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ABSTRACT. It is proved that any co-isotropic submanifold M of a pseudo-Sasakian
manifold g(U,Q,:,E) is a CR submanifold.(such submanifolds are called CICR
submanifolds) with involutive vertical distribution bY. The leaves M of DL
arce isotropic and M 1is DL—totally geodesic. 1f M 1is foliate, then M is
almost minimal. TIf M 1is Riccil Dl-exterior recurrent, then M recelves two
contact Lagrangian foliations. The necessary and sufficient conditions for M

to be totally minimal is that M be contact p*-exterior recurrent.
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1. INTRODUCTION.

Many papers have been recently concerned with Sacakian
manifolds ;(¢,5,:,§) and contact CR submanifolds of M (see for examnle
Yano and Kon [1]; Kobayashi' [2]. Pseudo-Sasakiun manifolds Q(U,C,x,g) were
developed by Rosca [3].

The purpose of the present paper is to study co-isotropi~ submanifolds M
of g(U,E,:,E) (since E is pseudo-Riemannian, M are real). If TP(M) and
T;(M) are the tangent and normal spaces of M at a point p € M, M is co-
isotropic if and only if T;(M)<I TP(M). It is proved that any co-istropoic
submanifold M 1is a contact CR submanifold and such kind of CR submanifolds
is called CICR submanifolds. If M 1is a horizontal CICR submanifold, then

the canonical vector field ¢ belongs to the horizental distribution
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D: p » Dp1: TP(M) (see Kobayashi [2]), and the vertical distribution
D:;(DL: p > D; G T, ()  colncides with ’I‘;(M).
The following basic properties are proved: ot is always 7nvolutive (as in
the case of a proper immersion), the leaves M of D* are isotropic, and M
is both D*-totally geodesic and mized totally geodesic (Bejancu [4]).

In addition, the almost mean curvature vector r* (which Is defined) of 'n
is a geodesic section on Mt and M* 1is of constant almost mean curvdature.

In Section 3 we study foliate (Kobayashi [2]) CICR submanifolds. For this
purpose we define a transversal quadratic vectorial jorm I, associated with
x: M > g(U,C,;,E). The following results are proved:

(i) the necessary and sufficient conditions for M to be foliate is that
IIt(X,UY) = IIt(UX,Y) for any X,Y € D;

(ii) any foliate CICR submanifold is almost minimal.

There is a class of foliate CICR submanifolds for which the simple unit form
which corresponds to DL is exterior recurrent (Datta [5]). Such submanifolds
are said to be Ricei Dr-exterior recurrvent aﬁd, i1f the recurrence l-form ic conformal
to n, then M is said to be contact DL—pxtcrior recurrcnt. The following result
is proved: the necessary and sufficient condition for a CICR submanifold M to
be minimal is that M be contact I'-exterior recurrent.

Finally in Section 4 we discuss the case when M 1is a contact CICR submanifold
of a(U,E,:,z) which is g-vertical (Kobayashi [2]). 1In this case the leaves M
of D* are mired isotropic (Rosca [6]; Goldberg and Rosca [7]) submanifolds and
such submanifolds M can not be foliate.
2. PRELIMINAIRES.

Let M be a (2mt+l)-dimensional pseudo-Riemannian manifold of index mtl, i.e.
of signature (m+l,m). At each point ; € ﬁ one has the standard decomposition
(sece Rosca [3]; Libermann [9]):

M) = Hu(M) ® To(M 2
T'I\; ) = B(M)w ?;() (2.1)

where T;, Hg, and Tg are the tangent space at p, a 2m)-dimensional newdral
vector space, and a time-litke line orthogonal to H; respectively.

Let Sg, S§(: HS be two self-orthogonal subspaces (both of dimension m)
which define an involutive automorphism U of square +1 (U 1is the para-complex
operator defined by Sinha [10]). Letm £ E.TBN and n € Al(g) be the pairng which
defines a contact structure o, on M and V be the covariant differentiation
operator defined by the metric tensor E. Then if for any vector fields %, ;'

N noA
on M the structure temnsors (U,£,n,g) satisfy

n N ,
0 (Z) = z-n(D)E, AR A IR (e R AT (CALTCAD IR

" n, v
8,0 = D, Wyt = Uz, (2.2)
an(z,%"y = -25Z,1"), ne =1,

v VYY)
the manifold M(U,¢,r,g) has been called by Rosca in 3] pseudo-Sasakian manifold.
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Since the (1,1)-tensor field U satisfies U3-U = 0, one may say that any
pseudo-Sasakian manifold is a para-f-manifold (Goldberg and Rosca' [11]; Vranceanu
and Rosca [12]) (U defines a para f-structure).

