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ABSTRACT. The bridge degree bdeg v and cycle degree cdeg v of a vertex v 1in a
graph G are, respectively, the number of bridges and number of cycle edges incident
with v in G. A characterization of finite nonempty sets S of nonnegative integers
is given for which S is the set of bridge degrees (cycle degrees) of the vertices of
some graph. The bridge-cycle degree of a vertex v in a graph G 1is the ordered pair
(b,c), where bdeg v=1b and cdeg v = c. Those finite sets S of ordered pairs of
nonnegative integers for which S 1is the set of bridge-cycle degrees of the vertices of

some graph are also characterized.
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1. INTRODUCTION.

Except for the number of vertices and number of edges, probably the most basic
numbers associated with a graph are the degrees of its vertices. There are several
results on graphs dealing strictly with degrees. In this paper we differentiate
between two types of edges, namely bridges and cycle edges, and consider the two
associated degrees. We then investigate the related degree sets, both separately
and combined. In each case we characterize which sets are the degree sets of
connected graphs,

We adopt the graph-theoretic terminology and notation of Behzad, Chartrand, and
Lesniak-Foster [1]. For a vertex v of a graph G, we define the bridge degree
bdeg v of v as the number of bridges incident with v; the cycle degree cdeg v
of v 1is the number of cycle edges incident with v. Clearly, deg v = bdeg v + cdeg v.

If v 1is neither a cut-vertex nor an end-vertex, then bdeg v = 0. The converse of
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this is not true, however, since bdeg v = 0 for every vertex v of a 2-edge-
connected graph.
2, PRELIMINARIES

3imilar to the so-called "First Theorem of Graph Theory" (which states that the
sum of the degrees of the vertices of a graph is twice the number of edges), we have
the following observation,

LEMMA 1. Let G be a graph with b bridges and c¢ cycle edges. Then

I bdeg v=2b and I cdeg v = 2c.
veV(G) veV(G)

PROOF. Since each bridge of G 1is incident with two vertices of G, each bridge is

counted twice in the sum z bdeg v; therefore L bdeg v = 2b, Similarly,
veV(G) veV(G)
z cdeg v = 2c, 0
veV(G)

The following corollary is an immediate consequence of Lemma 1.
COROLLARY. The number of vertices with odd bridge(cycle) degree is even.

The following lemma is elementary but useful,
LEMMA 2. Let G be a connected graph with at least one bridge. Then there exist at
least two vertices with bridge degree 1.
PROOF. Let G' be the subgraph of G induced by the bridges of G. Then G' is a
forest and, therefore, every component of G' 1is a tree (at least one of which is
nontrivial) which implies that G' contains at least two vertices of degree 1 in G'.
Since the bridge degree of a vertex v in G' 1is the bridge degree of v in G, it
follows that G contains at least two vertices of degree 1. [

While the previous lemma states that in a graph with at least one bridge, at
least two vertices have bridge degree 1, it is clear that no vertex has cycle degree 1.
3. BRIDGE AND CYCLE DEGREE SETS.

The degree set D of a graph G 1is defined as the set of degrees of the vertices

G
of G. Now similar to the degree set DG of a graph G, we define the bridge degree
set B, of a graph G as the set of bridge degrees of the vertices of G, and the

G
cycle degree set CG of G as the set of cycle degrees of the vertices of G.

Clearly B, and CG are nonempty sets since bdeg v and cdeg v are defined for

G
every vertex v of G. For a graph G we let BG = {bl,bz,...,bm} and
G = {cl,cz,...,cn}, where m, n 2 I with by <b, <... <b and c SCy < eew <.
As noted earlier, either B, = {0} or 1 ¢ B,, and 1 ¢ C..

For a set S = {al,az,...,a }, k 21, of positive integers, where a1< a4, < < aps

k
Kapoor, Polimeni and Wall [2] defined u(S) = u(al,az,...,ak) as the minimum order
of a graph G for which DG = S, They showed the following.

THEOREM A. For every finite set S of positive integers, u(S) exists and, in fact,
u(s) = a

In a similar fashion we introduce two new definitions.

+ 1.

