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ABSTRACT. In this paper we continue the study of projective planes which admit colli-
neation groups of low rank (Kallaher [1) and Bachmann [2,3]). A rank 5 collineation
group of a projective plane IP of order n # 3 is proved to be flag~transitive, As in the
rank 3 and rank 4 case this implies that JP is not desarguesian and that n is (a prime
power) of the form m4 if m is odd and n = m2 with m= O mod 4 if n is even. Our proof
relies on the classification of all doubly transitive groups of finite degree (which

follows from the classification of all finite simple groups).
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1. INTRODUCTION.

All known finite projective planes with a transitive collineation group G are
desarguesian, It has been conjectured that all such planes are desarguesian, Under ad-
ditonal assumptions this has been proved: If G is 2-transitive, i.e. if G has rank 2,
then the plane is desarguesian (Theorem of Ostrom and Wagner). If G has rank 3 then
(Kallaher (1] and Bachmann [2]) the order of the plane is either 2 or an odd fourth
power; moreover, if n > 2, the plane is non-desarguesian and G is non-solvable and
flag-transitive. If G has rank 4 then (Bachmann [3])) the same conclusions hold for G;
the plane is always non-desarguesian and its order is either an odd fourth power or
an even square divisible by 16,

Probably the only rank 3 plane is the plane of order 2 and there is no rank 4
plane.

In this paper we will investigate rank 5 planes. The main difficulty consists in
showing that, with one exception, G is flag-transitive (see &3).

THEOREM 1, Let [P be a projective plane of finite order n with a rank 5 colline-

ation group G. If n # 3, then G is flag-transitive.
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The desarguesian plane IP(3) = (P,L) of order 3 has a rank 5 collineation group G
which is not flag-transitive:
Let P = {0,1,2,3,4,5,6,7,8,9,10,11,12},
L = {{0,1,3,9},{0,4,7,5},{0,8,12,2}}u{{0,6,10,11}} v {{1,2,4,10},{4,9,8,11},{8,5,
1,6}}u{{1,7,11,12},{4,12,6,3},{8,3,10,7}} U {{2,3,5,11},{9,7,2,6},{5,12,9,10}},
G = <0,B> where o = (01 2 ... 12), B = (14 8)(29 537 12)(6 10 11).

Then |G| = 39, <a> < G, GO = <B>; G is solvable and not flag~transitive and acts as a
Frobenius group on P.
Obviously, P(3) admits no rank 5 collineation group which is flag-transitive,

As in the rank 3 and rank 4 case one deduces from Theorem 1 the following theo-
rem (see &4).

THEOREM 2, Let P be a projective plane of finite order n#3 with a rank 5 colli-
neation group G. Then

a) G is non-solvable,

b) [P is not desarguesian,

¢) n is a power of a prime, n = ma if n is odd and n = m2 with m=0 mod 4 if n
is even.

Our proof of Theorem 1 strongly relies on the fact (following from the classifi-
cation of all finite simple groups) that the doubly transitive groups of finite degree
are of known type (Cameron i4[, p. 8 and 9). We also make use of the classification of
all subgroups of GL(n,p) which are transitive on W(n,p)\{0} (Hering I5] ; Huppert and
Blackburn [6]l, p. 386).

2, DEFINITIONS AND PRELIMINARY RESULTS.

We shall in general use standard notation. A point (resp. line) will be identi-
fied with the set of lines (points) on it. We shall frequently use the following re-
sults (Dembowski {7]):

A collineation group of a projective plane has equally many point orbits and line or-
bits. The point and line ranks of a transitive collineation group of a projective pla-
ne are equal. If a transitive collineation group G of a projective plane P contains a
nontrivial central collineation, then [P is desarguesian and G contains all elations

of P and is 2-transitive on the points (and lines) of P. A 2-transitive group has a
unique minimal normal subgroup, which is elementary abelian or simple (Burnside {81,
p. 202).

The following lemmas will be useful.