In order to study improper immersions in ﬁ(u,g,ﬁ,g), we consider on ;
adapted Witt frames (Morvan and Rosca [8]) W = {hA: A,B = 0,1,...,2m} where
{ha: a=1,...,m} = Sg and {ha*: a* = a+m} = S; are null vector fields and
h, = € 1is the anisotropic vector field of W.

As is known (Libermann [9]), one has

n a
* = v =
g(hayhb) Gab’ L(F,,ha) 0 (2 3)
" .
E(E,h5) =0 , g6 =1
and
Uh. = h , Uh * = -h * Ug = 0. (2.4)
a a a a

If {ﬁA} is the dual basis of W, we set 80 = x and the line element dB

v
(d% is a canonical vector 1l-form on M) 1is expressed by

ap = ot hy - (2.5)

It follows from (2.3) that the metric tensor E is expressed by

*
g=2730sd +non (2.6)
a

If 33 = ?gcmc(¢g € Cm(M)) and 83 are the connection forms and curvature 2-forms
on the bundle W(M) respectively, then the structure equations (E. Cartan) may be

written in indexless form as

§w h, (2.7)
de = -8 A o, (2.8)
ad=Fn¥+7. (2.9

Referring to (2.3) and (2.7), one finds

<
=
[}

a vy * na % ",
62 + 60x = 0, 62 = o, 0% = 0,
. (2.10)
Y0, Ya¥ Ya . W0 _
Qa + 60 = 0, 90 + ea* =0
and
Y0 _ na® 20 g
Ba =W , Ba* = . (2.11)
The 1-form
Va
y =17 8, (2.12
a

is called the Ricei 1-form (Rosca [13]). By virtue of (2.7), (2.8), and (2.11) one

has
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*
am=25eAw? (2.13)
a
n, n, n 0Y n, n
VE = Udp = <V¥E,Y> + <V?£,X> =0 (2.14)1

N ",
where X, Y are any vector fields on M ((2.14) proves in intrinsic manner that

£ 1s a Killing vector field as in the case of Sasakian manifolds).

Further we recall (see Yano and Kon [1])that a submanifold M of g is called
a contact CR submanifold of ﬁ if there exists a differentiable distribution
D: p ~» Dp(: TP(M) (one denotes the induced elements on M by supressing =)
satisfying:

(i) D is paraholomorphic i.e. UD;<: Dp for each p € M, and

(ii) the complementary orthogonal distribution p*: P D;<: TP(M) is anti-
. , 1 L
invariant 1i.e. UDP(z TP(M) for each p€ M (T;(M) is the normal space

to M at p).

The distribution D (respectively DL) is called the horizontal (respectively
vertical) distribution.

Further, according to Kobayashi [2], we say that M 1s a contact E-horizontal
(respectively &-vertical) CR submanifold if £ € Dp (respectively ¢ € D:) for
each p € M.

If the immersion x: M -+ ﬁ is improper and d 1is the defect of M(d = dim M
- rank of the mapping x), then according to Rosca [6] and Goldberg and Rosca {711,
M is mixed isotropic if one has

T,00 0 TL00 £0, T (0 & TLOD, THOD & T, (1) (2.15)

<=>d # 0, d # dim M, d # codim M.
3. CICR SUBMANIFOLDS.
Let x: M - ﬁ(u,g,ﬁ,}) be the improper immersion of a co-isotropic submanifold
M in g. Then by definition one has T;(M)<: Tp(M) and without loss of generality
one may suppose T;(M)c: Sp. We agree to call Sp the normal se¢lf-orthogonul
(abr. n.s.o.) space associated with x and assume that dim T;(M) =4 (L < m.