For a finite set S of nonnegative integers, let ub(s) represent the minimum

order of graph G for which BG = S. 1If no such graph G exists, then we write
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ub(S) + . If S = {bl’bz""’bm}’ m 2 1 where bl < b2<...< bm’ we also write

Ub(s) = ub(bl»bzg' .

.,b ). Since every graph which contains a vertex of bridge
m
bm has order at least bm + 1, it follows that ub(bl,bz,...,bm) 4 bm + 1

degree
whenever ub(S) exists.

Similarly for a finite set S of nonnegative integers, let uC(S) represent
the minimum order of graph G for which C_ = S. If no such graph G exists, then

G
we write uc(S) =+4+w, If S = {cl,cz,...,cn}, n 21, where ¢ <c, < ... <c, we

write uc(S) = uc(cl,cz,...,cn). Since every graph G with CG S contains a vertex
of cycle degree o it follows that G has order at least ch + 1, so that
S .
“c(cl,CZ""’cn) z2c + 1 whenever uc(S) exists.
The following result of Kapoor, Polimeni and Wall [2] will prove to be useful.
THEOREM B, Let S = {al,az,...,an}, n 2 1, be a set of positive integers.

(i) There exists a tree T with Dy = S if and only if 1 € S.

(ii) If 1 € S, then the minimum order of a tree T with DT =S is

n
2 +3Z (ai -1).
i=1

For forests there is an analogous result which we now present.
PROPOSITION 1. Let S ={a1,a2,...,aJ, n 21, be a set of positive integers. There
exists a forest F with DF = S if and only if 1 €S, Moreover, if 1 € S, then

the minimum order of a forest F with DF = S is

n
2+1 (a, -1)
; i
i=1
and, in fact, F 1is a tree.
PROOF. By Theorem B(i) there exists a forest F (in fact a tree) with DF =S if
and only if 1 ¢ S. Furthermore by Theorem B(ii) the minimum order of a tree with
DT =S is
n
2+ (a, -1).
. i
i=1

Now suppose that F is any forest of order p and size q with k > 1

= S, and let m, be the number of vertices of

(nontrivial) components for which D i

F
degree ai(l < i <n) in F. Then

n n
2(p k) =29 =2I ma, >=2(p-n)*1+I a,,
. ii . i
i=1 i=1
which implies that
n n
p22k+I (a,-1)=22+3% (a, -1)
=1t i=1
since k 2 1. Therefore the minimum order of a forest F for which DF =S is
n
2+ 2 (ai -1,
i=1

which in turn implies that k = 1 and that F is a tree. [
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As an immediate consequence of Proposition 1 we show that ub(S) exists for
every finite nonempty set S of positive integers.
PROPOSITION 2. For each set S = {al,az,...,an}, n 2 1, of positive integers with
1= a; < a,
such smallest graph G 1is a tree and has order

< vee < a, there exists a graph G for which BG = 5., Moreover, any

n
2+% (a, -1).
. i
i=1
PROOF. By Proposition 1, there exists a tree T with D = B_ =S and have order

T T
n
[v(T)| = 2 + 2 (a, - D,
i=1
which verifies the first statement of the proposition. Suppose next that G 1is a
graph of order p with BG = S. We show that
n

p22+zZ (a, -1).
. 1
i=1

If G contains no cycles, this inequality follows by Proposition 1.

Suppose then that G contains cycles. We remove all cycle edges of G, producing
a forest F of order p having the property that the bridge degree of each vertex in
both G and F is the same, implying that BF = S. We next show that F is not a
tree. Let e = uv be a cycle edge of G. We claim that u and v are not connected
in F, for suppose P is a u - v pathof F. Then P + e 1is a cycle in G, implying
that no edges of P are present in F, a contradiction. Consequently, F is not a
tree and so by Proposition 1,

p>2+ g (a, - 1). 0
=1
The case where S contains the integer 0 is now treated.
PROPOSITION 3. Let S = {bO’bl""’bn}’ n 2 1, be a set of nonnegative integers with
bo =0 and 1 = b1 < b2 < eee < bn. Then there exists a connected graph G such
that BG = S. Moreover, the minimum order of such a graph G is

n
4+ 2 (bi -1).