LEMMA 1. Let P = (P,L) be a finite projective plane with a transitive collinea-
tion group G and let Posp, losL. Then the following holds:

G G

a) |10Po| = |P°10|

b) If GPo (Glo) induces on P0 (10) line (point) orbits of length apseeesdl (bl’
...,bs), then r = s and apseeesa and bl""’bs coincide up to order.
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PROOF. a) By counting the set (Po,lo)G in two ways we obtain

G G G G
P G 1 P 1
|P|]1O o| = |(Po,lo) | = |L||Po o| whence llo o| = IPO ol.
GP GP GP Gl G1
b) Let P_ =10 U... U1l "o with |1i o| = a; and 1 =P "o U... UP "o with
Gl G G
|Pj o] = bj' Then aiIPI = |(P°,1i) |y bjIL] = |(Pj,1°) | and b) followz from the fact

that, by the counting principle, {(2,1)%: i = 1,2,...,7) = (P10 § = 1,2,...,8).

LEMMA 2. Let P= (P,L) be a projective plane of finite order n with a rank 5 col-

lineation group G. Then n # 2,4.
PROOF. Let P0 € P. Assume n = 2, Then, for any P € P\JPO}, GP P = 1, for other-
0’

wise G would contain central collineations and then would be 2-tramsitive. |G| =

G G
|GP P||P Po||P| =7 |p Po| implies that all point orbits of G, have length I, which
o’ o
is impossible.
Assume now n = 4, G is not flag-transitive for otherwise G would contain all ela-

tions (Higman and Mc Laughlin [9]) and thus would be 2-transitive. It follows that GP
induces on P0 line orbits of length 1 and 4 or 2 and 3. °

GP GP Cp Cp
Assume at first that P = 1o oU 1, o where Ilo o] =1 and |11 o| = 4. By Lemma 1, Gy
o

induces the orbits {Po}, 13\{P°} on 10. It follows that GP induces 3 orbits on P\Jo.
o

Hence G, leaves invariant two points P, and P, on 1.\{P }. This implies that |G |
11 2 3 1 o Po,l1
= 2 whence [GP | = 8. Thus GP is either a dihedral or a quaternion group. In any ca-
o o
se, the fact that GP contains a (planar) involution in the center leads immediately

o

to ac adiction.
ontradiction G G G G

P P P P
Now assume that Po = 1° ol 12 o, where 1o o = {10,11} and 12 o -{12,13,14}. By Lemma

1, G induces orbits of length 2 and 3 on 1i (i=0,1,2,3,4) such that the point P0

1.

i

lies in the orbits of length 2 (resp. 3) if i = 0,1 (i = 2,3,4). Thus the lengths of

the point orbits of GP are 1,2,6,6,6. This is impossible, since GP fixes the line
o o

joining the two points in the orbit of length 2,

3. PROOF OF THEOREM 1

Let = (P,L) be a projective plane of finite order n with a rank 5 collineation
group G and let Po € P. Assume that G is not flag-transitive. By Lemma 2 and since
P(3) admits no flag-transitive rank 5 collineation group, we have n > 5. By the result
at the beginning of the preceding section about transitive collineation groups with

central collineations we may assume throughout that G contains no central collineation.
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G G

. . . P .
GP defines five point orbits Pi = PiPo and five line orbits Li = 1i o (1 =0,1,2,3,4).
o

GP induces on P0 two, three or four line orbits. Thus we are lead to the following

o
cases:
Case I : P0 = Lou Llu L2u L3
Case IT : P =L vl vl
o o 1 2
Case IITI: P =L JL_,
o o 1

Theorem 1 will be proved if we can show that none of these cases can occur,

Case I. Since G, has four point orbits on P\{Po}, G
"o
{Po}. It follows that G

1.,p is transitive on 16\
o’o
1 has the point orbits {Po} and 18\{P0} on 1. This contradicts

Lemma 1. °

REMARK. In case I the group G is transitive on non-incident point-line pairs.
Thus the impossibility of case I also follows from Ostrom [10], where such collinea-
tion groups are shown to be 2-transitive,

Case II. As G, has four point orbits on P\{Po}, we may assume that it is transi-
o

tive on 18\{?0}. Therefore G, induces the orbits 13\{Po} and {PO} on 10, which contra-

1
o

dicts Lemma 1.
The main difficulty lies in the proof that case III is impossible.
Case TII. It suffices to discuss the following two subcases:
Case III1l: PI’PZ’PB € 10 ; P4 € 11
Case III2: Pl’PZ € 10 H P3,P4 € 11.
In the following two subsections we will show that the cases IIIl and III2 cannot occur.

