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ABSTRACT. A time-independent, non-autonomous non-linear system governed by a
principle of determinism (the state at a given time is determined by the initial
state and by the control history during the intervening closed interval) is shown
to obey a generalized evolution equation (1.2), where n is such that the state is

. . n
continuously differentiable with respect to time whenever the control is of class C .
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1. INTRODUCTION.

The equations of evolution of time-independent, non-autonomous non-linear systems
are almost universally taken as

u' = f(u,x) (1.1)

where u is the output (or state) and x is the input (or control), both functions of
time t with values in finite-dimensional vector spaces (say U and X, respectively),
and the prime denotes differentiation with respect to time.

However, equation (1.1) is not the most general evolution equation. It may be

regarded as a special case (corresponding to n=0) of

u' =f(u,x,x',...,x

(n)y (1.2)

An example of the need for an equation of the form (2) occurs in the mechanics of in-
elastic continua. Here u is the vector whose components are the internal variables
(or the inelastic strain), while x is stress or strain. Viscoelastic and viscoplastic
materials are described by equation (1.1). Plastic materials, on the other hand, re-
quire equation (1.2) with n=1. 1In particular, for a rate-independent material the
function f must be first-degree homogeneous in x'.

The difference between systems described by equations (1.1) and (1.2) (or, more
generally, by equations (1.2) with different values of n) lies in the character of the
solutions u(t). If f is continuous, then the solution of (1.1) is continuously dif-

ferentiable whenever x is a continuous function of time. On the other hand, solution
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of (1.2) will not in general be continuously differentiable unless x is of class c”.
In other words, the choice of n in equation (1.2) depends on the way in which the sys-

tem smooths the input: the greater the smoothing, the lower the value of n.

However, the existence of an equation of evolution cannot be assumed a priori
for an arbitrary system. In this note we shall try to find sufficient conditions for
the existence of an equation of evolution, and to relate the value of n to the
smoothing property of the system.
2. MAIN RESULTS

We shall assume the system to be governed by a principle of determinism as fol-
lows: the value of u at time t+ 7T is determined by its value at time t and by the
history of x during the interval [t,t+ T]. We shall express this mathematically as
follows. Let x° be defined by xt(s) =x(t+s), and let x: denote the restriction of
x¥ to [0,T]. The pair (u(t), x:) may be regarded as determining a process of duration
T in the system; let PT denote the set of all such pairs determining possible processes

in the system. Then there exists a mapping zi)_r:PT-> U such that
t
u(t+71) =0 (ult),x) (2.1)

Furthermore, let C? denote the Banach space c™([0,1];X), let P?:=PTn(Ux C?). Then
the smoothing property of the system may be expressed by saying that the left-hand
side of (2.1) is differentiable with respect to T whenever (u(t),x:)EP?, that is,
that the limit
lim %[d)_[(u(t),x:)-u(t)] (2.2)
>0+
exists and is continuous in t under that condition. It is clear that this limit is
determined by u(t) and by the behavior of x in a neighborhood of t. It is not imme-
diately clear that it should take the form of the right-hand side of (1.2). In fact,
in order to derive this result we need to assume some properties of the restriction
to P? of the mapping ¢T, as given in the following theorem.
THEOREM. Let ¢T:P¥-*U be such that ¢T(a,°) is locally Lipschitz (with respect to

the C: norm), the local Lipschitz norm FT being 0(T) as 1>0+. Then the limit

1

lim =[¢_(a,y) -a],

T:OrrlTMTay a]
(n)

when it exists, depends only on a,y,y',...,y
PROOF. Define yecfr‘ by

n
¥(s) =y(0) +y'(0)s + ...+y(n)(0)§T

Let || T denote the C? norm and |+| any finite-dimensional norm. Then

ly -7, =max{ sup |y(s) -y(0) = ... '™ (0)s"/n1],
s [0,1]

sup |y'(8) =y"(0) =y ™ ()™ /(n-) 1 ]y y sup |y (s)y P (0],
s [0,1] s [0,1]
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Since the argument of each |- is a continuous function of s that vanishes at 0, each

supremum goes to zero as T+0, so that ||y—3?||,[-*0as T+0. Now
1 _ 1 — 1 — .
'.E'[d).r(a,y) —8.] = T [¢T(&,Y) —¢T(a,Y)] + T [q).[(aay) '8'19
but for the first term on the right-hand side we have
1 — Fr —
Tl'- ¢T(a9y) - ¢T(a’y) S—T— ”y-y ”T’
so that this term goes to zero as T—->0. Consequently,

lim %[¢T(a,y) -a]= lim %—[tt_[(a,y) -a]l,
>0+ T>0+
and this last 1imit, whenever it exists, depends only on a and on the parameters de-
fining ¥, that is, y(0), y'(O),...,y(n)(O). Q.E.D.

By the assumed smoothing property of the system the limit exists and is a contin-
uous function of its arguments, f(a,y(0),y'(0),... ,y(n)(o));it is this f that fur-
nishes the right-hand side of equation (2).

As a very simple example, consider ¢)T given by
¢ (a,y) =a+y(1) -y(0).

This ¢T(a,°) is Lipschitz (since it is a continuous linear mapping) on C_or, but the

Lipschitz norm over this space is 2. On the other hand, we may rewrite it as
T
¢.[(8-,y) =a+ IY'(S)ds,
0

so that it is clearly a continuous linear mapping of C%, and its (Lipschitz) norm is
T. Consequently, n=1, and indeed we have fla,y,y') =y'.

A more sophisticated example, relevant to plasticity theory, is

T
¢ (a,y) =a+[|y'(s)]|as.
0

This ¢ (a,*) is not Lipschitz on cg but it is Lipschitz on c;:

T !
Iy -1y ()] as
0 .

T
lo_(a,9) ~o_(a.) ] = Ly (s)] - 17 (s) Dats
T T lo

st swp |ly'(s)] - 7))
s [0,T]

<t sup ly'(s) -3 (s)| <tlly-Fll,»
s [0,1]

so that once again FT =T.



