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ABSTRACT. In this article the major result characterizes preconvergence compactness
in terms of the preconvergence closedness of second projections. Applying this
result to a topological space (X,T) yields similar characterizations for H-closed,
nearly compact, completely Hausdorff-closed, extremely disconnected Hausdorff-
closed, Urysohn-closed, S-closed and R-closed spaces, among others. Moreover, it

is established that the s-convergence of Thompson (i.e. rc-convergence) is equivalent
to topological convergence where the topology has as a subbase the set of all
regular-closed elements of T.
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1. INTRODUCTION.

In 1959, S. Mréwka [1] established the following major characterization for
compact tological spaces. A topological space X is compact iff the second projection
PZ:XxY + Y is a closed map for every topological space Y. Since that time numerous
researchers have either generalized Mrdwka's result to obtain propositions of the
form: a topological space X has a specific property iff the map P2:XxY » Y is a
closed-like map for every topological space Y or they have improved upon Mrdwka's
basic result.

Recently it has been observed by Joseph [2] that the class of all topological
spaces mentioned in Mréwks's theorem may be reduced to the class S of all
topological Hausdorff, completely normal, fully normal door spaces. The
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topological characterizations extremely disconnected and zero-dimensional may also

be added to this list. Moreover, Joseph has shown that a similar theorem holds true
when compactness is replaced by H-closedness [resp. near-compactness] and the closed
projection concept is replaced by a s-closed [resp. s-closed] projection [Joseph [3].

The fact that Mrdwka's important characterization can be generalized to
topologically nearly-compact spaces is not very surprising since near-compactness and
§-convergence are determined by the topology known as the semiregularization
(Herrmann [4]). On the other hand, the basic topological g-concepts are all
equivalent to similar concepts for the pretopological e-convergence structure.
Furthermore, as shown in Herrmann [5] the o-convergence structure is topological iff
the ground topological space is almost-regular. Consequently Joseph's charac-
terization for H-closedness is a pure extension of Mrdwka's fundamental conclusion
and indicates the importance of the class S of all Hausdorff completely normal, fully
normal, door extremely disconnected and zero-dimensional topological spaces when such
projection characterizations are being considered.

The main and rather surprising result of this present investigation shows that
the class S and closed-1ike second projections characterize a wide variety of
compact-like spaces. Many new results as well as those of Mrdwka, Joseph and other
researchers will follow as nontrivial corollaries. The main result also adjoins
an additional proposition to the growing list of results which continue to establish
that the convergence function as introduced by Kent [6] is one of the most fundamen-
tally important and useful generalizations for the topological space yet devised.

2. PRELIMINARIES.

Let X be nonempty and P (X) denotes the power set of X. If FC P(X) has the
finite intersection property, then let [F ] [resp. < F>] denote the filter base
[resp. filter] generated by F. In this article only proper filters are considered.
Let F(X) [resp. U(X)] denote the set of all filters [resp. ultrafilters] on X.

A map q:F(X) » P(X) determines a preconvergence space (X,q) if

(1) for each x ¢ X, x ¢ q (<{x}>) and

(2) for each F, Ge F(X) such that F © G, it follows that q(F ) < q(G).
If (X,q) is a preconvergence space and x ¢ q( F), where F ¢ F(X), then F is said
to g-converge to x. This is often denoted by F > x. For a preconvergence space
(X,q), if x ¢ q (F) implies that x ¢ q (F M <{x}>), then (X,q) is a convergence
space in the sense of Kent,

Throughout the remainder of this paper (X,q) and (Y,p) and the like denote pre-
convergence spaces. Let AC X. Then ¢l _(A) = {x]|3 ULlU e UX)IALA e UIALU > x]}
is the g-closure of A. For F e F(X), 3 (F) = {x][3ullu e UX)IALFCUIALU > x]}
is the set of all g-adherence points for F. As usual if f: (X,q) » (Y,p)

(i.e. f:X » Y and X and Y are preconvergence spaces) and F ¢ F(X), then f( F) =
<{f[FI|F ¢ F}>. Also is G e F(X) and f[XJN G # # for each G ¢ G, then f'](G ) =
{f7[G]|G & G} e F(X). The product preconvergence space (X x Y,n) where = = qxp
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is defined in the usual manner. A filter F g F(XxY) n-converges to (x,y) e XxY if
the first projection P] ( F) q-converges to x and the second projection P2 (F)
p-converges to y. If every Ue U(X) g-converges to some x e X, then (X,q) is
g-compact. A set AC X is g-closed if A = c]q(A) and a map f:(X,q) » (Y,p) is a
(q,p)-closed (or simple closed) map if f maps q-closed subsets in X onto p-closed

subsets of Y. In convergence space literature it is often the case that the "q" and
"p" notation which appear in such terms as "compact", "closed", etc. are dropped when
no confusion will occur. Finally we always assume the axiom of choice.
3. MAIN RESULTS.