3.1. CASE IIIl,

induces two point orbits on 1, for every line 1. G1 induces the
1

two point orbits {Po} and li\{Po} on 11 whence G1 = GP . It follows that G

By Lemma 1, G1

1 = GP for
1 o o
some point P ¢ 1 , Clearly P # P ., We may assume that P = P_, Then G =G, and G
o o 3 1o P3 1o
acts transitively on 15\{P3},
G

P.,1
= . 0’ 1 = =
Put s ‘Pl o| (i 1,2) and assume that s, > Sye We have sl+ s, + 1 n.
For R ¢ P let 1R denote the (uniquely determined) line for which G1 fixes the
R
is transitive on Pi and fixes 1
o

the symbol (Z,Pi), i.e. the number of lines of L through each point of Pi’ is well-
defined.

LEMMA 3. (L,P.) < 1. _

PROOF, Suppose that (L, P) 2 2. It follows that (‘2‘) - (“2") > |P

1’

point R € 1,. Put L= {lR: R e lf\{Po}}' Since G

M, whence $) =8y = (n - 1)/2 and (2) = s;n.
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Thus every point of Pl is incident with exactly two lines of [ and any two lines of L

intersect in a point of Pl' This implies that the action of G, on lf\{Po} is 2-homo-

P

o
geneous., Since this action is also faithful, it follows (Kantor (11]) that GP has odd
o

order. So G has odd order and is solvable.
Now we show that G is primitive on the points (see Higman and Mc Laughlin [9], p. 386).
Assume that G is imprimitive and denote the number of imprimitive classes by v. If C

is an imprimitive class and P ¢ C, then 1P Nn C = {P}, since G_ is transitive on IP\{P}.

P
Each point of C\{P} is on exactly one line of P\{lP} and as GP is transitive on P\{lp},

each line of P\JIP} meets C in t > 1 points, where t is a fixed number. So |C| =

n(t = 1) + 1 and thus n2 +n+ 1= |P| = v]CI = v(n(t = 1) + 1). This implies that
n(n+1-vwt-1)) =v-1>1whencen+1-v(t=-1)>1andn < v - 1. This leads
to the contradictionn < v =-1<v < v(t -1) < n.

So G is solvable and primitive on the points; it follows (Dembowski (7], p. 212) that
n2 +n+ 1 is a prime and hence that G is a Frobenius group. This implies that 1 =

G - dicti - 3.
P ,p GP 1 whence the contradiction n 3
0o’ 3 o’ o

LEMMA 4, (I,Pl) # 1.
PROOF. Suppose that (L,P.) = 1. Put o = (L,P.). Then |[\P3| = s, + as, whence

1 2
s, +as, sn=s, +s,+ 1 and thus o ¢ {0,1,2}.

1 1 2
If a = 1, then each point of PIL) P2 v P3 is contained in exactly one line of L, which

contradicts the fact that the lines of L intersect in points of PI\J PZLJ P3.
If « = 2, then s, = 1 and s, = n - 2. Counting the set {(P,1): P ¢ P2,1 e L,p e 1} in

two ways leads tz (Pz,[) = ;, i.e. each line of L contains exactly two points of PZ'
Fix now some line 18 e L. Each line of L\{ls} intersects 1s in a point of PZ' Thus
n - 1 = 2 which is impossible.

I1f finally a = O, then (L,P) = s

) * 1. Counting the set {(P,1): P ¢ P3,1 € [,P e 1}
in two ways leads to (P3’Z) =5, 1. Fix some line 1S e L. Through each point of

P3(1 ls go s, lines of [\{15} and this gives all lines of [\{ls}; hence

2

, (*)

n-1-= SZ(SZ + 1) and s, =s

On the other hand G1 acts as a rank 3 permutation group on 15\{P3}. From Higman (12]
o
1= 85

we deduce that us A - 1) for integers X and p. As u = 0, by (*), G1 is im-

o

Sz"

primitive on 18\{P3}. Hence s, + 1 | n, which contradicts (*).

