there exists a nontrivial pair {o,B}of real numbers such

that Z(k) = aZl(k)+BZZ(k) is a solution of (2.1) satisfying Z°(c) = 0. Since
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Zi(o) Z (o) =0, 2° (0) is therefore equal to zero. Consequently, W(k,Z) vanishes
at k = —1 and at k = ¢ -1 If ¢ —1 > 0+, Theorem 2.2 is contradicted. If O+ = c+-1,
Theorem 2.3 is contradicted since Z°(0) = 0. Our assertion thus holds for
0+ <t < 0++1. Finally, if there is a real mumber d in (0++1,m) such that
5] (d) =0 (d)+nﬂ or 6 (d)+(n+l)m , then similar arguments will show that (2.1) has a
nontr1v1a1 solution H(k) of (2.1) such that W(G ,H) = 0 and W(o -1,H) = 0 which
contradicts Theorem 2.3. Q.E.D.

THEOREM 3.2. Suppose Zl(k) = {x (k),yl(k)} is the (0,9 )—principal solution of
(2.1) with phase function Gl(t). Let Z,y k) = & (k),yz(k)) be a nortrivial solutlon
of (2.1) with phase function ez(t). Suppose w(d+—1,z ) >0 and for t € [o,0 ],

61+nﬂ < ez(t) < 91+(n+l)ﬂ, (3.2)
then for t > 0+
el(t)-mw < 92(:) < el(t)+(n+2)TT. (3.3)

PROOF. In view of the Remark mentioned at the end of the previous Section, we may,
by rotating the coordinate axes if necessary, assume that n = 0 and 91 = 0. this is
because our arguments below will involve only the values of the function W(k). Suppose
to the contrary that for some c in (0+,w), (3.3) is violated. Then by Theorem 2.5,
there is a nontrivial pair {a,B} such that af < 0 and the linear combination
Z(k) = aZl(k)+822(k) satisfies Z°(c) = 0. This shows w(c+—1, Z) = 0. However, by
substituting k = 0+-l into (2.3), we have

+ + + + +
W(o'-1,2) > aBlx, (0" -1)y, (0 )-y, (0 -1)x,(c )} .
Next, we assert that
+ + + +
¥y (0 =1)x; (6)-y, (0 )x, (0 -1) > 0.
Indeed, since x1(0+-1)_f 0, xl(0+) >0, y2(0+) > 0 and yz(c) ~ 0, we would obtein a
contradiction to Lemma 1.2 if the above inequality does not hold. Consequently,
W(O+—1,Z) > 0 which, together with W(c+—1,Z) =0 and Z°(c) = 0 contradict either

Theorem 2.2 or Theorem 2.3. Q.E.D.
We remark that if (3.2) is replaced by

141
61+mr < 92 (t) < el+(r_+ﬁ)n,
then by continuous dependence of solutions on their initial conditions, we may replace
(3.3) by

e (t)4nm <e (t) <e )+ (@i2)m

As an immediate corollary of the above Theorem, we have

COROLLARY 3.3. Suppose Z; (k) = {xl(k),yl(k)} and Z,(k) = {xz(k\,yz(k)} are res-
pectively (01,90)— and (02,60)—principal solutions of (2.1). 1If 0; <0, and
am < 6,(0,)=6,(0,) < (ntl)m, then

nn < el(t)—ez(t) < (n+2)m

for t > o,.
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The next result concerns the relationship between the phase functions on [1,m) of
the (m,0)-principal sclution and a solution Z(k) satisfying W(m,Z) <O. The procf is
similar to those of Theorems 3.1 and 3.2 and is thus omitted.

THECREM 3.4. Let m be a positive integer and let Zl(k) = {xl(k),j,"l (k)} be the
(m,0)-principal solution of (2.1). If Zz(k) = {xz(k),yz(k)} is a solution of (2.1)

satisfying W(m,Z,) <O and for some integer n,
nm < ez(m) < (n+l)m,
then for 1 <t <m,
61(t)+mT <82(t) <91(t)+(n+2)11.

THEOREM 3.5. Let Zl(k) = {xl(k),yl(k)} be a (0,61)—principal solution with phase
function el(t). Let Zz(k) = {xz(k),yz(k)} bte a nontrivial solution of (2.1) with phase
function ez(t). Suppose w(0+—l,22) > 0 and 62(0) = 61+nﬁ , then for t > 0,

el(c)-mn < ez(t) < el(u)a. (n+1)m. (3.4)

PROCF. We shall only sketch the proof. Assume without loss of generality that
n = 0 and 61 = 0, It is clear from Lemma 2.1 that (3.4) holds for o < t < 0+. If a
number c exists in (0+,m) such that (3.4) is violated, then a nontrivial combination
z2(k) = aZl(k)+BZZ(k) satisfies Z°(c) = 0 and W(c+—1,Z) = (. Dy substituting
W(o'-1,2)) = 0, y,(6'-1) = y, (@) = 0 into (2.3), we obtain

W(o*-1,2) = BP0(o"-1,2,)406 By (6F-D)y, 60y, (F-1)x (@D

But since the points (0,0), (xl(c+—1),y2(c+—l)) and (xl(OJ‘,y2(0+)) are collinear,

therefore by Lemma 1.2,
%, 071y, (0D)-y, (¢*-)x, (1) = 0.
Thus w(0+—1,Z) > 0 which contradicts the fact that w(c+-l,Z) = 0.

