THE POULSEN SIMPLEX IS NOT A TENSOR PRODUCT

THOMAS E. ARMSTRONG

Department of Economics University of Minnesota Minneapolis, Minnesota 55455

(Received September 29, 1982)

ABSTRACT. It is shown that the Poulsen simplex is not a projective tensor product of non-trivial Choquet simplexes.

KEY WORDS AND PHRASES. Poulsen simplex, projective tensor product, projective limits.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 46A55.

1. INTRODUCTION

The Poulson simplex P is an example of a metrisable Choquet simplex whose extreme points $\xi(P)$ are dense in P. Such a simplex was constructed by Poulsen in [11]. In [6] Lazar and Lindenstrauss showed how to represent metrisable Choquet simplexes S as projective limits of an affine projective system $\{\{\Delta_n:n\in\mathbb{N}\}, \{\pi_n:n\in\mathbb{N}\}\}$ where each Δ_n is an (n-1)-simplex with $\xi(\Delta_n)=\{e_1,\ldots,e_n\}\subset$ $\xi(\Delta_{n+1})$ and with $\pi_n:\Delta_{n+1} \rightarrow \Delta_n$ described by the requirement that $\pi_n(e_j) = e_j$ if $1 \le j \le n$ and $\pi_n(e_{n+1}) = a_{n1}e_1 + \ldots + a_{nn}e_n$ where $a_{nj} \ge 0$ and $\Sigma a_{nj} = 1$. The triangular matrix $A=(a_{ij})$ is called a representing matrix for S. There are many representing matrices for S as there are many realizations of S as such a projective limit. It was established by Lindenstrauss, Olsen, and Sternfeld [7] that $S = \overline{\xi(S)}$ iff the sequence of rows of A form a dense subset of the positive face of the unit ball of $k^{\frac{1}{2}}$ when each was regarded as a sequence. Lindenstrauss, Olsen and Sternfeld showed in [7] that, up to affine homeomorphism, P is the only metrisable Choquet simplex with $P=\overline{\xi(P)}$

It is well known that the Poulsen simplex P is prime in that A(K) is an antilattice (Asimow and Ellis, [2]). We show here that P is prime in the semigroup of convex metrisable compact sets with multiplication being projective tensor product. The proof involves a fairly straight forward application of the properties of projective limits and of representing matrices for metrisable simplexes.

2. MAIN RESULTS

We refer the reader to E.B. Davies and G.F. Vincent-Smith [3] for the details concerning projective tensor products both finite and infinite. For any family $\{S_i:i \in I\}$ of Choquet simplexes there is defined, up to affine homeomorphism, a Choquet simplex $\bigotimes_{i \in I} S_i$, the projective tensor product, which has the property that there is a continuous multi-affine embedding \bigotimes of $\prod S_i$ into $\bigotimes_{i \in I} S_i$ given by $(x_i:i \in I) + \bigotimes_{i \in I} x_i$ so that if $m: \prod S_i \neq E$ is continuous multi-affine for some locally convex space E there exists a linear $n: \bigotimes_{i \in I} S_i \neq E$ with $n \otimes \bigotimes = m$. It is shown that $\xi(\bigotimes_{i \in I} s_i)$ is $\{\bigotimes_{i \in I} i: x_i \in \xi(S_i):i \in I\}$ and that $\bigotimes_{i \in I} I \in \xi(S_i)$ is a homeomorphism. It is easily checked that if each S_i is a projective limit of a sequence $\{S_{in}:n \in N\}$ of simplexes under projections $\{P_{in}:n \in N\}$ then $\bigotimes_{i \in I} S_i$ is a projective limit of $\{\bigotimes_{i \in I} S_{in}:n \in N\}$ under $\{P_n:n \in N\}$ where $P_n: \bigotimes_{i \in I} S_{in+1} \neq \bigotimes_{i \in I} S_{in}$ is the map induced by the multi-affine transformation $(x_i:i \in I) \neq \bigcup_{i \in I} P_{in}(x_i)$ from $\prod_{i \in I} S_{in+1}$ to $\bigotimes_{i \in I} S_{in}$.