THEOREM 1. Let (X,q) be g-compact. Then the projection le(XxY,n) > (Y,p) has
the property that for each AC XxY

Polct (A)] = c1 (P,[AD). (1.1)

PROOF. Since the project1ons are preconvergence continuous, then for each
AC XxY, it follows that P [c] (A)]c: clp(P [A]) for continuity preserves convergence
of the filters. Let (X, q) be q compact and y « cl (P [A]). Then there exists some
U ¢ U(Y) such that u >y and P [A]l ¢ U. Since for each Ueu, P [A]f1 U+ @, then
it follows that <{P, o3 rlA|U e U = Ge F(XxY). Now P,(G) = lllmp11es that
P (G) » y. The compactness of (X,q) implies that there exists some x ¢ a (P]( G ).
Since {Pludlu e UxNIALGe c ull = {v |[[v e UXIALP(G) C vl}, then it
follows that there exists some U, ¢ U(XxY) such that P1( UO) »xand G C U,.
Observe that P, (u ) = P2( G) = U. From the definition of 7 = qxp, it follows
that Ug > (x,y) Moreover, since A ¢ G, then A ¢ Lb. Consequently, (x,y) ¢ clﬂ(A)
1mp11es that y ¢ P [c]N(A)] and this completes the proof.

COROLLARY 1. Let (X,q) be g-compact. Then P_:{XxY),n) » (Y,p) is a closure
preserving and closed mapping.

Assume that z § X and U e FU(X), the set of all nonprincipal ultrafilters on X.
let B, = {UU{z}|u e U} Y {{x}|x e X}. The set By is a base for a topology
Ty on Z =X\ {z}. It is not difficult to show that T, e S. Let Sz ={ T
Ue FU(X) }. Recall that a preconvergence space is L if each principal ultrafilter

2

converges to one and only one point. Obviously a finite preconvergence space is com-
pact.

THEOREM 2. Let (X,q) be a T]
If for each Tye Sz the second projection PZ:(XxZ, axTy) > (Z,Ty) is a (qxTy, Ty)-

preconvergence space and assume that z § X.

closed map, then X is g-compact.

PROOF. Assume that X is infinite, T.l and not g-compact. Then there exists a
non-g-converging Ue U(X). Since every principal ultrafilter is q-convegent, then
U is nonprincipal. Assume that z § X and consider the T, topology on Z = X U {z}.
Let D = {(x,x)|x e X}. We show that D is m = qxT, - closed. Suppose that (a,b)
€ XxZ - D. Then a # b.

For the first case, assume that 5 # z. let Ve U(XxZ), V » (a,b) and D ¢ V .
The first projection P [D] ¢ P (v, ] (V) » a and the second projection
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PoID] e Po(v) » b. From the construction of T, it is obvious that P,(v) = <{b}>.
Hence since b e X, then {P,LVIMX|V eV} = Po(V)y e UX). Let Ue V. Then
BAZUND=V e v. Since for any (c,d) ¢ V, ¢ = d, then it is clear that
PyIvI = P,[V] ¢ P;(V). Thus for each U e V there exists some V ¢ V such that
VEXxZ, VC U, XCP[V] = Py[V] e Py( V) and P,[V] ¢ P( V). Consequently, for
each U ¢ vand each V ¢ IV, P] vin PZ[U] N X # @#. Hence P]( Vy = PZ( V)X. Thus
Pz( U)X + a. Since P2( V) = <{b}>, then Py ( V)X = <{b}>X »b. The T, property
for q implies the contradiction that a = b. Consequently for the case that b # z the
result that (a,b) c1_ (D) implies that (a,b) e XxY - c1 (D).

For the second case assume that b = z, Ve U(XxZ), V > (a,z) and D ¢ V. Thus
P]( v) > a, P]( V) # Usince U is non-q-convergent and Pz[D] € P2(V ) > z.
Consequently, there exists some V ¢ V and U ¢ Usuch that Pl(V)IW U=g. Letting
Vi = VND, then it follows that Pi[V,] = PolVqT, PRIVl e Pyl V), PyIV T € Pyl V),
P][V]]c: X and P][V]](1 U =40. From the construction of T the result that
PLVi1 N U = 9§ implies that z e Po[V,]. Since z ¢ X and P,[V;1C X we have a
contradiction. Hence (a,z) e XxZ - clN(D) implies that XxZ - DCXxZ - clﬂ(D).