2
LEMMA 5. (Z,PI) # 0.
PROOF. Suppose that (L’Pl) = 0. Then (P2,L) + (P3,L) = n. Counting the set

I{(P,l): Pe P,olel,Pell] ‘ [P, = (L,Pz)s4

(e, D:Pe PLlelpei) P two ways gives {0 = dpy

Fix some line 1S e L and count the set {1: 1 ¢ I\{ls},ln 1S # S} in two ways:
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(PZ,[)«I,PZ) - 1) + (P3,I)(([,P3) - 1) =n -1, whence (n - (P3,I))((Z,P2) -1) =
n - (P3,E)((P3,I) - 1) - 1. This implies that either (P3,I) =1, (L,Py) = 2 0r
([’PZ) =1« (P3,I). (P3,[)((P3,I) - 1) =n - 1. In the first case we obtain (PZ,Z) =
n-1and thenn-1= 252, i.e. §; =8, % (n - 1)/2. Hence we may interchange the ro-
les of P1 and Pz; we then have (I,P ) = 2, contrary to Lemma 3. In the second case we
obtain (P2,L) =s,, i.e. (P3,L) =n-s,=s + 1, and then (s1 + 1)s1 =n - 1, This
contradicts 251 2n-1,

The Lemmas 3, 4 and 5 prove that the case IIIl cannot occur,
3.2, CASE III2,

By Lemma 1, G (G1 ) induces two point orbits T and A (I'' and A') on 1o (1,). We

10 1 1

may assume that T = {P }LJPGPo’lo A = PGPo’lo r' = {p }LJPGPO’II A' = PGPo’ll

Y | » 2 ’ 0’773 ’ 4 .
Clearly G1 (G1 ) is 2-transitive on T (I''). Let y € G take 11 into 10. IfT = F'Y,

o 1
then there would exist some collineation in G taking the flag (Po,ll) into (Po,lo).

This is impossible; hence A = 'Y and T = A'Y . It follows that It < |a| or |T'| <
lar

. By interchanging the roles of 1o and 1 if necessary, we may assume for the fol-

1’
lowing that |T| < |A]. It also follows that G1 is 2-transitive on A. Moreover we see
o
that G1 X is transitive on A (T') for any X ¢ T (4).
0’

We may summarize the situation obtained up to now by the following lemma,
LEMMA 6. LetTF be a finite projective plane with a rank 5 collineation group G

which is not flag-transitive., Then, for any line 1, G1 induces two orbits T and A on

1 and is 2-transitive on T and A such that, for any X ¢ T (4), G1 X is transitive on
’
A (T).

REMARK., If |T| < |A|, then the fact that, for any X e T, 6, « is transitive on
’

A also follows from Hilfssatz 1 of Itd [13).
Clearly, the dual of the situation described in the lemma also holds.

We will prove in Lemma 10 that G, acts faithfully on A. Thus Gl
o o

minimal normal subgroup which is elementary abelian or simple (Burnside [8), p. 202).

1 has a unique

If the socle is simple (and not abelian) then it is 2-transitive on A with one excep-
tion (the group PSL(2,8) of degree 28) (Cameron [4], p. 8 and 9). In the Lemmas 12, 13
and 15 we will exclude the elementary abelian, the 2-transitive and the exceptional
case, whereby the case III2 will be shown to be impossible.

LEMMA 7. |T| > 3.

PROOF. Clearly |I| > 2. Assume that |I| = 2: T = {(P_,P,}. Then, by Lemma 1,

G
P . . .. . .
|P1 o| =2, i.e. P1Po = {PI’P} for some poirt P ¢ 10. This implies that G, fixes the
o
line P.P. Hence G fixes the point 1. NP P, As |A'| > 2, we then obtain 1. NP P =
1 P sl 1" z 1"

{P3}. So |F'| = 2 and n = 3, which is impossible.
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Hence we may assume in the following that (|a]| >)|T| > 3,

As an immediate consequence of Lemma 7 we have the next lemma.

LEMMA 8. For any point P (line 1), GP (Gl) fixes no line (point).

LEMMA 9. Let |A| = pd, where p is a prime. Then the following holds:

a) If d is even, then no involution in G fixes T pointwise.

b) If p | n, then ZG1 P contains no involution.