PROOF. Consider a tree T with degree set {b_,b,,...,b } and of order
1’72 >"n

n
2+ (b, -1).
. i
i=1

Then construct a graph G by identifying a vertex of degree 1 in T and a vertex

of K3. Clearly,
n
lve)| =4 + 2 G, -1
i=1
and BG = S. Suppose G1 is a connected graph of minimum order having BG = S. Let
F be the forest obtained from G1 by removing the cycle edges of Gl’ and F1 the

forest obtained from F by removing the vertices of F having degree 0. Necessarily

the degree of each vertex of F. is the same as the bridge degree of that vertex in F

1
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and G,. Then

1
n
Iv(cl)l = V(@] > |V(F1)| > 2 +2 (b, - .
i=1
Hence

n

|v(c1)| 2343 (b, - D).
i=1

If equality holds here, then

n
2+ (b, -1)
1

[V(F )|
1 i=1

which implies that F is a tree (by Proposition 2) and G, contains one vertex, say

1 1

v, whth bdeg v = 0. Let e = vwy and e, = vw, be two edges incident with v,
Observe that every edge of the Wy -, path P in F1 is a bridge while every edge
of P in F + e, +e and therefore in G 1is a cycle edge, but this is impossible.

1 2
Therefore

n

]V(Gl)l =44+ 3% (b, -1).
. 1
i=1

We now consider the existence of uc(S) for finite nonempty sets S of non-
negative integers.

PROPOSITION 4, For each set S = {c 2""’Cn}’ n 2 1, of positive integers with

1€

2 <S¢, <S¢, < 4ee < Che there exists a connected graph G (having no bridges) for

1 2
which CG = §. Moreover, any such smallest graph G has order c, + 1.
PROOF. We follow the techique employed in [2] used in proving Theorem A. Clearly a
graph G with CG = S has at least c¢_ + 1 vertices. We show there exists a graph

n
G with c, t 1 vertices having C, =S, If n =1, then G =K

G c1+ 1 has the
desired properties; while if n = 2, then G =K + K has order c¢, +1 and
¢ cz—cl+1 2
CG = S.
Suppose n > 3. By Theorem A there exists a graph H of order Ch-1 T %1 +1

such that D, = {c2 = C s C3 = CpreeasC g cl}. The graph G = KCl + (KCH_Cn_lu H)
is connected (in fact, 2-edge-connected), has order <, + 1 and

CG =D = {cl’CZ"'°’cn}' 0

The following Proposition is now immediate.

PROPOSITION 5. For each set S = {c 12eesC }, n 2 1, of nonnegative integers with
n

c
0’
¢y = 0 and 2 < Cp S eee SCpy there exists a connected graph G having CG = S.

Moreover, any such smallest graph G has order ch + 2 which implies that
u(S) =c + 2.
c n
We now determine conditions on two given sets B and C such that there exists
a connected graph G with BC = B and CG = C.
THEOREM 1. Given two finite nonempty sets B and C of nonnegative integers, there
exists a connected graph G having BG = B and CG = C 1if and only if exactly one of
the following statements holds:
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(1) ¢=1{0}, 1 e€B and O ¢ B,

(2) ¢

B = {0},

(3) LeB-C,0eC and C # {0},
(4) 0, 1¢C and B = {0},

(5) 0,1¢e¢B-C.

PROOF. If (1) holds, then by Proposition 2, there exists a tree T with BT =B

(and, of course, Cr = {0}). 1If (2) holds, then K, has the desired properties. If
(3) holds, we consider the following cases.
CASE 1., Suppose O ¢ B, Then by Proposition 4 there exists a bridgeless connected
graph H with CH = C - {0} and by Proposition 2 there exists a tree T with
BT = B - {0}. Now we construct a graph G having BG = B and CG = C by identifying
a vertex of H and an end-vertex of T.
CASE 2. Suppose O ¢ B. We consider the same graph G produced in Case 1 (noting
that B - {0} = B)., Then we construct a graph H by joining each vertex v of G
having bridge degree 0 to a new vertex LA Observe that BH = B and CH = C.