An important relationship exists between (m,0)- and (n,0)-principal solutions
where m, n € I+.

THEOREM 3.6. Suppose m and n (m <n) are distinct positive integers and suppose
{xl(k),yl(k)} and -&z(k),yz(k)} denote,respectively, the (m,0) and (n,0)-principal
solutions of (2.1). Then yl(n) = - yz(m).

PROOF. 1In view of (2.2),

xl(k)yz(k+1)+y1(k)xz(k+l)—x2(k)yl(k+1)—y2(k)xl(k+1) = constant,

consequently, by substituting k = m and n into the above identity respectively, we
obtain yl(n) = —yz(m).

COROLLARY 3.7. Suppese the phase function 6(t) of the (1,0)-principal solution
satisfies 0(t) <nT for some integer n and all t > 1. Then for any m in I+, the phase
function yY(t) of the (m,0)-principal solution satisfies U(t) <am for 1 <t <m.

The proof of the following is similar to that of Theorem 3.6.

THEORE}M 3.8. Suppose m and n (m+l < n) are positive integers. Let &(k),y(x)}
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be the (m,0)-principal solution of (2.1). If ﬁa(k),v(k)} is the solution of (2.1)
satisfying u(n-l) = ~1, v(n-1) = u(n) = v(n) = 0, then y(n) = -v(m).

4. SEPARATION THEOREMS.

For any nentrivial solution Z(k) of (2.1), the corresponding phase functiorn either

strictly decreases on [1,®) or else strictly decreases on [l,T+—1), is constant on
[T+—1,T), constant on [T,T+] and strictly increases on [T+,m). Consequently, the
continuous motion must cross the x and y axes alterantely on [1,) with the possible
exception of a point T in [1,®).

THEOREM 4.1. Let fx(k),y(k)} be a nontrivial solution of (2.1). Then the nodes
of x(k) and y(k) are simple and separate each other on [1,~) with the possible exception
of a neighborhood of a point T in [1,~). This neighborhood is of length at most two.

THEOREM 4.2. Suppose Zl(k) = {xl(k),yl(k)} and ZZ(k) = {xz(k),yz(k)} are linearly
independent solutions of (2.1). Suppcse yl(k) and yz(k) vanish at two consecutive
integers N and F+1, then the nodes of yl(k) and yz(k)—both in [1,N-1] and [N+2,®)-
separate each other.

PROOF. By Theorem 2.4, the nodes of yl(k) and yz(k) in (N+2,©) are simple.
Suppose to the contrary that yl(k) has two consecutive nodes Vv and p in [N+2,%) such
that yg(t) # 0 for v <t <yu. Since u is simple, N+2 <V <y <u. At some point
o € (v,u), the vectors (xi(c),yi(o)), (0,0) and (xE(G),yE(G)) must be collinear.
Consequently, by Theorem 2.5, there exists z rontrivial pair {o,B} of real numbers
such that Z(k) = oZ (k)+BZ (k) satisfies 2°(0) = 0. Thus w(0+—1 Z) = 0. However, by
substituting yl(N) yz(N) = yl(N+l) = y2(N+l) = 0 into (2 3), we obtazin W(N,Z) =
This implies W(k,2) > 0 for k > N+2 which contradicts W(o -1,2) = 0. Similarly, we can
prove that the nodes of yl(k) and yz(k) in [1,N-1] separate each other. Q.E.D.

Several other separation theorems can be proved by similar techniques. We shall
give two more of these and sketch the proof of the first one.

THEOREM 4.3. Let Zl(k) = {xl(k),yl(k)} be a (0,61)—principal solution of (2.1)
with phase function Gl(t). Let Zz(k) = {xz(k),yz(k)} be a nontrivial solution of (2.1)
with phase function 6,(t). Suppose W(O+-l Z ) > 0 and 92(0) = 61, then the nodes of
yl(k) and yz(k) in [0 ,») separate each other.

PROOF. Note first that by Theorem 2.4, the nodes of yl(k) and yz(k) in (0 ,@
are simple. Next we note that both 6 (t) and 6 (t) are strictly increasing on (0 ,©) .
By Theorem 3.5, for t > O, Gl(t) < 62(t) < Sl(t)+ﬂ. Consequently, 'l(k) and yz(k)
cannot vanish simultaneously fer k = 0+. Furthermore, between two nodes of yl(k), yz(k)
has exazctly one node. This concludes the proof.