PROOF. a) Suppose thag 025 G is a (planar) involution which fixes T pointwise,
Then |T| < Vn + 1 and therefore n + 1 = IT] + pd < /n+ 1+ pd. This implies that

d/2

- d . . .. .
/n(va - 1) < p , whence /n <p as d is even. But then n < pd, which is impossible.

b) Suppose that p | n and that ¢ e ZG is a (planar) involution. If o fixes some

1o’P2
point of A\{PZ}’ then o fixes every point of A and no point of T, since Gl p is tran-
0’ 2

sitive on E\{Pz} and T, But then pd = /n + 1, which is impossible. It follows that o
fixes every point of I' and no point of A\{Pz}. Hence vn = |T| =n + 1 - pd, which again

is a contradiction.

Let A (resp. B) denote the kernel of the permutation representation induced by G

1
o
on T (A). Dually let A (B) denote the kernmel of the representation induced by GP on
_ GP _ GP _ _ o
r = 1o o (A = 11 0). By Lemma 1 we have |F| = |P|, ]A| = IA].

LEMMA 10. G1 acts faithfully on A, i.e. B = 1,

PROOF, Suppoge that B # 1. Clearly AnB = 1, If B contains a (planar) involution,
then we obtain the contradiction |A| > (n+ 1)/2 > vn + 1. Hence B is of odd order > 3.

Gl /A is (faithful and) 2-transitive on I' and so has a unique minimal normal subgroup
o

M/A with Aa M 9 G, , Since AB/A is a normal subgroup of G1 /A of odd order > 3, it

o o

follows that M/A is a solvable normal subgroup of the primitive group G1 /A and there-

o

1

fore regular, elementary abelian and of odd prime power order pr.

1 9 (MNB)A/A 2 G1 /A implies that MnB is transitive on T and we deduce from
o
(MNB)A/A < M/A and (MAB)n A =1 that MnB is elementary abelian of order ps with

s £ r. It follows that MnB is regular on T.

Now let o € (MAB)\1l, a fixes no element of T, Therefore, if the structure F(a) of ele-
ments which are fixed by a is a subplane of ®, then its order is lal -1 > (n-1)/2

> /;, which is impossible. If all the lines of F(a) go through a point of A, then we
get a contradiction to the fact that A commutes elementwise with a and is transitive on

A, as 1 9 AB/B 2 G1 /B and G1 /B is 2-transitive on A, It remains the possibility that
o o
(o) is not a subplane but contains a point R ¢ 10. Then A leaves R fixed, Moreover

IR 1o| # 1, by Lemma 8. It follows that A fixes elementwise a subplane P' = (P',L") of
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Pof order |T| -1 = pr -1, Gl acts as a collineation group on P'. MNB is regular
o

on T and thus fixes at most one point of P'\T. As p | (|T| - 1)2 = |P\T|, MnB fixes

exactly one point of P'\I', This point is also left fixed by G1 , contrary to Lemma 8,
o

1 has a unique minimal normal subgroup. Let us denote this subgroup

o

By Lemma 10 G
by M.

LEMMA 11, G1 doesn't act faithfully on T, i.e. A # 1.

PROOF, Suppoge that A = 1, By Lemma 10 we also have B = 1, If the socle M is ele-
mentary abelian of order pr, then M fixes a point R ¢ 10, since p [ n = |T| + |a] -1
= Zpr - 1, As M doesn't fix any point on 10, R is the only point not on 1O which is fi-

xed by M. Thus R is also left fixed by G1 , contrary to Lemma 8,

o
Hence M is not elementary abelian, Then M is simple and (Cameron (4], p. 8 and 9) either

2-transitive on T and A or isomorphic to PSL(2,8) with |T| or |A| equal to 28. In the
following we will show that actually M cannot be isomorphic to any one of the (non-
abelian) simple groups which can occur as socles of 2-transitive groups (see Cameron

(4], p. 8 and 9), This will give the contradiction proving Lemma 11,

Assume at first that ]F] = |a|. Since G contains involutions but no central collinea-
tions n = 2|T| - 1 is a square. This immediately excludes the following possibilities
for M:

PSL(2,11) of degree 11, PSL(2,8) of degree 28, A7 of degree 15, Mll’ M12, M22, M23,
My,» HS, Co,.

