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1. INTRODUCTION.

This expository article, minus certain of its remarks and references to names
that appear in the literature, is offered primarily as a Socratic method textbook on
the theory of real number set-valued functions defined on fields of sets. It is
largely self-contained for the reader who has had a rigorous introduction to the
elementary algebraic, ordering and limiting properties of the real number system,
together with basic facts about continuous functions from certain subsets of RN into
R. We have arranged matters in a progressive fashion intended to permit the results
to be worked through with reasonable effort. Certain of our theorems are stated in
such a way as to indicate finitely additive technique; our methods neither require
assumptions about closure properties of infinite sequences of elements of the
underlying field of sets, nor assumptions about countable additivity.

We give a short list of references following the text of this paper. This list
is by no means complete; it is intended, more than anything else, to permit one to
observe the relation of certain results that we treat to classical theorems in the
field. However, we most strongly urge the reader choosing the course of action
described in the first paragraph above to refrain from consulting any references
(animate or inanimate) at all during the time that he or she, in working through the
results of this paper,is struggling to further develop his or her intuition

and powers of invention and reasoning.
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The main ideas of this paper are certain of the fundamental ways in which set
functions, as described above, and set function integrals (see section 2) interact.
We end this introduction by giving an outline of the sections of this paper that
follow, each section title followed, when necessary, by an indication of the principal
topics covered.
2. PRELIMINARIES: Fields of sets, set functions and integrals.
3. I-BOUNDEDNESS, SUM SUPREMUM AND SUM INFIMUM FUNCTIONALS, UPPER AND LOWER
INTEGRALS AND DIFFERENTIAL EQUIVALENCE.
4. CONCERNING THE SPACE OF REAL—VALUED BOUNDED FINITELY ADDITIVE SET FUNCTIONS:

Basic boundedness, closure, and integral existence properties.

5. CONCERNING STIELTJES-TYPE SET FUNCTION INTEGRALS: Preservation of integrability

theorems.
6. ABSOLUTE CONTINUITY FOR ELEMENTS OF (AB)(R)(F): Representation and decom-

position theorems.

7. INTEGRABILITY AND ABSOLUTE CONTINUITY: Integral value and existence character-

izations of absolute continuity.
8. SET FUNCTION MEASURABILITY AND A CHARACTERIZATION THEOREM: An extension, for

set functions, of the classical notion of point function measurability.

9. SET FUNCTION SUMMABILITY AND THE SUMMABILITY OPERATOR: An extension, for set

functions, of the classical notion of point function (Lebesgue) integrability.

10. A DOMINATED CONVERGENCE THEOREM FOR SUMMABLE SET FUNCTIONS: An analogue, for

set functions, of the Lebesgue dominated convergence theorem.

11. SUMMABILITY AND PRODUCT FIELDS: A Fubini-type theorem.

12. THE SPACE H% AND EXPLICIT FORMS OF THE BOCHNER-RADON-NIKODYM THEOREM: An ele-
mentary proof ofpa fundamental approximation theorem.

13. CONCERNING CLOSEST APPROXIMATIONS: Theorems involving general sufficient

conditions for certain subsets of (AB)(R)F) to yield "nearest points", basic
properties of Ynearest point" operators.

14. CONCERNING A CLASS OF TRANSFORMATIONS: Representation, commutativity and

reversibility theorems for a special collection of linear transformations.

15. A MAPPING THEOREM FOR A PAIR OF CLASSES OF TRANSFORMATIONS: Theorems about

a correspondence between two classes of linear transformations arising from a sub-
set of the type discussed in section 13 that is linear.

16. CONCERNING AN INTEGRAL EQUATION: Characterization of the existence of a

solution to a certain integral equation; uniqueness and absolute continuity.

17. MORE THEORFEMS ABOUT INTEGRAL REPRESENTATIONS: Converse-type questions to the

matters of section 16.
18. FINITE ADDITIVITY, SET FUNCT1ONS AND UPPER AND LOWER DTSTRIBUTION FUNCTIONS:

The development of an analogue, for finite additivity and set functions, of the
standard notion of distribution function; characterization and representation

theorems for integrability, measurability and summability.
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2. PRELTIMINARIES.

