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ABSTRACT. The dual integral equations involving Bessel function kernels were first
considered by Weber in 1873, The problem comprised of finding potential of an
electrified disc which belongs to a general category of mixed boundary value problems.
Titchmarsh gave the formal solution using Wiener-Hopf procedure. We use this direct
method as improvised by Busbridge to solve a class of dual integral equations which
can be reduced to other known kernels by particularizing the parameters in the Fox's

H-function.
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1. INTRODUCTION
Most of the dual integral equations which we meet in the solution ot mixed

boundary value problems can be typified by

f w(u)A(u)K(u,x)du = £(x) , X € Il s (1.1)

A(u)K(u,x)du = g(x) , xe Iy, (1.2)

o%==g o

where w(u) is a function of u alone and is called the 'weight function' K(u,x)

is the kernel of this pair of equations, and A(u) is to be found. I} = {x: 0 = x < 11,
I, = {x: x > 1}. Most recent literature on dual integral equations has been incorpor-
ated in a recent book by Sneddon [1].

About two decades ago, Johnson [2] investigated the method of solution of
Titchmarsh [6] and found that the K(u,x) can be the G-function with Titchmarsh's
method applicable. Kesarwani [4, 5], taking cue from Buschman [l], solved the dual
integral equations with G-functions as kernels. Saxena [7, 8] found the solution
of (1.1) and (1.2) with w(u) = 1 , had taken K(u,x) to be a H-function and used
fractional integral operators.

We have closely followed Titchmarsh's method in solving (1.1) and (1.2) with
g(x) =0, w(u) = u, and K(u,x) a H-function. Our solution, therefore, differs
from others cited above in view of the method adopted and, hence, is of interest in

itself.
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2. THE SOLUTION.
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We shall find the formal solution of the dual integral equations given by

3 Psq

jP £(y)
o

where m,n,p and q

S f(y)y o0 [Xy |

m,n
H’ X
P>q [ v |

are integers with 1 <m <q, 0 <

(ay,ap)
PP J dy = e(x) (0 <x < 1) (2.1)
(bqs8q)
(ap,ap)
p>P ] dy = 0 (x > 1) (2.2)

P> P < q, and 8 = 0, where

m
6 = o 0y - O,i + I Bi - Si (2-3)
1 n+l 1 mt+1
and
m n
(a_,a0) yHice 'H F(bj—Bjs) .H F(l—aj+ajs)
m,n p> P 1 j=1 j=1 ]
H x | = - x> ds (2.4)
P9 (bg»8q) 2ri ., 4 p
v T (1-bj+B4s) 1 T (ay-ajs)
j=mtl j=n+1
bj a, -1
where Re > vy > Re , j=l,...,m ; k=1,...,n.
BJ Q.

We apply the formal manipulations given by Titchmarsh to

Parseval's formula is applied to the left-hand sides of (2.1) and (2.2), the results

are
m
. ktie 'le(bj+8j+aej_8js)
> S F(s) —L=
2mi ki q
i F(l-bj—B.—aBj+Bjs)
j=mrt+1l J
n
'zlf(l—aj—aj-aaj+ajs) ot
Jn x5 ds = e(x)
‘H F(aj+aj+aaj-ajs)
j=1
and
m
-+ o0 T . =R
. k+i jzl (by+8;-B4s)
27i S F(s) q
k=i m T(l-b,-B8.+8.s)
j=mt1 I3
n
n T(l-a,-a,+a.s)
j=1 3 s-1
a X ds =0, (x > 1)
it

.

(0 <x < 1)

(2.1) and (2.2). If

(2.5)

(2.6
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q p
i F(l—bj-6j+8js) i T(aj+aj+aaj-ajs)
F(s)= 122 izutl T ¥(s) 2.7
T r(b.+aB.+B8.-B8.s) I T(l-a,-o.,+a.s)
=1 3 33T g 37373
into the last two equations gives
q
ktio n F(l-b.-Bj+Bjs)
1 j=m+l
27mi ¥(s) q
k=i T T(l-b,-aB.,-£.+B.s)
j=mhl SER R B
n
I I'(l-a,-a,-aa.+a,s)
. =1 ] J s-a-1
o x ds = e(x) , (0 <x<1) |, (2.8)
M I'(l-a,-a.+a.s)
j=1 i3
and
n
kt+ic m I'(B,+b,-B.s
1 i=1 (B5+by=8y9)
Py Y(s)
i m
k—ie I r(b,+aB,+B.-B.s)
R B s B
J
P
n r(a.+o,+aa,-a,s)
. i=n+1 J J ] s-1
> X ds = 0 s (x > 1) R (2.9)
n  r(a.,+a.-a.s)
j=n+l 33
Multiplying (2.8) by x*v , where Re(s-w) > 0 and integrating over (0,1) , we
obtain
q
ktie T I'(l-b,-B.+B.s)
1 j=mrtl 333
27i q
k=ie @  T(l-b.-aB.-B.+B.s)
j=mtl S R
n 1
I(l-a,-o,-ao,+
'21 ( aj aj aaj ajs) X(s) -
- L ds = e(x)x dx
n s—w
mTr(l-a,-a.,+a.s) 0
j=1 R B
= E(a- w + 1) (Re w < k) (2.10)
Moving the line of integration from Re s=k to Re s=k' < Re w
(b,+8.-1) (a,+a,+au,-1)
and assuming Re J < k' (j=m+l,...,q) and Re < k' (j=1,...,n),