THEOREM 4.5. Let {xl(k),yl(k)} and {xz(k),yz(k)} be respectively the (0,61)—
anc (0,62)—principal solutions of (2.1) with corresponding phase functions Gl(t) and
Gz(t). If nm < 62—61<.(n+l)ﬂ for some integer n, then the nodes of yl(k) and yz(k)

. +
in [0 ,») separate each other.
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5. NXNONOSCILLATICON THEOREMS.

A scalar function h(k) defined on I is said to be oscillatory if it has arbitrary

large nodes and nonoscillatory otherwice. Let K be a nonempty subset of the plane. A
vector valued function Z(k) is said to be K-nonoscillatory on a set of consecutive
integers b if the set Z(k)|k € B} is contained in K. Denote the i-th open quadrant
of the plane by Ki' Suppose Z(k) is a solution of (2.1) such that neither of its
components is oscillatory. Then in view of Theorem 4.1, there exists some integer
ie {1,2,3,4} such that Z(k) is Ki—nonoscillatory for large k. The converse is
obviously true. Thus we may, in our subsequent discussions, identify a nonoscillatory
solution of (i.1) with a Ki—nonoscillatoty solution of (2.1) as equivalent concepts.

THEOREM 5.1. Suppose {x(k),y(k)} is a solution of (2.1) such that either x(k) or
y(k) is nonoscillatory. Then x(k)y(k)Ax(k)Ay(k) # O for large k. Furthermore, if
y(k) > 0 for large k, then {Ax(k),Ay(k)! is Kl—nonoscillatory for large k.

PROOF. Since both x(k) and y(k) are of one sign for large k, and since
Azx(k) = -p(k+l)y(k+l) and Azy(k) = x(k+1), it then follows from Lemma 1.3 that Ax(k)
and Ay(i) are of one sign for large k. The first part of Theorem 5.1 is thus proved.
Suppese y(k) > O for large k. Assume first that x(k) > 0 and y(k) > O for k > n,
where n € I+. We assert that Ax(k) > 0 for k > n. Indeed, if Ax(m) <0 for some
m > n, then from (2.1), we get

k-1
Ax(k) = Ax(m)- ] p(3+1)y(j+1) <O
j=m

for k > m. But this contradicts the fact x(k) > 0 and Azx(k) <0 for k > m. Next we
assert that Ay(k) > 0 for large k. To see this, we first observe from (2.1) that
Ay (k) = Ay(n)+[x(n+l)+...+x(k)]. Since we have just shown that Ax(k) > 0 for k > n,
thus Ay(k) > Ay(n)+(k-n)x{n). The desired conclusion follows immediately by letting
k approach infinity.

Next we assume x(k) <0 and y(k) > C for k > N, where N is a positive integer.
The fact that Ay(k) > C for k > N can be proved in a way similar to the proof of
Ax(k) > 0 above. To see that Ax(k) > 0 for k > N, assume to the contrary that

Ax(M) <O for some M > N. Then from (2.1), we have
Ax(k) = AxM)-[p(HL)y M+1)+...4p(k)y(k)]< O
for k > M and
0 <Ay(k) = Ay(M)+[x (ML) +.. . 4x (k)] < Ay M)+ (k-M)x (M) .

By letting k approach infinity, a contradiction is obtained since x(M) <O. Q.E.D.
COROLLARY 5.2. Suppose fx(k),y(k)} is a solution of (2.1) which is K,-
nonoscillatory for large k, then x(k)/y(k) approaches zero as k approaches infinity.
PROOF. Since x(k) and y(k) are monotone increasing by Theorem 5.1 and since x(k)
is bounded above by zero, it suffices to show that y(k) approaches infinity or x(k)

approaches zero. If x(k) does not approach zero, then the series x(N+1)+x(N+2)+...
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diverges to negative infinity, thus from (2.1), Ay(k) = Ay(N)+[x(N+1)+...+x(k)] > —=,
Consequently, y(k) cannot remain positive for large k.
THEOREM 5.3. Let y(k) be a solution of (1.1) which is positive for large k, then
Lim 8%y () = Lim 6y @) /&),
koo ke
Both limits are finite.
PROOF. Let N € I+ such that y(k) > 0 for k > N. Summing (1.1) four times, we

obtain

k
ylers)+ Y (k=j+3) )

j=N

p(3+2)y(3+2)/6

= yQH3)+Ay (N+2) (k-N+1)+42y (L) (k-t2) (2 72403y oy (e 3) B (5.1)