Consider now the two complementary differentiable distributions
4 4 oy
D: p>D_ =T (MNT-(M); D*: p»D* = (M) < T_().
P P p()\p() P b p() p()
Referring to (2.4), one has
2
UD_< D, UDT = T-(M). 3.1
p P P p() (3.1)
Therefore, one may say that any co-isotropic submanifold M of a pseudo-
N
Sasakian manifold M 1is a contact £&-horizontal CR submanifold.
A CR submanifold which is co-isotropic will be called in the following a

CICR submanifold.
Suppose that the manifold M under consideration is defined by
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*

r * %
w =0;r,s =2ml-2,...,2m . (3.2)

Then one has Dp = {hi,hi*,g} and D; = {hr;r = m+l-2,...,m}. Further, according

to Rosca [13], we agree to call D;L = CS*Tp(M) n S; the ‘transversal vector space
A

associated with the co-isotropic immersion x. Hence one may write T’r\;(M)|M

= Dpt9 D;(Q D;L. On the other hand, referring to (2.13), one has
0 i, i*
dn = dn|M =2 g wAw o,
and one may say that Dp is a contact vector subspace (dim Dp = 2(m-2)+1) of
TP(M).
If we denote by Yy the simple unit form (see Rosca [14]) which corresponds

to Dp’ one may write
b= ()™ /2™ (mopy 1 (3.3)

Clearly one has dy = 0. Therefore the ideal J(DL) = {y € A(M); ¥ annihilates
pt, dJc J} is a differentiable ideal, and we conclude that the distribution DV
is always involutive (as in the case of proper CR submanifold of g(U,E,K,E) —
see Yano and Kon' [1]; Kobayashi [2] — and in the case of CICR submanifolds of a
para Kaehlerian manifold — see Rosca [14].)

Consider the vector bundle L* = S*\D**1: D over M. Then, as 1s known, the
elements of AI(M,L*) = SL*Hom(AlTM) (SL*: space of sections) are l-forms of M
with values in L*. Set a € {1,1*,r}. Then by virtue of (3.2) the l-forms 9:*

represent the mixed connection forms (Rosca [13]) associated with «. Then taking

the exterior derivative of (3.2), one {inds by (2.8), (2.10), and (2.11) that
* *
0" = 0%xe Al(u,L*Y). (3.4)
(¢} i
Next denote by lr = -<dp,Vhr> the second fundamental quadratic forms

associated with x (coefficients of lr are symmetric covariant 2-tensors and
depend only on the normal connection ©t). It follows from (2.5), (2.7), and

Cartan's lemma that

r* i* g% -
L= Vixgw w ow . (3.5)
Then the second fundamental quadratic vectorial form on M, i.e. II = Z thr
n r
(IT is an M-morphism of Tg(M) in M and does not depend on V*) is expressed by
r* * .j* (3 6
I1 = Yi*j* w Quw ®hl’ . .6)

If V' defines the connection in the normal bundle TL(M), then for any
Xa TP(M) and any Nc T;(M) a basic formula for submanifolds is the Weingarten

formula

VN = -A () + v;n (3.7)

In (3.7) AN(X) and V;N are the tangential and the normal part of VXN

respectively.
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Setting N = thr’ one finds by (3.4) that
r.r* 1
Ay(x) =] N8 x(X)h, € S\D* . (3.8)
i i i
Then, as is known, the vector space
T ={XxXe€eT M: A,X) =0
p = e T 00 A = 0}

is called the space of relative nullity. 1t follows from (2.8) that Tp = SSD{E}D

and one may write
T M) =T @ (S*\D* . (3.9)
M) P ( *\ )p

Since dim T = m+l, this integer represents the index of relative nul!/ity
(Gardner [15]).
We may also consider the following basic invariants of 1II. Setting N = T;(M),

T = TP(M), one has according to Gardner []5]:

1) The target rank, dimNII, is the integer r(p) which in the case under
discussion is defined by

*
r(p) = dimII(p) = dim{ g Yi*j*hr} = 2(a41)/2. (3.10)

2) The source rank, dimTII, is the integer s(p) defined by

*
. _ T, o_ _
s(p) = d1mTII(p) = dim[@i*} = 2(m-2) G.11)
= codim M * dim L;.
Furthermore it follows from (3.6) that
11(0*,0*) = 0, (3.12)
I1(p,0*) = o, (3.13)
and
11(S,S) = 0. (3.14)
Hence, from the above equations we may say that any CICR submanifold is
(1) vertical totally geodesic,
(11) mixed totally geodesic,
(1i1) n.s.o0. geodesic.
Set L=s0"cD and consider the distributions
I =L 0 {¢ < ,
P P P p (3.15)
*=1*0 {8} <D,
P P p p
each of dimension m-%2+1. It follows from this that
UL =L =orthlL ; dr||Z =0,
LI E P (3.16)
uZ* = L* = oren L% dr =0
p_p OTEM Ty 1 5x