NObserving that in general DC c1"(D), then application of the above two cases
yields D = c1"(D) and that PZ[D] = c]Tu(Pz[D]). However, since P(Z[D])= X, then X is
Tu -closed in Z. The construction of T, implies that z ¢ C]TU (X) = X. This final
contradiction completes the proof.

COROLLARY 2. let (X,q) be T]. Then P2:(XxZ,quu ) > (Z,T(J) is a (qgxT u? T
-closed map for each Tu € SZ iff X is g-compact.

COROLLARY 3. Let (X,q) be T]. Then pZ:(XXZ’qXTU ) » (Z,T(J) is a (qxT U’T
closed map for each (Z,Tu ) e Siff (X,q) is q-compact.
4. TOPOLOGICAL IMPLICATIONS.

In what follows we shall need to compare topological and preconvergence space

u)

u)'

concepts. When a term denotes a topological concept it will be preceded by the sym-
bol "top."

Recently many special preconvergence structures have been of interest to the
general topologist. Assume that (X,T) is a top space and for each x ¢ X let ¢ (x) =
{c17(6)|x € G ¢ T}. Then a filter or filter base F on X s-converges to x e X iff
<C (x)>C < F> iff for each C ¢ C(x) there exists some F ¢ F such that TCC. Let
(X,T,) denote the top space generated by the set of all top regular-open members of
T. This is called the semiregularization. A filter or filter base F on X s-

converges to x ¢ X if it T,-converges. Herrington [7] introduces f-convergence which
is implicitly shown in Herrmann [8] to be equivalent to w-convergence. Let (X,Tw) be
the weak topological space generated by C(X). A filter or filter base w-converges
to x e X if it T -converges. Let RC(X) denote the set of all top regular-closed sub-
sets of X. Then RC(X) = {c1,(6)|G ¢ T}. For each x e X, let C (x) =

{RI[R e RC(X)T A [x e R]}. A filter or filter base F rc-converges to x e X iff
<CL(x)>C<F> iff for each R ¢ C.(x) there exists some F ¢Fsuch that FC R. It is
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known that rc-convergence is equivalent to s-convergence of Thmopson [9]. Let

x e X and X € Gc:c1T(G)c: H, where G,H ¢ T, be denoted by (x,G,H). A filter

or filter base F u-converges to x ¢ X if for each (x,G,H) there exists some F ¢ F
such that Fc:clT(H) (Herrington [10]). For each x ¢ X let S(x) be a set of top
open neighborhoods of x. The set S (x) is said to be shrinkable if for each G e S(x)
there exists some H ¢ S(x) such that c1T(G)C: H. A filter or filter base F on X sh-
converges to x ¢ X if for each shrinkable S(x) there exists some G e S(x) and some F
e F such that FC G (Herrington [11]). (Note: In the literature sh is denoted by s.)
It is not difficult to show that all of the convergence concepts defined in this
paragraph are at least preconvergence structures. Moreover, the rc and the o-
convergence structures are pretopological, and the w and § are topological. The
concept of the "accumulation" point for a filter or filter base is defined set-
theoretically in the above references. These accumulation point definitions are all
equivalent to the preconvergence adherence concept applied to these special topologi-
cally dependent preconvergence structures. In some of these special cases, the
authors have also set-theoretically defined closure-type operators. In particular,
the o6-closure is equivalent to the q-closure, where q = 6; the s-closure (Dickman and
Krystak [12]) and the p-semiclosure (Joseph and Kwack[13]) are the same and are
equivalent to the g-closure, where g = rc and the §-closure is equivalent to the
gq-closure, where q = T,.

The major interest in the above special preconvergence structures is that they
characterize various compact-like top spaces. A top T2 space is top Tz-closed iff it
is p-compact. A top almost normal Hausdorff space is top almost normal Hausdorff-
closed if it is s-compact (Singel and Mathur [14]). 1If P is any top property which
implies top almost completely regular and which is possessed by every top nearly-
compact space, then a top P-space is top P-closed iff it is s-compact (Herrmann
[15]1). A top completely Hausdorff space is completely Hausdorff-closed iff it is w-
compact. A top Urysohn space is top Urysohn-closed iff it is u-compact. A top
T3 space is top regular-closed iff it is sh-compact. A top space issclosed iff it is
rc-compact. A top extremely disconnected Hausdorff space is top extremely disconnect
Hausdorff-closed iff it is rc-compact (Mathur [16]).

Prior to applying theorem 2 and its corollaries to elements of C =
{0,8,w,rc,,sh} it is necessary to find useful topological conditions which imply that
(X,q), q € C, is - The following are known. The e[resp. &, wl-structure is n iff
(X,T) is top Hausdorff [res. weakly-Hausdorff, completely Hausdorff].