Denoting the right hand side of the above equality by R(k),we have

(3)

lim 6R(K)/ (k-0+3) ) = A3y (). (5.2)

k>

Since y(k) > 0 for k > N, we have from (5.1) that

K
6R() < by (kth)+(k-N+3) ) T p(342)y(G42) = 6y (ktd )+ (kw43) B [a3y any-03y 1) 1.
§=N
So that, by (5.2),
lim A%y () < liminf 6y (k) / (k-w3) 3

koo k>0

Next choose integer m such that N < m < k, then from (5.1) we obtain

T o (3. ) (3);,3 3
6R(k) > 6y (k+4)+ Y (k=3+3) UV p(G42)y (3+2) > 6y (kb )+(k-m+3) T [ATy(N)-ATy (m+l)].
j=N -

y 3

Dividing through by (k-N+3 and keeping m fixed, we obtain

8Py @ty > limsup by (kes)/ (k-we3) 3.
koo
Since this holds for all m > N and since A4y(k) < 0 for k > N,we obtain
lim A%y (k1) > limsup 6y (k+4) / (k-t3) 3.
k> koo
This concludes the proof.

In view of Theorem 5.1 and that (1.1) is linear, we may classify nonoscillatory
solutions of (1.1) and thus (2.1) into two classes. We say that a nonoscillatory
solution y(k) of (1.1) is Class I if some constant multiple of {Azy(k—l),y(k)} is
K,-nonoscillatory for large k, and class II if some constant multiple of {Azy(k—l),y(k)}

ii Kz-nonoscillatory for large k. In other words, if y(k) > O for large k, then it is
Class I if and only if Ay(k) > 0, Azy(k) > 0 and A3y(k) > 0 for large k; it is Class
ITI if and only if Ay(k) > O, Azy(k) < 0 and A3y(k) > 0 for large k.

Clearly, if y(k) > O for large k and is Class I, then y(k) > A > 0 for large k.

On the other hand, if y(k) > 0, Ay(k) > 0, Azy(k) < 0 and A3y(k) > 0 for k > N where
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N € I+, then summing
Ay () = —p(G+1)y(J#1) <0
from j = N to j = k-1 four times, we obtain,
2),2 (3),3
y(k) < y(N)+(k-N) by 0+ (k-) D aZy vy 72+ ae-0) PPy vy 6
<y N+-N) by W)+ k-N) B | a2y ) | 72+ Ge-w) B3y vy /6.

Thus y(k) < C(k-N)(3) for large k, where C is a suitably chosen positive constant.
The following is now clear.

THEOREM 5.4. Suppose y(k) is nonoscillatory solution of (1.1). Then there are
such that Cl_f ly (k)| =< Czk(B) for large k.

positive constants C, and C

We say that a ninosciliatory solution y(k) of (1.1) is asymptotically constant
if there exists some constant Cl # 0 such that y(k) > C1 as k > ®, and asymptotically
cubic factorial if there exists some constant C2 # 0 such that y(k)/k(3) - C2 as k > o,
According to Theorem 5.4, we may regard asymptotically cubic factorial solutions as
"maximal" and asymptotically constant solutions as "minimal". We now discuss some
necessary conditions and sufficient conditions for their existence.

THEOREM 5.5. A necessary condition for (1.1) to have an asymptotically constant

solution y(k) is that
] k@) <= . (5.3)

PROOF. Let y(k) be an asymptotically constant solution of (1.1) and assume
without loss of generality that y(k) > O for large k. y(k) must be a Class II solution
and thus there exist positive constants Al,A2 and integer N > 3 such that Ay(k) > O,
Azy(k) <0, A3y(k) > 0 and A < y(k) < A2 for k > N. Upon multiplying (1.1) by k(3)
and summing from N to k-1, we obtain

0< lej O (342)y (542) = -
3=N 3

T3 Oty
=N
= D3y )43k D a2y (k41) -6kAy (k+2)+6y (k3)+C
where C is a constant. But since
3435 )43 BV a2y (ki+1) -6kdy (k42) <0

for k > N and since y(k) is asymptotically constant, thus

OZO NO
j=N

p(3+2)y(3+2) <.

Since Ay(k) > O for large k, thus

3)

v.3)

yH2) T3 p(G+2) < §3 T p(3+2)y(J42) <
N N

as required. Q.E.D.
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THEOREM 5.6. A necessary condition for (1.1) to have an asymptotically cubic
factorial solutien is that (5.3) holds.

PROOF., Let y(k) be an asymptotically cubic factorial solution of (1.1) and
assume without loss of generality that y(k) > 0 for large k. Then y(k) is Class I and

thus there exist positive numbers A , A, and integer N > 3 such that Ay(k) > O,

2 3 ey L2 3)
A"y(k) > 0, A"y(k) > O and Alk <yk) < Azk for k > N. Upon summing (1.1) from

N to k-1, we obtain

3 3 ko1
© > Ay(N) = Ay (k)+ ] p(§+2)y(§+2)
3=
5t kst o)
> TrGeyG) > 4 | pled)k
j=N j=N

as required. Q.E.D.

THEOREM 5.7. A sufficient condition for (1.1) to have an asymptotically cubic
factorial solution y(k) is that (5.3) holds.