and referring to Weinstein [16] and Rosca [13], we agree to call Zp and X; the

prinecipal contact Lagrangian distributions of Dp.
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Denote now by M*  the maximal integral manifold of p* and by TP(ML) and
T:(ML) the tangent and normal spaces of M at any point p € M. Obviously

one has
TL MJ- = D-" D 3.17

and this implies TP(ML) = D;(: T;(ML) that ls the submanifold M 1is {sotropic
(dim M* = codim M = defect of x = £). Since M is orientable, we choose an
orientation on M' with the volume element T and the star operator *,

Since the line element of M- 1is
dp = w' ® hs = m-24l,...,m (3.18)

(we denote the elements induced on Mt by the same letters), one finds using the
star isomorphism that

r-(m-2+l)mr-(m—9.+1)A (3.19)

xdp = } (-1) ASTAL LA™ h
r

(the roof ~ means omission). Hence, we may say that *dp 1is a vectorial (2-1)-
form on the transversal bundle D**,

Let A = do8 + 8od be the harmonic operator on AT*M'.  Since dp given by
(3.18) @s closed, one has Ap = (dim M*)F where ' is an invariant vector field.

Using (2.7), (2.8), (2.10), (2.1), (3.2), and (3.4), we infer from (3.19) that

d*dp = (rT+rt) ® T (3.20)
where we have set
T _ r
I"=-@E+ [ ¥ hu e D, (3.21)
i, r
and
= -7 yT *L 22
r,=-L Y. haxe D, - (3.22)

Since by (3.17) the vector field FT is normal to MY (this can be easily
checked by a direct computation), we define FT/Q as the almost mean curvature
vector of M:.,

From (3.21) and (2.2) one easily finds <FT,FT> = 22. Hence, one may say that
M*  is of comstant almost mean curvature.

Denote by & = <dp,VFT> the mean quadratic diffevential of M'. By (3.18)

and (3.21) an easy calculation gives

*
s, r r

= 2

L= 1 QYiIw ® 05 . (3.23)
r* 1 * r 1t 8 r*
Since 91* € A" (M,L"), it follows from this that on M*  one has Oi* = 0, and this
implies 2 . = 0.
rT

This above fact together with |T'| = const proves that r’ s a geodesiz

section on M'.
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THEOREM 1. Let M be any co-isotropic submanifold of a pseudo-Sasakian
manifold g. Then M 1s a CR submanifold of ﬁ whose vertical distribution
p* is involutive and the leaves M* of D' are isotropic.

Further M possesses the following properties:

(1) it is DL-totally geodesic;
(ii) it 1is mixed totally geodesic;

(iii) it is n.s.o. geodesic.

If dim y = 2m+l and codim M = £, then the source rank and the index of
relative nullity at each point p € M are R2(m-2) and m+l respectively.

Finally the maximal integral manifold M* of D* 1is of constant almost mcan
curvature, and the almost mean curvature vector field is a geodesic section on M.
4. FOLIATE CICR SUBMANIFOLDS.

We shall now consider the quadratic forms QT* = -<dp,Vhr*> and agree to call

= E 8 4h , the transversal quadratic vectorial form on M.
Using (2.2), (2.7), (2.10), and (3.2), we obtain

r i r
= ¢ -n < 4
IIt (0i D w-nYww)od hr* . (4.1)

Let now X and Y be any vector fields on the horizontal distribution DP.

Then the equation

IIt(X,UY) = IIt(UX,Y) (4.2)
gives
r _.r T -
Yij = in9 Yij* 0. (1‘-3)

It is easy to see by (2.6) that (4.3) is equivalent to [X,Y] € np that is the
distribution D is Znvolutive.

We shall say in this case according to Bejancu [4] and Kobayashi [2] that
the CICR submanifold M is fcliuate.

1f MT are the leaves of D, then, as it has been proven by Rosca [3], MT
are invariant and minimal submanifolds of ;.