Now put n = (2c + 1)2. Then 2c(c + 1) = |T| - 1. We conclude that |T'| is odd and |T| -

1 is not a prime power > 4, It follows that M is distinct from PSp(2d,2), PSL(2,q) of
degree q + 1 (g > 4), PSU(3,q7) (g > 2), Sz(a) (a > 2), “G,(@) (q > 3). If ¥ ¥ PSL(3,Q),
|F| = (q3 -1)/(q-1) = q2 + q+ 1, then 2c(c + 1) = q(q + 1), This is easily seen to
be impossible if q # 3.

By considering the number of points on 1o which are fixed by appropriate involutions
one can handle the remaining cases Ak of degree k > 5, P8L(3,3) of degree 13 and
PSL(d,q) of degree (¢ - 1)/(q - 1) (d > 4):

Suppose that M & A [T| = k (k > 5). Then M has involutions fixing k - 4 points in T\
Since k = 4 > 2k = 1+ 1 = /n + 1 if k > 10, we have 5 < k < 10, The fact that n =
2k = 1 is a square then implies k = 5 and n = 9, Since any involution in A5 (acting on
a set of five elements) fixes exactly one element, any involution in M fixes two points
in TUA, This is impossible.

Now suppose that M is similar to PSL(3,3) in its action on the point or line set of the
projective plane IP(3). Then |F| = 13, Since every involution of PSL(3,3) fixes five
points and five lines in E¥3), the involutions in M fix 2,5 > 6 = /Ejig_z_f +1="Vn+

1 elements in ' U A, which is impossible,
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Finally suppose that M is similar to PSL(d,q) (d > 4), where PSL(d,q) is considered as

acting on the set of points or hyperplanes in the projective space P(d - 1,q). There
are involutions in PSL(d,q) fixing (qd -1l 1)/(q = 1) + 1 (if q is odd) or (qd -l
1)/(q = 1) (if q is even) points resp. hyperplanes inP@d - 1,9). Since (for d 2 4)

(qd -1l 1)/(q - 1) > l/’Z(qagi 1)/(g-1) -1+1-= vn + 1, we get again a contradic-

tion,

Assume now that IFI < ]A . To exclude this case we show that M cannot be isomorphic to
a group that appears as the socle of a 2-transitive group which admits 2-transitive
permutation representations of different degrees. The fact that n = Irl + |A| -11is a
square implies that M is not isomorphic to PSL(2,4) (of degree 5 and 6), PSL(2,7) (7,8),
PSL(2,9) (6,10), PSL(4,2) (8,15), PSL(2,11) (11,12), A7 (7,15), M11 (11,12), PSp(2d,2)
@ Tt 1,22 T Y2 - 1)) (since n *+ 1= 2 mod 4 and |T| + [a] = 2% = 0 mod 4).
If M is isomorphic to PSL(2,8) of degree 9 and 28 then n = 36. Hence any involution of
M would fix a subplane of order 6, which is impossible.
This completes the proof of Lemma 11,

LEMMA 12, M is not elementary abelian,

PROOF, Assume that M is elementary abelian of order pd. As M9 A #1 =B, Mis
regular on A, |A| = pd and M fixes each point of T,

Assume at first that p I n. Then M fixes equally many points and lines. The lines fixed

by M are not concurrent, since M 3 G1 and G1 is transitive on I'., Suppose that the li-

o o
nes distinct from 10 which M leaves fixed all go through a point R ¢ 10. Then G, fixes

1
o

(P',L'") of M is a

R, contrary to Lemma 8., It follows that the fixed structure IF(M)

subplane of order |T| - 1 and hence |T| - 1 = /n or (|T] - 17| n - 2,

1A

If |[T| -1 =yn, thenn = pd + /n, a contradiction.

Assume now that (|P| - 1)|T| < n = 2, Then G 1is transitive on L'\\{lo}, as it has fi-

ve line orbits on L, Let's consider the linelgrbits induced on Pi\{lo} by G, ’Pz. The
lengths of these orbits are |A| - 1 and |T . On the other hand one of these :rbits con—
sists of the lines of P2 which contain one point of P'\lo and hence has length rl-
1)2. Therefore |A| -1-= (|F| - 1)2, whence the contradiction (|F| - 1)|Fl = ‘FI + IAI
-2=n-1,

Now suppose that p | n. We may assume for the following that p # 2 for otherwise the
involutions of M would fix IFI =/n+1 points on 10, whence the contradiction n =
24+ .