If (4) holds then the graph G in Proposition 4 has the property that BG = B
and CG = C. If (5) holds then by Proposition 2 there exists a tree T having
B = B - {0} and by Proposition 4 there exists a graph H having CH = C. Now we

T

construct a graph G having B, =B and CG = C by identifying each vertex v, of

T with a vertex of a copy Ha Gof H.

Conversely, we show that given two sets of nonnegative integers B and C and
a connected graph G having BG = B and CG = C, then exactly one of the statements
(1) through (5) must hold. Suppose, to the contrary, that none of the statements (1)
through (5) holds. Clearly 1 ¢ CG. Now if O € C, then either (a) C = {0} and
0, 1 € B (implying that G has a vertex of degree O and a bridge, which contradicts
the fact that G 1is connected) or (b) C # {0} and B = {0} (a similar contradiction).
If 0B, C and 1 ¢ B - C, then we consider a longest path P in G. Let u be

an end-vertex of P and e be the edge incident with u in P.

Suppose that e is a bridge of G. Then there must exist a cycle edge uw in
G for some w in V(G) since 0 ¢ C. Now since e is a beidge of G then w
cannot be a vertex of P, which implies that there exists a path longer than P which
is a contradiction. If e 1is a cycle edge, then, in a similar fashion, we reach a
contradiction.

Therefore there does not exist a graph G having BG = B and CG = C for
which 0 ¢ B, C and 1 ¢ B - C.
4. BRIDGE-CYCLE DEGREE SETS.

We have determined in Section 3 which bridge degrees and which cycle degrees are
possible for the vertices of some connected graph. We now consider the problem of
specifying a given bridge degree and cycle degree for some vertex of a connected graph.

If v 1is a vertex of a graph G having bdeg v = b and cdeg v = c, then the
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bridge-cycle degree bcdeg v of v 1is the ordered pair (b,c). The bridge-cycle
degree set BCG of G is the set of bridge-cycle degrees of the vertices of G. In

this section we determine those finite sets of ordered pairs of nonnegative integers
that are the bridge-cycle degree sets of some graph. For the purpose of doing this,

we begin with three lemmas that specify the existence of certain kinds of graphs having
prescribed degree conditions.

LEMMA 3. For each integer m 2 2 and nonnegative integers Mysfgyeee, there exists
a tree having exactly n, vertices of degree i for i = 2,3,.,..,m.

PROOF. Such a tree can be constructed by taking a path P of order
m
z n,
i=2

and attaching sufficiently many terminal bridges (and their corresponding end-vertices)

to the vertices of P to produce the desired degrees.

Let uvy be an edge of a graph G1 and u,v, an edge of a graph G2 disjoint
from Gl‘ By a 2-edge transfer of G1 U 62 at u,vy and u,v,, we mean the graph
G1 U G2 WV -V, + uyu, + Vv, or the graph G1 u G2 - U vy muyv, + uyv, + uyvy .

We note that if G1 and 62 are 2-edge-connected, then so too is the 2-edge transfer

of G1 u G2 at any edge of G1

LEMMA 4, Let D be a finite set of integers each element of which is at least 2, and

and any edge of G2.

for each i ¢ D, let n, be a positive integer. Then there exists a 2-edge connected
graph with degree set D and having at least n, vertices of degree 1 for each

i e D.

PROOF. Let r be the smallest element of D, and let k be the smallest positive

integer such that k(r + 1) = n_. Define G, = G2 = ... = G Next let s be

1 kT K
the smallest integer i € D such that i > r (if such an integer exists). Let ¢
be the smallest positive integer such that 2(s + 1) 2 ns and define
Crtr = Caz = o0t Cppg = Kopge
G1’G2”"’Gz of complete graphs. For i = 1,2,...,z - 1, we construct a 2-edge

Continuing in this fashion, we arrive at a sequence

i41° selecting disjoint edges of Gi for i = 2,3,...,z = 1 in the

process. The resulting graph has the desired properties. 0

transfer of Gi u G

LEMMA 5. Let m >22 and n 2 2 be (not necessarily distinct) integers where n is
odd if m 1is odd. There exists a 2-edge-connected graph with one vertex of degree
m and the remaining vertices of degree n.