PROOF. Choose N so large that p(M2) < 10, p(N+2)+p(N+3) < 5 and the series
N(3)p(N)+... < 5. Consider the solution of (1.1) determined by the initial conditions
y(N-1) = y(N) = y(N+1) = 0 and y(N+2) = 1. From (1.1), we can calculate successively
that y(N+3) = 4, y(N+4) = 10-p(¥+2) and y(N+5) = 20-4[p(N+2)+p(N+3)]. For k > N+6, we
sum (1.1) four times to obtain

k-2
6y = 0 P- T ae34) Py (). (5.4)
j=N+2
Clearly, y(k) > 0 for N+3 < k < N+5. Assume y(k) > 0 holds for M5 < k < m, we shall
prove that y(m+l) > 0. Note first that our induction hypothesis implies 6y(k) < (k-N) 3
for M2 < k < m2. Since

m-1

m-1
I @) Ppmy@ < @@ Y 563) 0P /6 < @m® < @wn®
j=M+2 j=N+2
thus
@) =t 3)
6y(mtl) = (m-N+1) /- § (m-j+2) “7’p(§)y(3) > oO.
§=N+2

Consequently, y(k) > 0 for all k > M2. 1In view of (5.4), y(k) < (k-N) (3)/6 for

k > N+2. Furthermore, from (1.1),

3) k-}-:l}
j=N+2

M) 3 < 6y (k) +(k-n-1) G-m Poare,

)(3).

so that 1/6 < y(k)/(k-N It follows now from Theorem 5.3 that the limit of
y (k) / (k-N) G exists. This concludes the proof.
We conclude this section by the next result which shows that (5.3) is also

sufficient for (1.1) to have an asymptotically constant solution.
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THEOREM 5.8. A sufficient condition for (1.1) to have an asymptotically constant
solution is that (5.3) holds.

PROOF. The required solution of (1.1) will be obtained with the aid of the
following equation:

k ©
v = 1+ § Do)y ++ T IkG-i1) D24 @ (5-1) 124 P 61p (342)y (542, 5.5)
joN ik

where we choose N so large that

1 25) Ppe2) < 172,
=N

As can be verified directly,

v = ¥ G-k+2) P ps+)y (342) /2,
j=k

My = T (k-i-1)p(3+2)y(i+2),
i=k

¥ p(G+2)y(j+2)
j=k

A3y(k)

and Ahy(k) = -p(k+2)y(k+2). We shall find a solution to (5.5) which is asymptotically

constant. For this purpose, we define a sequence of sequences as follows:
yok) =1

ym+l(k) is obtained by substituting ym(k) into the right hand side of (5.5).

Clearly, 1 f_yo < 2. Moreover,
1<y, 00 < 141/12+ 3 1kg @ /24P 5720 1645 610 (342) < 2.
j=k

Similarly, we may show by induction that 1 f.ym(k) < 2 for all m > 0 and k > N. Next

we observe that

k oo

|y, 00y, | = | T 3P p#2)/6+ ] [e(-kr1) P 124 -1 1243 1610 (542) | < 176,
=N ik

and inductively, |ym(k)—ym_l(k)| f_l/Gm for all k > N. Consequently, ym(k) converges

to some limiting function y(k) uniformly. This function is a solution of (1.1),

furthermore, since it is bounded between 1 and 2 for large k, it is an asymptotically

constant solution.

6. OSCILLATION THEOREMS.

In this section we consider several results concerning with the oscillatory

solutions of (1.1). According to the considerations in Section 2, it is clear that y(k)
is an oscillatory solution of (1.1) if and only if {Azy(k—l),y(k)} is a solution of
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(2.1) and |6(t)]| > @ as t ~ . We say that a solution {x(k),y(k)} is rotary if
1im|6(t)| = ® as t > », In view of Theorem 2.2, we expect that the behavior of a
rotary solution depends on whether W(k) has a node in [1,®) or W(k) < O for all k > 1.
In order to simplify the statements of our latter results, we make the following
definitions. A nontrivial rotary solution Z(k) of (2.1) is said to be Type I if W(k,Z)
has a node in [1,%), otherwise it is said to be Type II. We shall first characterize
the behavior of Type I and Type II solutions. Suppose {x(k),y(k)} is a nontrivial
solution of (2.1). Suppose further that o is a node of x(k) such that W(a+-1) >0
and y°(a) > 0. 1In view of Theorem 2.2, W(k) > 0 for k Z_a+ so that by Theorem 2.4,
Rz(t) >0 for t z_u+—1. Furthermore, if B is the first node of x(k)y(k) in (a,x),
then B must be th= first node of y(k) in (a,®) so that (x°(t),y°(t)) lies in K2 for
each t € (a,B). We assert that if B € I+, then ARZ(B—l) > 0 and ARZ(B) > 0. To see
these, we first note that B-1 = u+—l, we easily infer from W(B-1) > 0 and W(B) > O
that Ay(B-1) < 0, Ay(B) < 0, Ax(B-1) < 0 and Ax(B) < 0. If B > a+, W(B-1) > 0 and
W(B) > 0 again imply Ay(B-1) < O and Ay(B) < 0. Furthermore, from (2.1), we have