M) = (F,{lo}) constitutes the only possibility for TF(M) not excluded by the proof

above., To cover this case we use the fact that the action of G1 on A is similar to the
o

action of a subgroup of the affine group A(d,p) on the vector space W(d,p) (Huppert

[14], p. 162). We identify A with the set W(d,p). Then H % G, p is a subgroup of
b

o2
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GL(d,p) which is transitive on W(d,p)\{0}. Put A = MW, where W 2@ H. We have H/W £ MH/MW
= G1 /A. So H/W has a faithful 2-transitive representation on T,

Herizg [5) has classified all the subgroups of GL(d,p) which are transitive on W(d,p)\
{0} . We shall show that none of these can occur here (see the list given in Huppert

and Blackburn (6), p. 386). For this reason let L be a subfield of Hom(V,V) containing
the identity map and maximal with respect to the condition that L is normalized by H

and put |L| = pe. Then V(d,p) can be considered as a vector space W(d/e,pe) of dimension
d/e over L and we have H < FL(d/e,pe).

The cases (3),(6),(7) and (9) of the list cannot occur, since p # 2,

Case (1): SL(d/e,pe) <HS< FL(d/e,pe).

Assume d/e is even, Then there is an involution 0 € SL(d/e,pe) n ZFL(d/e,pe). Hence

o € IH, This is in conflict with Lemma 9b).

Assume now d/e is odd and d/e > 3, As ZSL(d/e,pe) 4 H, we have ZSL(d/e,pS)W/W 4 H/W.
Suppose that ZSL(d/e,pe)W/W # 1. Then H/W has a cyclic minimal normal subgroup <aW>,

a e ZSL(d/e,pe), of prime order |T| = q > 3, Every involution in SL(d/e,pe) fixes ele-
ments of T, since the number of fixed points in A is a power of p and so is inferior

to vn + 1, It follows that every involution in SL(d/e,pe) fixes all points of T, But
then all involutions of SL(d/e,pe) fix the same number of points in A, This implies

that d/e = 3, But the involutions of SL(3,pe) leave pe points fixed. Thus q + p3e =

n+ 1and q + pe = /n + 1, whence pe(p2e -1) =/n(¢/n-1). So /n = pen*, where p | n*,
and then pe(n*2 - pe) = n* - 1, This leads to n* > pe, whence vn > pze, which is im-
possible., This contradiction implies that ZSL(d/e,pe)W/W =1, i.e. ZSL(d/e,pe) < W.
Since PSL(d/e,pe) is simple, we have either SL(d/e,pe)n W= ZSL(d/e,pe) or SL(d/e,pe)
nNW = SL(d/e,pe). In the second case every involution of SL(d/e,pe) leaves I' element—
wise fixed, whence a contradiction as before. In the first case we deduce from
PSL(d/e,p%) = SL(d/e,p%)/(SL(d/e,p°)n W) ¥ SL(d/e,p )W/W < H/W and Bannai [15] (Theo-
rem 1) that the action of the subgroup SL(d/e,pe)w/w of H/W on T is similar to the na-
tural action of PSL(d/e,pe) on the set of points or hyperplanes of the projective space
p((d/e) - l,pe). Hence Irl= (pd - 1)/(pe - 1) and so n = IFI + |A| -1 =((pd - 1)/

(pe - 1)) + pd -1= pe(pd - 1)/(pe - 1). Since SL(d/e,pe) has an involution fixing

d - 2e 2(d - 2e)
P P

points of A, we must have < pe(pd - 1)/(pe - 1), It follows that

pe < p5e - d + 1, i.e. d/e = 3., Now consider an involution o € SL(3,pe). o fixes pe

e/2

. . e e . . . .
elements in A and leaves either p + 2 or p + p + 1 elements in ' invariant, since

these are the numbersof points or lines in the projective plane P(p®) which are left
invariant by any involution in PSL(3,pe). Thus ¢ fixes either 2(pe + 1) or 2pe + pe/2

+ 1 elements on 10. But this is impossible.