PROOF, If m = n, then has the desired properties; thus assume m # n. Let

Kn+1

Gl’GZ"'°’Gz be pairwise disjoint graphs isomorphic to where 2z 1is sufficiently

Kn+1’

large so that G1 U G2 U eoo U Gz has a set W of m/2 independent edges if m is

even or (m + n - 2)/2 independent edges if m and n are odd. For i =1,2,...,z -1,

we can construct a 2-edge transfer of Gi uG at edges of Gi and Gi+1 not in W,

i+l
producing a graph G. Delete the edges of W from G. If m 1is even, we add a new
vertex v to G - W and join v to those m vertices of G - W having degree
n-1. If m and n are odd, we add two adjacent vertices u and w to G - W,

joining u, say, to m - 1 vertices of degree n - 1 and joining w to n -1
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vertices of degree n - 1. In either case, the graph produced has the required

properties. 0
Next we present three additional lemmas that will be needed in the main theorem

to follow,

LEMMA 6. Let G be a connected graph such that (a,0),(0,b) € BCG’ where a > 1 and

b 2 2, Then there exist integers ¢ 21 and d 22 such that (c,d) ¢ BCG’

PROOF. Let u and v be vertices of G having bridge-cycle degrees (a,0) and (0,b)

respectively, Let P be a u - v path in G. Let w be the last vertex of G on

P having cycle degree 0 and let x be the next vertex on P. Since w is incident

only with bridges, =xw 1is a bridge. Since x has positive cycle degree,

bcdeg X = (c,d) for some ¢ 21 and d 2 2. O

LEMMA 7. Let G be a nontrivial connected graph such that BG # {0} and

(1,0) ¢ BCG. Then (i) (1,n) € BCG for some even positive integer n or(0,n) € BC

G

for some odd integer n 2 3, and (ii) (0O,n) € BC., for some integer n 2 2,

PROOF. Contract each cyclic (2-edge-connected) glock of G to a vertex producing a
graph H. Necessarily, H 1is a tree. Since BG 4 {0}, there exists an end-vertex Vv
in H. Let e be the edge of H incident with v. We may either consider v to be
(a) a vertex of G or (b) the vertex obtained by contracting a cyclic block J of G,
with a vertex u of J incident with e. If v 1is a vertex of G, then
bcdeg v = (1,0) which produces a contradiction. Hence the situation (b) must occur.
If dngu is odd, then the degree of at least one other vertex of J is odd and so
(0,n) € BCG for some odd integer n 2 3; otherwise, bcdeg u = (1,n) for some even
positive integer n. Hence (i) is established. In either case, the bridge-cycle
degree of any vertex in J different from u is (O,n) for some integer n 2 2,
verifying (ii). O
Our next lemma actually reiterates some earlier observations; nevertheless, it is
useful to include it.
LEMMA 8. Let G be a nontrivial connected graph. Then (i) (0,0) ¢ BCG,
(ii) 1 ¢ CG’ and (iii) if n € BG for some positive integer n, then 1 ¢ B.
PROOF. Since G 1is connected and nontrivial, (i) follows immediately. We have noted
the necessity of (ii) and (iii) earlier, the latter following from Lemma 2. ]
We are now prepared to present the main result of this section.
THEOREM 2. Let S be a finite nonempty set of ordered pairs of nonnegative integers
and let B ={b](b,c) € S for some c} and C = {c[(b,c) € S for some b}. Then there
exists a nontrivial connected graph G with BCG = S 1if and only if the following
conditions are satisfied:
(a) if (a,0), (0O,b) ¢ S, where a 21 and b 2 2, then there exist integers
c 21 and d 22 such that (c,d) € S;
(b) if B # {0} and (1,0) ¢ S, then
(i) (1,n) € S for some even positive integer n or (0,n) ¢ S for some odd
integer n 2 3, and
(ii) (O,n) € S for some integer n > 2;
(c)(iii) (0,0) ¢ S, (iv) 1 ¢ C, and (v) if n € B for some positive integer n, then
1 ¢ B,
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PROOF. The necessity of the conditions (a), (b) and (c) follow directly from Lemmas
6, 7 and 8.