Denote by ¢ the simple unit form corresponding to the vertical distribution

o= ™A 4.4)

Let us express that ¢ is exterior recurrcnt with u € AM) as a vocurvence [-!em,

Hence, according to Datta [5] we must write
dp = uld. (4.5)
If u is given by
r
u = Qﬂ - Z 81’ ’ (l‘vb)

we say that M is Ricel D -exterior rocurrent.
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Then by (2.7), (2.9), (2.10) and (3.2) one derives from (4.5) and (4.6) in
addition to condition (4.3) (which proves that M 1is foliate) the following

relations
r
YiO =0, 4.7
r
LY, =0. (4.8)
r
In the following we shall set
Y =7 of (4.9)
r
r

and agree to call Y‘ the nerti~al componcnt of the Ricci l-form vy = ¢|M on M.
Let now X and Y be any vector fields of the contact Lagrangian distribu-
tions L& D. Taking into account (4.3) and (4.7), one finds [X,Y]< &, that is
L 1is involutive. It 1is easily deduced that the same property holds for the contact
Lagrangian distribution t* < p.
Therefore one may say that if M 1is a Riccil p*-exterior recurrent CICR sub-
manifold, then it receives two contact Lagrangian foliations. Morcover, since ¢
is geodesic on ﬁ (see Rosca [3]), then if X (resp. X*) is any constant vector

field of Xp (resp. Z;), one finds by (4.7) that

V.X =0 (resp. V x* = 0).

g £
llence, any constant vector field of Zp or X; is E-parallel.
Let now M be any CICR submanifold with the line element
dp = ol e h, 4 mi* © hix+no g+ w @ h (4.10)

and the volume element
- * —0) %
L VY iy VL WO T A T P (4.11)

(M 1is defined by equations (3.2)). Taking the star isomorphism of (4.10), one has
by (2.2) and (4.11)

- _ * 4% —~0)*
ap = [0 =] DA™ A G A e g 6
i

*_ _ * T ok
L N3 DR WY iy W W il SO0 T el W PR
i

- * _ *
+ D% A e AL A ™ g o £

*
+ 0. ™ AnA() (-1)
T

AT

- - —
r-(m R+1)wm k+1A...Am

A...Awahr*). (4.12)
We agree to define the vectorial (2(m-2)+r)-form (:) as the improper mean curva-
ture form of M. Taking the exterior derivative of (:) and using (2.7) and

(2.8), we obtain by a straight forward calculation that

. o -
d) = T w6 T (4.13)
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In (4.13) we have set

el Lo - D vpon - At (4.14)
r
_ r
rt = g Yig* Dy (4.15)
r, = -g*q Yo )h s 1,5 = meltl, ... m. (4.16)
Putting
r=T 4T, (4.17)

we agree to say that the invariant vector field T 1is the Zmprop.r mean curvature
vector of M, and FT, PL, Ft are the horizontal, vertical and transversal
components of T respectively.

On the other hand, if the vertical Ricci l-form Y* vanishes, then the
recurrence l-form of equation (4.5) is &n. We shall say in this case that M 1is
a contact D-exterior recurrent CICR submanifold.

We shall give now the following

DEFINITION. Let x: M -~ ﬁ be the improper immersion of a CICR submanifold M
in a pseudo-Sasakian manifold ﬁ, and let ' be the improper mean curvature vector
associated with x. Then if the vertical component of I vanishes, we say that M
is almost minimal, and if T vanishes, we say that M 1is minimal.

Referring now to (4.3) and (4.15), we see that if M 1is foliate, then it is
almost minimal.

Furthermore, if M 1s Ricci DL—exterior recurrent, then one readily derives

that conditions (4.8) and 2 6: =0 dimply T = 0, that is M 1is minimal.
r

It is easy to see that the converse is also valid.

THEOREM 2., Let M be a CICR submanifold and let IIt be the transversal
quadratic vectorial form of M. Then the necessary and sufficient condition for
M to be foliate is that for any vector fields X and Y of the horizontal
distribution D one has IIt(X,UY) = IIt(UX,Y), and in this case M 1is almost
minimal, If M dis Ricci p*-exterior recurrent, then it receives two contact
Lagrangian foliations and the necessary and sufficient condition for M to be
minimal is that M be contact p*-exterior recurrent.

5. CO-ISOTROPIC CONTACT E&-VERTICAL CR SUBMANIFOLDS.

We shall consider now the improper immersion x: M > ﬁ where M 1s a contact
g-vertical CICR submanifold of %, that is ¢ € D;. As in Section 3, we suppose
that M 1is defined by equations (3.2). Then the horizontal and vertical distribu-
tions at each point p € M are defined by Dp = {hi’hi*’ i=1,...,m-2; i* = i+m}
and Dp = {h ,6; r = ml-2,...,m} respectively.