B-2
Mx(B) = Mx(B-1) = Ax(ot-1)- T p(k+l)y(k+l) < 0.

k=a+—l

Since ARz(k) = sz(k)+ Ayz(k), consequently, ARZ(B—l) > 0 and ARZ(B) > 0 as required.
Next, suppose B is not an integer, we assert that ARZ(B+—1) > 0. The assertion is
easily verified if B+—1 = o1, Otherwise, y°(B) = 0, y(B+—l) > 0 and W(B+—l) >0
imply the chain of conclusions RZ(B) # 0, Ay(B+—l) <0, y(B+—l)Ax(B+-1) = -W(B+—l) <0
and Ax(8+-l) < 0. The assertion is thus proved. We summarize these as follows.

LEMMA 6.1. Suppose Z(k) = {x(k),y(k)} is a nontrivial solution of (2.1). If a
and B (0 < B) are consecutive nodes of x(k)y(k) such that W(a+—l) > 0 and R2(a) #0,
then W(B¥-1) > 0, B%(B) # 0, ®*)'(BH > 0 and D' (8-) > 0.

THEOREM 6.2. Suppose Z(k) = {x(k),y(k)} is a nontrivial solution of (2.1) such
that W(a+—1) > 0 for some o € [1,©). Then W(B+-l) > 0, RZ(B) # 0, (Rz)'(B—) > 0 and
(R2)'(8+) > 0 at any node B (except possibly the first one) of the function x(k)y (k)
in (a7 ,).

It follows from the above Theorem that if {x(k),y(k)} is a Type I solution of
(2.1), then for large t, its corresponding continuous motion is a "positive polygonal
spiral" and at any time it crosses the x or y axes, Rz(t) # 0 and (Rz)'(t-) > 0,

&%) e > o.

We now turn our attention to Type II solutioms.

THEOREM 6.3. Sunpose Z(k) = {x(k),y(k)} is a solution of (2.1) such that W(k) < 0
for 1 < k < N. Suppose o and B (o < B < N) are nodes of the function x(k)y(k) such
that R2(a) # 0 and (R2)'(o=) < 0, (RD)'(o#) < 0, then R2(B) # 0 and (R%)'(B-) < O,
(Rz)'(8+) < 9, except possibly when B is the last node of x(k)y(k) in (a,N).

PROOF. Suppose without loss of generality that x°(a) = 0 and y°(a) > 0. To prove

the Theorem we assume that B and 1 are the first and the second nodes, respectively,
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of the function x(k)y(k) in (a,N). Clearly, our assumptios imply that the corresponding
motion of Z(k) is contained in Kl for a < t < B. Note that Rz(B) # 0 since W(k) < O

for k > 1. Consequently, if B is not an integer, then Ay(B+-1) < 0; and if B is an
integer, Ay(B-1) < 0 and Ay(B) < 0. To complete the proof, we shall show that

Ax(B+—1) < 0 if B is not an integer and Ax(B-1) < 0, Ax(B) < 0 if B € I+. In the first
case, if Ax(6+—1) > 0, then p is the first node of x(k) in (B,») so that Ax(u+—1) <0

and y(k) < 0 for B+ <k §.u+—1. From (2.1), we obtain
+
-2

+ + e . .
bx(u'-1) = Mx(B-1)- ] p(3+l)y(i+l) > 0
+
j=8"-1
which is a contradication. In the latter case, we obtain from (2.1) that

B-2
Ax(8) = Ax(B-1) = Mx(a™-1)- J  p(i+1)y(3+1) < 0.

j=a+—1
This concludes the proof.
THEOREM 6.4. Suppose Z(k) {x(k),y(k)} is a nontrivial solution of (2.1). If
o and B (a < B) are consecutive nodes of x(k)y(k) such that w(a+—1) <0, Rz(a) #0
and (®%)'(@-) > 0, (®%)'(a#) > 0 then RZ(B) # 0, W(B'-1) > 0 and ®H)'(8-) > 0,
&%) (8+) > 0.
PROOF. Assume without loss of generality that x°(a) = 0 and y°(a) > 0. We assert

that B must be the first node of x(k) in (a,®). Otherwise, B would be the first node
of y(k) in (a,~) so that Ay(8+-1) < 0. But since our assumptions imply that
Ay(a+—1) > 0, from (2.1), we obtain
+ + BT-2
Ay(B'-1) = Ay(a -1)+ ] x(j+1) >0

.+

j=a -1
which is a contradiction. Now that B is the first node of x(k) in (o,®), Ax(B+-1) < 0.