]
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we obtain

q n
k'+ie T T(1-b,-B.+B.s) I F(l—aj—a.—aa.+a.8)

1 jerl 3337 4o 1 33w,
— S
2ni q n s-w

k'-ie T T(1-b,-aB,-B.+B,s) Il T'(l-a,-a, +a.s)
q n
I T(l-b,-B.+B.w) T I'(l-a,-a,-oa, +o. w)
j=mtl 3337 40 i3 13
= E(l+a-w) - P I Y (w) (2.11)
T  T(l-b,-aB,-B.+B.w) I I'(l-a,-a,+o,w)
jemt1 S HR R i3

The integral occurring on the left-hand side of this equation is a regular function
of w for Re w > k' . Therefore, so is the function on the right-hand side. Hence

so also is

q n
1 r(l-b,-aB,.-B.+B.w) I T'(l-a,-a,+a.w)
j=mtl J J 3 3 i=1 J 3 3
Y(w) - q o E(l+a-w)
it T'(l1-b,-B.+B.w) I I'(l-a,-a,-ca,+o,w)
j=mtl J 33 j=1 J ] J 3]
If we assume suitable conditions at infinity, we have
q n
kt+iw il F(l-bj-qu-Bj+Bjs) n T(l-aj-aj+ujs)
ElT S ¥ - L = E(l+a-s) ’—9§~= 0
mi q n ‘ s-w
k=i I r(l-b,-B.+8.s) I Ir'(l-a.,-o,-aa,+a,s)
j=mtl J 3 1] j=1 J 3] J ]
(Re w < k) (2.12)

Similarly, multiplying (2.9) by o~w , Re(s-w) < 0 , and integrating over (l,«),

we obtain

m p
k+io 1 F(Bj+b,—8,s) n F(aj+aj+aaj-ajs)
357 i=1 _j=ntl Y(8) 4g = 0, (Re w >k'), (2.13)
i m P s-w
K-i» 1 TI'(b,+B,+aB,-B.s) 1N T (a,+o,-a,s)
ISR R R T R O
We conclude as before that
m p
il F(B'+bj-8js) i r(aj+aj+aa,—a,s)
i= J i=
=1 j=n+l Y(s) (2.14)

m p
m I (b.+B,+aB,-B, N T(a,+a,-a,
=1 ( i3 o3 JS) = (aJ 3 QJS)



DUAL INTEGRAL EQUATIONS WITH FOX'S H-FUNCTION KERNEL 261

and so Y is regular for Re s < k . Hence

k'+ie

- A
77 p—— ds =0 (Re w > k') (2.15)

k'=ie

Moving the line of integration from Re s=k' to Re s=k , we have

k'+iw

—
<

(s)
27i s-w
k'-io

ds = Y(w) (Re w < k) (2.16)

It follows from (2.12) and (2.15) that

P n
k+ice il T(l—bj—aBj-Bj+Bjs) HT(l—aj—aj+ajs)
Y(s) = o Jzmtl - 3=l
mi q n
K-iw m TI(l-b,-B.+B.s) I r(l-a,-oo, +o,s)
J=mt1 VIR M j=1 LI R
. E(l+a-s) ds (2.17)
s-w
If Mellin's inversion formula is applied to (2.7) , then
q P
kt+ie 1 F(l-bj-8j+8,s) 1 F(a,+aj+aaj—ajs)
-1 jemtl j=n+l -s
£y) =33 - - Y(s)y = ds (2.18)
K-ie 1T T(b'+aB,+B,—Bjs) I T(l-a,-a +a,s)

Equations ( 2.17) and (2.18) give a solution to (2.1) and (2.2)

The cases of Meijer's G-function and lower transcendents follow in a perspicuous
manner on particularizing the parameter in the H-function.

The identity

a 3+Y ’
¢ P aP) ( P aP O‘17‘)

P.q P»q Y
b, b + 8 »
( q Bq) ( q Bq Bq)

allows the absorption of any power of x in the H-function. Therefore, we could have

multiplied the kernels of (2.1) by <, put x> e(x) = g(x) and solved the pair

thus obtained without any loss of generality.
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