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ABSTRACT. We use the Lie series averaging method to obtain a complete second order
solution for motion of a charged particle in a spatially periodic magnetic field. A
comparison is made with the first order solution obtained previously by Coffey.

KEY WORDS AND PHRASES. Lie Transforms, magnetic moment, relative fluctuation, second
onden solution.

1980 MATHEMATICS SUBJECT CLASSTFICATION CODE - 78A35.

1. INTRODUCTION.

Sometime ago Coffey [1] applied his formulation of degenerate perturbation theory
to the interaction between a charged particle and a spatially periodic magnetic field.
Coffey's results refute the argument of Dragt [2] and Wentzel [3] who tried to show
that a resonant interaction between a charged particle and a periodic magnetic field
would cause a break down of the adiabatic invariance of the particle in orbital
magnetic moments and thus would be responsible for the removal of protons from the
inner Van Allen Belt. Coffey obtained a first order solution to this problem by his
perturbation method. But, as has been pointed out by Coffey, the period of secular
motion varies as 91/2 and not as €. Hence, a second order calculation is of interest

in this problem especially if it shows significant effect on the relative fluctuation

of the magnetic moment. But, for second order calculations, Coffey's method becomes

using the Lie series, gives complete solution of the problem discussed above up to

second order without involved calculations.,
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Lie transforms and Lie series were found to be very useful in analysing the
oscillation of a weakly nonlinear system. For further details see Kamel [4], Nayfeh
[5].

Interested readers may see the details of application of Lie transforms in case
of Van der Pol's equation, in ref [5] (page 209). Our Technique was a straight for-
ward extension of the method discussed in [5]. Our first order results completely
agree with those obtained by Coffey, while second order calculations show that a
relative fluctuation of the magnetic moment of the order of unity cannot be ruled
out even for periodic disturbances with wave lengths smaller than those anticipated in
first order calculations. In some cases, the term proportional to 92 dominates over
other terms.

2. LIE SERIES AND LIE TRANSFORM.
We present here some basic steps which will be required in our calculations.

Consider a system of differential equations given by

. n
3X _ € (2.1)
ot Z—‘o n! fn (X)

where X and f, are column matrices and € is a small parameter. The basic idea is to

introduce a transformation from X to Y so that (2.1) becomes

3Y _ o (v (2.2)
4 ; < g (V)

where g contains only long period terms,

We do this by a near identity transform (see ref. [5] p. 209)

2
X=X({,t) =Y +eXj(¥) +e X ) +.ennnnnn. (2.3)
which can be written as
X _ W(X,e), X(e=0) = Y (2.4)

ot
In other words, in order to obtain solution of (2.1) for large t, it will be necessary
to find the solution of (2.4) for small €. The algorithm is as follows. Under the

transformation defined by (2.3), a vector

n
f(X,e) = e (2.5)
1;) n! F (0
is transformed to
. n
£(X,e) = D e ¢ 9) (2.6)

n=0
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The relation between 8y and fn in (2.1) and (2.2) can be found from step by step

calculations:

]

gO(Y) fo(Y) 2.7

g, (V) £.(Y) + Ly f (2.8)

where L,g = <3L&)_i_)(w)j - (3(i)i>(g)j (2.9)

ax5 SXj
We choose W; in such a way that g, contains only long period terms. Thus W; is

known. Then a second order calculation gives

g, = £, + Lif, + Lig; + L,f, (2.10)
where

Lof. = a_f_".w awzf (2.11)

240 3% 2 3xX 0

Again we choose W, to remove the short period terms in the r.h.s. of (2.5) and get
g, and so on. Thus, step by step calculations yield a solution to the desired order.
3. EQUATION OF MOTION OF A CHARGED PARTICLE IN A PERIODIC MAGNETIC FIELD.

The nonrelativistic Hamiltonian H which describes the system is

2
H = (.1_) fo - (e/c)é} (3.1)
2m
where A is the vector potential
A= <—Boy, (B;) Cos kz ,o) (3.2)
k
which gives the magnetic field B as
B = (Bl,Sin kz,O,BO) (3.3)
H can be written as
1 2 2 2
H= [o—) [(Px + mygy) + ((Py - (m1)Cos kz) + p,) (3.4)
k
B1
e =Wt o2t (3.5)
w0 Bg

and € is a small parameter.
Since we aim to find a complete second order solution of the equations of motion
and to compare, wherever possible, our results with those obtained by Coffey, we use

the same variables and notation as Coffey to derive the equations of motion.
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H can be transformed to the hamiltonian h given by