Moreover, from (2.1),

+ k-1
Ay(k) = Ay(o -1)+ §  =x(j+1) > 0
.
j=a -1
for a¥-1 < k < %1 so that &%(8) = (3*)2(®) > (3% = 0.  Q.E.D.

From the above two Theorems, it is clear that the continuous motion of a Type II
solution is a '"negative polygonal spiral' and at any time it crosses the x or y axis,
R%(t) # 0, (&%) '(t-) < 0 and (Rz)'(t+) < 0.

We now consider some necessary conditions and sufficient conditions for the
existence of Type I, Type II and rotary solutions.

LEMMA 6.5. Suppose (2.1) has a Type I solution, then all its principal solutions
are rotary.

PROOF. Let Zz(k) = {xz(k),yz(k)} be the Type I solution of (2.1) and suppose
W(k,Z,) has a node ¢ in [1,®) so that W(0+—1,Zz) > 0. Let 91 satisfies

61 < ez(t) < 61+ ™
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for t € [G,O+] and consider the (0,91)—principal solution Zl(k) = {xl(k),yl(k)}. By
Theorem 3.2, Bl(t) < ez(t) < Gl(t)+2ﬂ for t > 0+. Thus Zl(k) is a Type I solution of
(2.1). Next consider the (6,61)~principal solutions of (2.1) where 1 < B < «. It is
clear from Corollary 3.3 that they are Type I. Finally we see from Theorem 3.1 that an
arbitrary (B,0)-principal solution is Type I. Q.E.D.

LEMMA 6.6. Suppose (2.1) has a Type II solution, then all principal solutions
are rotary.

PROOF. In view of Lemma 6.5, it suffices to show that one principal solution of
(2.1) is rotary. Suppose to the contrary that the (1,0)-principal solution Zl(k)
satisfies el(t) 4 60 as t > « where 90 < nm for some integer n. By Corollary 3.7,
the phase function Gz(t) of the (m,0)-principal solution ZZ(k) satisfies ez(t) < nm
for 1 < t < m. Choose m sufficiently large so that the phase function 6(t) of the
Type II solution Z(k) satisfies 0(1)-8(m) > (n+2)7. Suppose Nm < 8(m) < (N+1)m for
some integer N, then by Theorem 3.4, 62(1)+Nﬂ <68Q) < 62(1)+(N+2)ﬂ. Consequently,

8(1)-06(m) < 92(1)+(N+2)TT—NTT = 62(1)+27r < (n+2)T,

which contradicts our assumption. Q.E.D.

THEOREM 6.7. Suppose (2.1) has a Type I solution. If Z(k) = {x(k),y(k)} is a
solution such that W(k,Z) has a node in [1,®), then Z(k) is Type I.

PROOF. Suppose W(k,Z) has a node p-1 in [1,«), then w(u+—1) > 0. The phase
function 6(t) of Z(k) satisfies 6(p) i_e(t) < B(u)+m for t € [u,u+] of course. If we
let Gl(t) be the phase function of the (u,8(u))-principal solution, then by Theorem 3.2,
Gl(t) < 6(t) < el(t)+2ﬂ for t > u. Thus Z(k) is Type I. Q.E.D.

THEOREM 6.8. Suppose all principal solutions of (2.1) are rotary, then any
solution Z(k) of (2.1) satisfying W(k,Z) < 0 for k > 1 is rotary.

PROOF. Assume to the contrary that the phase function 8(t) of Z(k) = {x(k),y(k)}
is continuously decreasing to a limit 60. By rotating the coordinate axes if necessary,
we may assume 60 e [0,T). Choose M large enough so that 6(k) ¢ (Go,ﬂ)"for all k > M.
Consider the (m,0) principal solution {xm(k),ym(k)} where m > M. Since it is rotary,
y;(t) has a node A in (mt+l,») and y;(t) >0 for ml < t < X. Let F(k) = {u(k),v(k)} be
the solution of (2.1) satisfying u(K+—1) = -1 and v(k+-l) = u(A+) = V(A+) = 0. By
Theorem 3.8, v(m) = -y(A+) > 0. Consequently, there exists a number 0 in (m,k+) such
that the points (x°(0),y°(0)), (0,0) and (u°(0),v°(0)) are collinear and that
(x°(0),y°(0)) and (u®(0),v°(0)) lie on opposite sides of (0,0). It follows from
Theorem 2.5 that there exists a nontrivial pair {a,B} such that of > 0 and that the
linear combination H(k) = aZ(k)+BW(k) satisfies H°(c) = 0. By Lemma 2.1, w(0+-1,H) = 0.