PROPOSITION. The Poulsen simplex is not a tensor product. PROOF. Suppose that $P=X \bigotimes Y$ with X and Y each at least one dimensional metrisable Choquet simplexes. Let $A=(a_{ij})$ and $B=(b_{ij})$ be representing matrices for X and Y respectively. Let $p_n: \Delta_{n+1} \rightarrow \Delta_n$ and $q_n: \Delta_{n+1} \rightarrow \Delta_n$ for nEN be the sequences of projections associated with A and B respectively so that X is the projective limit of $\{\Delta_n: nEN\}$ under $\{p_n: nEN\}$ and Y is the projective limit of $\{\Delta_n: nEN\}$ under $\{q_n: nEN\}$. Then P is the projective limit of $\{\Delta_n \bigotimes \Delta_n: nEN\}$ under the system $\{r_n: nEN\}$ of projections where $r_n(e_i \bigotimes e_j) = e_i \bigotimes e_j$ if $1 \le i, j \le n$, $r_n(e_{n+1} \bigotimes e_j) = i \le 1 = a_{ni} e_i = e_j$, $r_n(e_i = e_{n+1}) = j \le 1 = b_{nj} e_i = e_j$ and $r_n(e_{n+1} = e_{n+1}) = i, j \le 1 = a_{ni} b_{nj} e_i = e_j$.

For any nEN, let $D_{n^2} = \Delta_n \bigotimes \Delta_n$. For $1 \le k \le n$ define D_{n^2+k} to be $\operatorname{conv}(D_{n^2+k-1}, e_k \bigotimes e_{n+1}) \subset \Delta_{n+1} \bigotimes \Delta_{n+1}$. Define D_{n^2+n+k} to be $\operatorname{conv}(D_{D^2+n+k-1}, e_{n+1} \bigotimes e_k)$. Define, for $1 \le k \le n$, the affine surjection $R_{n^2+k-1}: D_{n^2+k-1} \to D_{n^2+k-1}$ to be the identity on D_{n^2+k-1} and to be $\int_{j=1}^{n} b_{nj} e_k \bigotimes e_j$ on $e_k \bigotimes e_{n+1}$. Similarly define, for $1 \le k \le n$, the affine surjection $R_{n^2+n+k-1}: D_{n^2+n+k} \to D_{n^2+n+k-1}$ by setting $R_{n^2+n+k-1}$ equal to the identity on $D_{n^2+n+k-1}$ and by setting $R_{n^2+n+k-1}(e_{n+1} \otimes e_k)$ equal to $\stackrel{n}{\underset{i=1}{\sum}} a_{ni} (e_i \otimes e_k)$. Finally, set R_{n^2+2n} equal to the affine surjection from $D_{(n+1)^2}$ to D_{n^2+2n} which is equal to the identity on D_{n^2+2n} and has $R_{n^2+2n}(e_{n+1} \otimes e_{n+1})$ $= \stackrel{n}{\underset{i,j=1}{\sum}} a_{ni}b_{nj} e_i \otimes e_j$. We then have P equal to the projective limit of $\{D_m:m\in N\}$ under $\{R_m:m\in N\}$.

The projections {R_m:mEN} have a representing matrix C = (c_{ij}) which is triangular and has its rows and columns most conveniently indexed by ordered pairs (i,j). In this set up the entries in row (n+1,k) for k=1,...,n are a_{ni} in column (i,k) and 0 otherwise. The entry in column (k,j) for row (k,n+1) is b_{nj} and 0 otherwise. The entry in row (n+1,n+1) in column (i,j) for $1 \le i$, $j \le n$ is $a_{ni}b_{nj}$ with $\hat{0}$ entries elsewhere. Except for the rows (n,n) each row lies in the subspace of $\ell^{\hat{1}}(NxN)$ {x:x_(2,1)=0} or the subspace {x:x_(1,2)=0} Since the union of these two subspaces is closed and nowhere dense in the politive face of the unit ball of $\ell^{\hat{1}}(NxN)$ the rows indexed by {(n,n):ncN} must be dense in the positive face of the unit ball of $\ell^{\hat{1}}(NxN)$ in order that all of the rows be dense (if we are to have the representing matrix of a Poulsen simplex.)