To verify the sufficiency, let S be a finite nonempty set of ordered pairs of
nonnegative integers satisfying (a), (b) and (c). We show the existence of a nontrivial
connected graph G for which BCG = S.

Note by (c) that each element of S is of the form (m,0),m 21, or (0,n), n 2 2,
or (m,n), where m 21 and n 2 2. We now consider two cases, depending on whether
(1,0) does or does not belong to S.

CASE 1. Assume (1,0) ¢ S. By Lemma 3, there exists a tree T1 with exactly one
vertex of degree i for each i > 2 such that (i,0) € S. If there is no such i,

then let T, = K,. If C = {0}, then BC, =S so that T, is the desired graph.

1
Assume then that C # {0} and let D= C - {0}. Thus D # ¢ and each integer

of D is at least 2. For i € D, let
n = 161G, € 8.

By Lemma 4, there exists a 2-edge-connected graph F with degree set D and having

at least n, vertices of degree i for each i e¢ D. For (j,i) € S, let be

u, .
J,1
a vertex of F such that degFuj ;T i. By (a), there exist integers c¢ 2 1 and

’

d 22 such that (c,d) € S. Identify an end-vertex of T1 with Ul g in F. Now

attach sufficiently many terminal bridges to the vertices of F, if required, to obtain
a graph G in which the bridge-cycle degree of each vertex belongs to S and

bcdegcuj i = (j,i). Then BCG = S.
’

CASE 2, Assume (1,0) ¢ S. If B = {0}, then the existence of a connected graph G
with BCG = § 1is guaranteed by Lemma 4.

Suppose then that B # {0}. By Lemma 3, there exists a tree T, with at least

one vertex of degree j (each labeled vy i) for each (j,i) ¢ S such that j = 1.
t

Next we proceed to construct a graph H with the desired bridge-cycle degrees,
with the possible exception of some elements of S of the form (O,n) n 2 2.
CASE 2a. Assume (O,n;) ¢ S for some odd integer n, 2 3. Since B # {0} and
(1,0) ¢ S, it follows from condition (v) that (1,n2) € S for some integer n, 2 2.

For each (j,i) € S, where j 21 and i 2 2, there exists by Lemma 5, a 2-edge-

connected graph Fj i having one vertex uj i of degree i and the remainder of
’ ’

degree n;. The graph H 1is now produced by identifying, for each
(3,i) € S, j 21, i 2 2, every vertex Vj i of T2 with the vertex uj i of a copy
’ ’
of F. ..
J,1

CASE 2b, Assume there exists no odd integer n 2 3 such that (0,n) ¢ S. Then by
condition (ii) (0, nl) € S for some integer n, 2 2; and by (i), (1, n2) € S for

some even integer n, 22,

Consider (j,i)<S, where j 21 and i 22, If 1i 1is even, we obtain the

graph F, as in Case 2a, and identify each vertex v, . of T, with wu, . in
j,1 i1 2 j,i
Fj i If i 1is odd, join vj i to each vertex in a copy of Ki° Now we construct
9 ’
ij mutually disjoint copies of a 2-edge-connected graph F! i with one vertex of
J»
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degree n and the remainder of degree n, (see Lemma 5). We next join each vertex

2
of the graph I(i considered above with the vertex of degree n, in j of the copies
using each copy of F} 1 for just one vertex of Ki. We then repeat this

J»

F'
j
for each (j,i) ¢ S, j 21, i 22,

process, using separate copies of the graph Ki’
to obtain the desired graph H.

As mentioned above, the graph H, constructed in either Case 2a or 2b, has the
appropriate bridge-cycle degrees, with the possible exception of some elements of S
of the form (O,n), n 2 2, In particular, if (O,n) € S for some n # n, then we
employ Lemma 4 to obrain a 2-edge-connected graph H' whose degree set consists of
all such integers n. A 2-edge transfer of H U H' at an edge of H' and a cycle

edge of H 1is a connected graph G such that BCG = S. 0
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