‘l 2 e 1/2 2 2
h=17J +~(~— —Jpz - (—)(ZHmoJ) CosY Cos kz + [ ¢ w0>Cos kz (3.6)
2mwQ k ——
2k2
Then the equations of motion are
€ 1/2
J° = (- §E)(zmwoJ) [Sin(Y + kz) + Sin(¥ - kz)] (3.7)
1/2 2
Py = - (5 (2mogd)  [Sin(¥ + kz) - Sin(¥ - ka)] + €m0 o5 kz Sin kz.... (3.8)
k
kz” = kpz (3.9)
mwo
(For relations between pz+k I and mwy see ref [1])
e
. 1/2
Yy =1 -(_E (mmo [Cos(¥ + kz) + Cos(¥ - kz)] (3.10)
2K (3
where J7 = 3J etc.
ot
¢ = wgt (3.11)

and J, Pz’ and Z, y are related to the cartesion co-ordinates of the guiding centre

and their conjugate momenta P> P, P, in the following way:

1/2
x=1-[2] cos V¥ (3.12)
mw
5 1/2
1 J .
= - [— + [ ==] Sin VY (3.13)
Y (‘“‘“o)pr (mwo)
1/2
Py = Pp> Py = (ZmwpJ)  Cos ¥ (3.14)
p,=P, (3.15)

We apply Lie transform theory to the system of equations (3.7) to (3.10) i.e., we

write (3.7) to (3.10) in the form

o0

X _ el (3.16)
ot ;o af a0
where
J
X = P, (3.17)
by
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r b
0
0
£ = 1+ kpz
0 mwQ
1- sz
mw 0
L J
r 1/2 1/2
- - AaJ Sin¢; - 1 aJ Sinq)2
£ k K
1/2 1/2
-alJ Sinq;2 + aJ Sin¢,
_1/2 _1;2
-a J Cos¢;, - a J Cos¢
2k 2k 2
-1/2 =172
-a_ J Cosd)1 -a J Cos¢2
2k
r T
f = | 0
2

a

0 sin 2(41 - ¢2)
2k

_ /o
= % (2mw0)

4. FIRST ORDER SOLUTIONS.

We write

g, (1) = £ () +Lf

where

Lf = iy

10 9x .
J

10

LU DE SN
13 on. 0
3

where Wl is a column matrix given by

~

W, o=

We choose W in such a way that gl
1

»

contains only long period terms.

163

(3.18)

(3.19)

(3.20)

(3.21)

(4.1)

(4.2)

(4.3)

For that purpose,
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we assume that ¢>l contributes to only small amplitude rapid fluctuations and ¢2

gives rise to secular motion. From (4.1) we have,

I —

L+ sz) vy _ (1 _kpr) 3Y1
myg /) 3¢,

31

L E kp Y3
L —2) 22y 22) 2 kg
mw0f 9¢1 mwo | 992 ™m0

kv [ KRz ove [ kPz\ow
mwQ mwo | 3¢ w0 [3¢2

(
_ (1 +kpg)3_‘l’z (1 i ‘ﬂ’_Z)_?&z.
(-

1 1
1 aJ’ sing, - 1 aJ’ Sing,
K K

i 1
- aJ? Sing |+ aJ? Sing,

(4.4)
-1
- ‘/2Cos¢1 - 2372 Cosy,
2k 2k
=L =1
a 2
- E‘J Cosci)l - kJ Cos¢op
gl contains long period term only. Therefore, we choose ¥ in such a way
that Y .
3%, -0 (4.5)
and
kpz |3¥1 1 4.6
(1 + = 5%, = -T(*aJ Sm¢1 etc. (4.6)
So that ]
—
1
ku%zaCosan + A1
LaCos¢) Jli + A
ku, 1 2
W = (4.7)

a . ak . i
2ksz Sln¢1 + m0w2251n¢1J + A3

ak . L
ZIwJ S].n()- Wlnd)lJ +AL+
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where Al is a function of J and pz.

After standard calculations, we get

- % J*:iSlndJ
. !
%251 !
. - aJ Slmt)2 ; (4.8)
1 s L
- 5% J* “Cos¢
a -4
" J* Cos¢>2
writing 4)2 = O we have
1
J** = - £2 J*%Sine (4.9)
L
5 = *2g4
pz ea J*¥*Sino (4.10)
* e -1
ox* =1 - 11%3_ - 7 aJ* “Cose (4.11)

where * denotes the secular part.
Y
Remembering that a = E‘*’Z.Q) , these equations are identical with those obtained
by Coffey. As the first order solutions have been discussed in an extensive manner

in reference [1], we will not go into the details of the solutions of (3.7) to (3.10)
except to point out the fact that the secular part exhibits periodic behaviour and

gives stable solutions.

5. SECOND ORDER CALCULATIONS; For the second order, we have

g =f +Lf +Lg +LTf¢ (5.1)
2 2 11 11 20
Since gl consists of long period terms only and Wl short period terms, we have
Lg=20 5.2
18 (5.2)
Also,
Lf = 9fo _ oW, .
250 T W2 f2 (5.3)
where W 1is a columm vector
-
Fyl
¥,
wz = (5.4)
¥3
¥,

We choose the ¥” in such a way that g contains only long period terms. After some
2
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tedious but not very complicated calculations, we finally get
o |

0

where

_ *
Wz =1+ kpz

mwQ

(5.5)

{5.6)

Hence, the equations for J%, pz*, and o%* up to second order are given by

Ik = - %‘%J*‘/Z Sino
1
pz*’ = ga(J*)? Sino
.
** = 1 - % _ E3 gy 2 - & __
IS} 1 - kp, 2k(J ) * Coso 8w22

Let us now introduce the new variables

A R Coso and B = R Sino

where
1
2J% 2
k(=)

mwo

From equation, (5.7) to (5.9) we have
Pz*'

J** 4 =1

where I is a constant. This result was also obtained by Coffey.