THEOREM 3. Let (X,T) be a top space.

(i) If (X,T) is top Urysohn, then (X,u) is T

(ii) If (X,T) is top T3, then (X,sh) is T

PROOF. (i) Assume that (X,T) is top Urysohn and (X,u) is not T]. Then there
exists a principal ultrafilter <{x}>, x e X, such that <{x}> » x and <{x}> >y, y # x.

1
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Consider any triple (y,G,H). Then there exists some AC X such that y ¢ A and

AC cl (H). However x ¢ cl(H) implies that x clT(G). Now (X,T) being top Urysohn
implies that there exists GysGy e T such that x ¢ G cly(G6 ), y e G, & c14(Gy)

and c1.(6)) n cl4(Gy) = . Thus {G,,X - c1;(Gy)} has the property that

Y e Gcl (G,)CX - c1¢(Gy). From the above argument this yields that x c14(6,).
The result follows from this contradiction.

(i1) Assume that (X,T) is top T3 and (X,sh) is not Ty- Then there exist x,y e
X such that x # y and <{x}> > y. Now the top open filterG(x) = {G|x ¢ G e T} is
top regular-open on X and < G(x)>» x. Hence adT(< G(x)>) = [x} since (X,T) is top
T,. However <{x}> =y implies that y ¢ adgp (< G(x)>). This contradicts theorem
2.3 part (a) in Herrington [11] and the result follows.

If the top space (X,T) is allowed to carry the appropriate property which
assures that (X,q) is T] where q ¢ {9,8,w,u,sh}, then theorem 2 and its corollaries
characterize a wide variety of top P-closed spaces.

It is well known that a pretopological convergence space (X,q) is topologica)
iff the g-closure is idempotent. Let C C P(X) be a cover for X. For each X e X,
let C, = {C]IC ¢ C JALx e C]} and C' = {C | x € C}. The next result is straight-
forward and the proof is omitted. Recall that for (X,q), a(q) is the finest top
coarser than q and (X,q) is topological iff q = A(q).

THEOREM 4. A preconvergence space (X,q) is topological iff there exists a cover
C of X such that for each Cx e C', <Cx> + X and whenever a filter F » y ¢ X, then
<cy> cC F.

COROLLARY 4. The rc-convergence structure is topological. The set RC(X) is a
subbase for the rc-topology, Trc'

COROLLARY 5. The rc-convergence structure is T] iff for each pair of distinct
points x,y e X, there exists a set E which is a finite intersection of top regular-
closed subsets in X and x ¢ E, y ¢ E.

REMARK: The fact that the rc-convergence structure is topological implies that
many of the results relative to S-closed spaces which have recently appeared in the
literature are simple re-statements of well-known topological propositions.

The results thus far obtained raise a number of interesting problems. It is
known that s < rc and that rc < T iff (X,T) (the top space which generates the
rc-structure) is top extremely disconnected (top T2 not assumed). Moreover, it
follows easily that rc = T-convergence iff (X,T) is top extremely disconnected and
regular. It is known that 6 is topological iff (X,T,) is top regular. Now since
it is always the case that o < Ty -convergence < T-convergence, then it follows that
6 = T iff (X,T) is top regular. Observe that in general u < T and sh < T for any
(X,T). If follows immediately from the definition of these two preconvergence struc-
tures, that if (X,T) is top T3 [resp. to T4], then u = T-convergence [resp. sh = T-
convergence].

THEOREM 5. Let (X,T) be top Hausdorff [resp. weakly-Hausdorff (i.e. T, is
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Hausdorff), completely Hausdorff, T in Trc’ Urysohn, T3]. Let q = 9 [ resp. s,
w,rc,u,sh] be the definied modification of T and qy = eL,[resp. Sys Wys rCys
Uy, shyl be the corresponding modification of Ty . Then PZ:(XxZ,qxq(J) » (Z,q,)
is (q «x 9 > qu)-c1osed for each TR iff (X,q) is compact.

PROOF. Simply observe that for each T ¢ Sz’ Ty =0y=sy=wy=rcy=
uu=shu

Problem (1). Characterize those top spaces for which sh [resp. u] is
pseudotopological, pretopological or topological.

Problem (2). Characterize those top spaces (X,T) such that sh = T [resp.
u = TJ.

Problem (3). Characterize those top spaces (X,T) such that rc x rc = rc(TxT )
(the rc-structure generated by T x Tu ) [resp. u x u = u(T x T(J)’ sh x sh =
shiT x TU ).
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