Let $M_1^+(n,n)$ denote all nxn matrices (c_{ij}) with $c_{ij-0} \text{ and } \prod_{i,j=1}^n c_{ij} = 1$. $M_1^+(n,n)$ is naturally embedded in $\ell^1(NxN)$ by setting $c_{ij}=0$ if i > n or j > n. In order that the (n,n) rows of the representing matrix of $\{R_m:m\in N\}$ be dense it is necessary and sufficient that for all n every $(c_{ij}) \in M_1^+(n,n)$ be approximable by matrices of the form (d_{ij}) where $d_{ij} = a_{mi}b_{mi} 1 \le i, j \le n$. This in turn implies that each $(c_{ij}) \in M_1^+(n,n)$ be approximable by matrices $(f_{ij}) \in M_1^+(n,n)$ where $f_{ij} = a_i b_j$ with a a_i the i-th row sum and b_j the j-th column sum. The set of such matrices (f_{ij}) is (2n-2)- dimensional whereas $M_1^+(n,n)$ is (n^2-1) -dimensional. Since $n^2-1 > 2n-2$ if n > 1 this is impossible. This establishes that $X \bigotimes Y = P$ is impossible.

COROLLARY. P is not $\bigotimes_{n=1}^{\infty} X_n$ for any sequence of non-zero dimensional simplexes $\{X_n:n\in\mathbb{N}\}$.

PROOF.
$$\bigotimes_{n=1}^{\infty} x_n = x_1 \bigotimes [\bigotimes_{n=2}^{\infty} x_n]$$

REFERENCES

- 1. Alfsen, E., <u>Convex Compact Sets and Boundary Integrals</u>, Springer, New York, 1971.
- 2. Asimow, D., Ellis, A.J., <u>Convexity Theory and Its Applications in Func-</u> <u>tional Analysis</u>, Academic Press, London, 1980.
- Davies, E.B., Vincent-Smith, G.F., Tensor Products, Infinite Products and Projective Limits of Choquet Simplexes, <u>Math. Scand.</u>, 22 (1968), 145-164.
- Hulanicki, A., Phelps, R.R., Some Applications of Tensor Products of Partially Ordered Linear Spaces, <u>J. Functional Anal.</u>, 2 (1968), 177-201.
- 5. Lazar, A.J., Affine Products of Simplexes, Math. Scand., 22 (1968), 165-175.
- Lazar, A.J. Lindenstrauss, J., Banach Spaces Whose Duals are L-spaces and Their Representing Matrices, <u>Acta Math.</u>, 126 (1971), 165-194.
- Lindenstrauss, J., Olsen, G., Sternfeld, Y., The Poulsen Simplex, <u>Ann.</u> <u>Inst. Fourier (Grenoble)</u>, 28 (1978), 91-114.
- Lusky, W. Note on the Paper "The Poulsen Simplex" by Lindenstrauss, Olsen and Sternfeld. Ann. Inst. Fourier (Grenoble), 28 (1978), 233-243.
- Lusky, W., On the Primariness of the Pousen Simplex Space, <u>Israel J.</u> <u>Math.</u>, 37 (1980), 151-163.
- Namioka, I., Phelps, R.R., Tensor Products of Compact Convex Sets, Pacific J. Math., 31 (1969), 469-480.
- 11. Poulsen, E.T., A Simplex with Dense Extreme Points, <u>Ann. Inst. Fourier</u> (<u>Grenoble</u>), 11 (1961), 355-370.