(5.7)

(5.8)
(5.9)

(5.10)

(5.11)

(5.12)

Again, the set of

equations (5.7) to (5.9) now reduce to equations relating only R and o. The equations

for A and B are

k2 e2
4 = - - + — =
A B[l C 2 ga;z]
k2 g2 ]
B = -£+4 -C+=—-
2 [l €*3 Bw,?
where
k21
= ;EE

(5.13)

(5.14)

(5.15)

It is clear from equations (5.13) to (5.15) that the term proportional to €2 dominates

when w,>0. This could not be anticipated from a first order calculation.
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Equations (5.13) to (5.15) give a constant of motion given by

2
RY + 4(1 - C)R2 - 4eR Coso + — 25— = G, say (5.16)

RZ - 2(1 + ©)

where G turns out to be given by

8k2h ,  5e? (5.17)
o - 4ct - 2

Singular points of (5.13), (5.14) are given by solbing (5.13), (5.14) with A”=B"=0.

Remembering that

kp,* 2
w, =1+ Pz” _p- K (5.18)
mwo 2
where
2
D=1 +2KI (5.19)
mw0

The singular points are found by solving a seventh degree equation in A. We
have obtained the roots numerically with the help of the Newton-Raphson technique and
the Bairstow method [6] for various values of C using ¢ = .0l. A list of some of

those values are given below.

C=1.75 1.87 1.111
a,  -2.345+i003 -2.396 -2.057
a, -2.345-1003 -2.397 -2.053
a, -1,221 -1.316 -.447
a, -1.169 -1.194 -1.004
a_  -.007 -.006 ~.045
a,  1.228 1.322 .492
a, 56245 .540 .805

The nature of these singular points was also determined by putting A=ai+3, and B=b
and then seeking solutions of the form
£ = £y, b= bye (5.20)
Using (5.20), we find that a, and ag are unstable points and the rest are
stable points, each of the stable points being a centre. In figures 1 and 2, several

trajectories of a proton are plotted; the parameters such as the energy, background

field strength, etc. have been assigned values which are the same as those used by
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Coffey. Though qualitatively the results are the same, we have obtained one addition-
al stable point (see fig. 2) at which the fluctuation of K is maximum, as will be
shown later.
6. CALCULATIONS OF THE TIME DEPENDENCE OF THE MOTION.
Introducing the variable S=R? and eliminating ¢ from equations (5.7) to (5.9),
we get the following differential equation for S:
s” = %{-[s“ - 4(2d -1)8% + 65%2(2d - 1)?2 - 4(2d - 1)3s + (2d - ¥

_8e?s(2d - 1) , _ 4e?s?
S -2(1 +¢) S-2(1 +0)

- 16&:28]}1/2

+ 5¢2(2d - 1)2 + 5282 - 10(2d - 1)2e2s

+ 4e2(2d4 - 1)2
S -2(1+0) (6.1)

As before, we calculate the roots of the equation obtained from (6.1) when S”=0
by solving the fifth degree equations numerically. Besides the roots obtained by
Coffey, a rather large root is obtained which is given by § = 2(1 - C) for small
e{e#0). This root is due to the very existence of second order terms in (50) and
hence cannot be anticipated from first order calculations. If we neglect this root,
then Coffey's analysis of the relative fluctuation in K under resonance conditions

holds. But with this root,

2(Smax = Smin ) . 4

M‘max 2 +
S + R 2

(6.2)

where R;, is 27 times the ratio of the initial cyclotron radius to the wavelength of
the disturbance. Hence we see that AK is of the order of unity for R02 < 2, a result

which could not be guessed from first order calculations.

CONCLUSION.

Using the Lie transform method, we have obtained a complete second order solution
for the motion of a charged particle in a constant magnetic field on which a weak
spatially periodic magnetic field is superimposed. Though our first order solutios
completely agrees with that of Coffey, it is found that a second order solution is not
insignificant in the sense that it modifies the relative fluctuation of the average
magnetic moment by a not too negligible amount.

Our second order solution also confirms the periodic behavior of the secular

motions, which means that particles travelling along the ripples sufficiently fast
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can chang their magnetic moment in an oscillatory manner. (Of course this does not
hold true for a helical perturbation). 1loreover, it shows how the secular terms are
separated from the rapidly fluctuating parts in a straight forward way. As stated
before, the Lie transform is very convenient in studying the oscillation of a weakly
nonlinear system and the present problem provides a scope for its successful applica-
tion without involving very complicated calculations.
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