Assume finally that d/e = 1. We have 1 < H < FL(l,pe) and H'W/W < H/W, H'W/W # 1, since

H/W is not abelian, and H' is cyclic, since H' < FL'(l,pe). So H/W is solvable and has
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a cyclic minimal normal subgroup of (odd) prime order q. By Huppert (16] H/W is similar
to a subgroup of the semilinear group I'(q) acting on GF(q). In particular, H/W is a
Frobenius group. Now consider an involution ¢ ¢ H., By Lemma 9b) we have ¢ { ZH. This
implies that e (and d) are even. Thus o ¢ W, by Lemma 9a). So o leaves exactly one

e/2

point in I fixed. But any involution in TL(l,pe) fixes at most p elements in GF(pe).

= /2

Hence /g“:_;e_'I +1=/n+1 < pe + 1, which is absurd.

In the remaining four cases (2),(4),(5) and (8) ZH is easily seen to contain an
involution. Thus these cases are excluded by Lemma 9b). This completes the proof of
Lemma 12,

LEMMA 13, M is not similar to PSL(2,8) of degree 28,

PROOF. If M ¥ PSL(2,8) and |A] = 28, then |T| > 9, since n = || + [A] = 1 =
|T| + 27 must be a square. Moreover, the involutions in M fix all points of T, as M < A.
This gives the contradiction 9 < 7| < o+ 1 = /TFT_:—E7-+ 1.

LEMMA 14, A # 1 = B.

PROOF. By Lemma 10 and 11 and their duals, either A # 1 = B or A = 1 # B.

Suppose that A = 1 # B. The socle M (resp. M) of G

1
Lemma 12 and its dual. As M < A and M a B, it follows that [T < Vn+ 1 and la] =

(GP ) contains involutions, by

IZ‘ < V/n + 1, whence the contradiction n = IT| + |al -1 < 2/n + 1,
LEMMA 15. M is not 2-transitive on A.
PROOF. Suppose that M is 2-transitive on A. A # 1 = B and A # 1 = B, by Lemma

10,11 and 14, The socles M and M of G, and GP are simple, by Lemma 12 and 13 and

1o o
their duals, and M 9 G and M 3 GP 1t So M and M are minimal normal subgroups of
o’ o o’ o
GP 1t But GP 1 is 2-transitive on A, by Lemma 6, and hence has a unique minimal
0’0o o’ o

normal subgroup. Therefore M = M and M fixes each line of T. If we apply the same ar-

guments to any point of I', we see that M fixes lines through each point of T. It fol-

lows that M fixes elementwise a subplane F(M) = (P',L') of order ]Fl - 1. Hence |T| -
1=vanor (Ir| - 1)r| <n -2,

Assume that |[T| - 1 = vn. Then T(M) is a Baer subplane and every line of PP contains
points of F(M). This implies that MPZ fixes all lines through Pz; hence MP2 = 1 and
thus |A| < 2, contrary to Lemma 7.

Now assume that (|T| - 1)|F| < n - 2. This case can be excluded as in the proof of Lem-

ma 12,

In view of Lemma 10,12,13,15 and the results in Cameron [4], p. 8 and 9, the case
1112 cannot occur. This completes the proof of Theorem 1.

4, PROOF OF THEOREM 2.

To prove Theorem 2 we essentially proceed as in the rank 3 case (Kallaher .

Let P= (P,L) be a projective plane of finite order m # 3 with a rank 5 collinea-
tion group G. G is flag-transitive, by Theorem 1, and n > 4, by Lemma 2. By Ott [17]

and 18] n is a prime power.
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If |P is desarguesian, then (Higman and Mc Laughlin [9]) G contains all elations
and so is 2-transitive. This contradiction proves b).

. o e 2 .
Assume that G is solvable. Since G is primitive on P, n° + n + 1 must be a prime.
G

. P
Hence G acts as a Frobenius group on P, Fix some flag (Po,lo) and let Pi o, where Pi €
G
. . P,1
1 and i =0,1,2,3,4, denote the point orbits of G, . Then |Pi o’ o| = n/4, whence |G|
o
o
= (n2 +n+ 1)(n+ 1)n/4. Since G acts as a Frobenius group on P, it contains no invo-

lutions. So |G| is odd and thus n = 4. Hence we have a contradiction, This proves a).
To complete the proof of Theorem 2 assume first that n is odd. Then (Higman and
Mc Laughlin [9], Proposition 10) n is a fourth power. Now assume n is even. Then a),

. 2 .
b) and the lemma in Keiser [19] imply that n = m" with m= O mod 4.
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