But from (2.3) and the previous assumptions, we have
wt-1,m) = oZwat-1,2)-agyat-1) < 0,

which is a contradiction. Q.E.D.
THEQOREM 6.9. Suppose all solutions of (2.1) are rotary, then (2.1) has a Type II

solution.
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U

PROOF, For each integer n 3.4, let Zn(k) {xn(k),yn(k)} be solutions of (2.1)
determined by xn(n—l) =~1, yn(n—l) =0, xn(n) = 0 and yn(n) = 0. Since W(k,Zn)
vanishes at k = n-1 and n, thus W(k,Zn) <0 for 1 < k < n-2. Now let Wl(k), Wz(k),
w3(k) and W4(k) be four linearly independent solutions of (2.1). Then for each n,
there exist constants Ah’ Bn, Cn and Dn such that

- 2,222
Z_(k) = AW (K)+B_W, (K)+C_W, ()+D W, (k), AHBIAC 4D = 1.

Since the sequence of vectors {(A , B, C, D )} is bounded, there is a subsequence
n’ n’ n’ n 2 9 2

. 2 .
{(An(i)’ Bn(i)’ cn(i)’ Dn(i))} convergent, say, to (A, B, C, D). Since A™+B"+C"+D is

equal to 1, the solution
Z(k) = Awl(k)+Bw2(k)+Cw3(k)+DW4(k)

of (2.1) is nontrivial. Furthermore, the sequence Zn(i)(k) converges to Z(k)
uniformly on any finite subset {1,2,3,...,N} of I'. Since all solutions of (2.1) are
rotary, Z(k) is either Type I or Type II. We assert that it is Type II. Otherwise,
W(k,Z) > 0 at some integer M. But this would mean that for i large enough, w(k,Zn(i))
is positive at k = M. This contradiction concludes the proof.

The following important result is a direct consequence of Lemmas 6.5, 6.6 and
Theorems 6.7, 6.8.

THEOREM 6.10. If some solution of (2.1) is rotary, then every nontrivial
solution of (2 1) is rotary.

Our final result in this paper is the following

THEOREM 6.11. All nontrivial solutions of (2.1) are rotary if

) K Pow) = .

PROOF. Assume to the contrary that (2.1) has a nonrotary solution Z(k) =
{x(k),y(k)}. Suppose first that it is Class I. Without loss of generality we further
assume that y(k) > O for large k. By Theorem 4.2, there exists some positive integer
N such that x(k) > 0, y(K) > 0, Ax(k) > 0 and Ay(k) > O for k > N. Since x(k+1) is
equal to Azy(k), it follows that

k-1
Ay (k)-Ay (N) = § x(j+1) > x(N+1) (k-N)
j=N
and

(k) > y M+ (V) (=) 1) (kW) P72 > xu) ey P 2.

On the other hand, since

k-1 k-1
Ax(N) = Ax(K)+ § p(J+L)y(G+1) > ] p(+l)y(+1),
j=N j=N
thus
k-1 2)
Ax(N) > x(N+1) §  (J-N+1) T p(3+1)/2.

j=N
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Since the left hand side is independent of k, we conclude that
k-1
. 2 .
5 G-w1) Bpg41) /2
j=N
is finite, contrary to hypothesis.

Next we suppose Z(k) is Class II and that y(k) > O for large k. By Theorem 5.1,
there exists some integer n such that y(k) > 0, Ay(k) > 0, Azy(k) < 0 and A3y(k) >0
for k > n. After multiplying (1.1) by (k—n)(z)/Z and summing by parts, we obtain

k-1
(kn) P83y () - (kmn) A2y (k1) +0y (e2)+ T (GG-n) Pp(G+2)y (§42) /2
k-1 j=n
y+2) 1 G-n) Ppgear/.
j=n

Ay (n+2)

v

Again, we conclude from the above inequality that

T Gen) @p(g42)/2 < =,
j=n

contrary to hypothesis. Q.E.D.

7. CONCLUDING REMARKS.

Either equation (1.1) or system (2.1) can be programmed easily to calculate

exact of close to exact values of x(k), y(k), Ax(k), Ay(k), etc. Numerical
demonstrations of our results in the previous Sections can therefore be left to the

@) k, etc. have been tested and most

readers. Trial functions p(k) such as 1, k , e
of our results verified. For instance, we expect from Theorem 6.11 that when p(k) is
identically one, the sequence that satisfies (1.1) and initiated by the sequence of
values 0, 0, O, 1 will show oscillating behavior. Indeed, the computer output is as
follows: 0, 0, O, 1, 4, 9, 12, 0, -52, -169, -324, -321, 360, 2560, 6760, 10881, 6084,
-27351, -115228, -256000, -332892, 26871,.... We remark, however, that numerical
demonstrations of nontrivial asymptotically constant solutions and Type II solutions
have not been successful; neither do the proofs of our Theorems 5.8 and 6.9 give any
clue to their constructions.

Numerical experiments suggest that stability of oscillatory solution can be
investigated. For instance, we see from the above sequence that the successive maximum
and minimum increase and exhibit an "unstable" oscillatory behavior.

There are other aspects of the recurrence equation (1.1) that can be investigated.
Among these we mention the comparison of oscillatory behavior between equations of the
same form. For related material the reader may consult the references cited below.
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