In this case Dp is of even dimension (Kobayashi [2]); in the case under
discussion dim D_ = 2(m-2)) and its corresponding simple unit form § is equal

to (Adr)™ %/ 2™ ¥ (m-2) 1.
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It is easily deduced, that, as in Section 3, Jot) = {ny ¢ A(M); ¢ annihilates
DL} is a differentiable ideal and this proves that p* is involutive.

Denote by M  the maximal integral manifold of DL. The normal space T;(M*)
at each point p € M* in the case under discussion is defined by (D;\C)(D Dp.

On the other hand, since the tangent space Tp(M*) at each point p is
defined by D;, it follows from this that we are in the situation of conditions
(2.13). Therefore according to the definition given in Section 2, it follows that
M is a mixed isotropic submanifold of ;.

Denote now by ¢ = wm-£+1A...AwmAn the simple unit form which corresponds to

t Taking into account (2.12), one readily finds that the ideal J(D) = {¢ € AM;
¢ annihilates D, dJ &< J}, that is the ideal J(D) 1is not a differentiable ideal.
Thus we conclude that the distribution D can not be involutive.
THEOREM 3. Let x: M > ; be the improper immersion of a contact {-vertical
CICR submanifold M in ;, Then:
(i) the vertical distribution pt s always involutive, and lcaves of
p* are mixed isotropic;

v
(ii) there does not exist a foliate &-vertical CICR submanifold of M.

REFERENCES

1. YANO, K., and KON, M. CR Submanifolds of Kaehlerian and Sasakian Manifolds,
Birkhauser, Boston, 1983.

2. KOBAYASHI, M. CR Submanifolds of a Sasakian Manifold, Tensor (N.S.) 35(1981),
297-307.

3. ROSCA, R. On Pseudo-Sasakian Manifolds, Rend. Mat., 1984 (to appear).

4, BEJANCU, A. CR Submanifolds of a Kaehler Manifold II, Trans. Amer. Math. Soc.
250(1979), 333-345.

5. DATTA, D.K. Exterior Recurrent Forms on a Manifold, Tensor (N.S.) 36(1982),
115-120.

6. ROSCA, R. TImproper Immersions in a Lorentzian Manifold Admitting a Sasakian
Structure, Libertas Math. 3(1983),117-127.

7. GOLDBERG, V.V. and ROSCA, R. Mixed Isotropic Submanifolds and I[sotropic
Cosympletic Structures, Soochow J. Math. 9(1983), 25-38.

8. MORVAN, J.M. and ROSCA, R. Structures Presque Cosymplectiques a Couple de
Champs Quasirecurrents Réciproques, Rend. Sem. Mat. Univ. Politec. Torino
369(1977-1978), 225-234,

7
9. LIBERMANN, P. Sur le Probleme d'Equivalence de Certaines Structures
Infinitesimales, Ann. Mat. Pura Appl. 36(1951), 27-120.

10. SINHA, B.B. A Differentiable Manifold with Para f-Structure of Rank r, Ann.
Fac. Sci. Univ. Nat. Zaire (Kinshasa) Sect. Math.-Phys. 6(1980), No. 1-2,
79-94.,




350

12.

13.

14.

15.

16.

V. V. GOLDBERG AND R. ROSCA

VRANCEANU, GH. and ROSCA, R. Introduction in Relativity and Pseudo-Riemannian
Geometry, Edit. Acad. Rep. Soc. Roumania, Bucuresti, 1976.

ROSCA, R. Codimension 2 CR Submanifolds with Null Covariant Decomposable
Vertical Distribution of a Neutral Manifold M, Rend. Mat. (4) 2(1982),
787-796.

V4
ROSCA, R. CR-Squarietés Co-Isotropes d'une Varié&é Para Kahlericnne, C.R. Acad.
Sci. Paris Ser. I Math., 1984 (to appear).

GARDNER, R. New Viewpoints in the Geometry of Submanifolds in RN, Bull. Amer.
Math. Soc. 83(1977), No. 1, 1-34,

WEINSTEIN, A. Lectures on Symplectic Manifolds, C.B.M.S. Regional Conference
Univ. North Carolina, 1976, 1-44.