DEFINITION 2.1. The statement that F is a field of subsets of U means that U
is a set and F is a collection, each element of which is a subset of U such that:

i) If each of A and B is in F, then A U B is in F, and

ii) 4if A is F and A # U, then U - A is in F.

Now, for the sake of brevity, we shall suppose given a field, F, of subsets of
a set U, and it will be F, together with its attendant notions defined in the course
of our discussion, that will be referred to in most of our theorems. The exception
to this will be certain characterization theorems involving the family of all fields
of sets. We trust that the reader will not be confused by our convention, that upon
defining a notion for our given F, we shall consider it "correspondingly" defined
for any field F' of subsets of a set U'.

We have the following easy theorem:

THEOREM 2.1. The following statements are true:

1) U is in F.

2) 1If each of A and B is in F and there is an element common to A and B, then
A[} B is in F.

3) 1If n is a positive integer and {Ak}2=l is a sequence of sets of F, then
U:zlAk is in F and, if there is z such that z is in Ak’ k =1,...,n, then r12=l Ak
is in F.

DEFINITION 2.2. The statement that D is a subdivision of V means that V is in
F and D is a finite subcollection of F such that no two elements of D have an element
in common and the union of the elements of D is V.

DEFINITION 2.3. The statement that E is a refinement of D means that there is
a set V of F such that each of E and D is a subdivision of V and each element of E
is subset of some element of D.

NOTATION: "P << Q" means that P is a refinement of Q. Note that D << {V} iff
D is a subdivision of V.

THEOREM 2.2. If H, << {V} and H

1 g << {V}, then there is K such that K << H] and

K << H,.

DEFINITION 2.4, exp (R)(F) denotes the set of all functions from F into
exp(R) . If y is a function from F into R, then we shall regard y as equivalent
to the element 8 of exp (R )(F) given by §(I) = {y(I)}.

DEFINITION 2.5. The statement that b is an a-function on H means that a is in
exp(IR) (F), H << {V} for some V in F and b is a function with domain H such that
for each I in H, b(I) is in a(I).

We now define the basic limiting concept that underlies the results of this
paper; we trust that the summation notation will be self explanatory.

DEFINITION 2.6. The statement that K is an integral of @ on V means that K is
in IR, o is in exp( R)F), V is in F, and if O < ¢, then there is D << ¥} such that
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if E << D and b is an a-function on E, then
[k - ZEb(I)| < c. (2.1)

THEOREM 2.3. If each of Kl and K2

DEFINITION 2.7. If K is an integral of o on V, then, by Theorem 2.3, K is the

is an integral of a on V, then K1 = KZ'

only integral of a on V, and we denote K by fva(I).

DEFINITION 2.8. The statement that a is integrable on V means that there is K
such that K is an integral of a on V.

OBSERVATION 2.1. 1f a is iniegrable on V, vy is in exp( R )(F) and, for each

Vin F, y(1) &« o(l), then y is integrable on V and

fvy(I) = fva(I). (2.2)

THEOREM 2.4. 1If a is integrable on each of V1 and V2 and V1 and V2 are

mutually exclusive, then o is integrable on V1 U V2 and

a(I) + fv a(I) (2.3)

J a(l) = S
v,Uv, i 2

We digress to give a convention that we shall use when brevity is needed. We
shall let the statement, "fva(I) = K" mean that a is integrable on V and IVG(I) = K.
We shall let the statement "IVQ(I) exists'" mean that a is integrable on V.

In the light of Theorem 2.4, it is natural to consider the question of whether,
if a is integrable on V, W is in F and W&V, then a is integrable on W. There are
a number of well known arguments for this fact. The particular kind that the work
of this paper points to arises from the notions developed in the next section;
indeed the above mentioned fact is really a corollary to these results. Another
consequence of these results, Theorem 3.5 of section 3, is well known, is pivotal in
a large number of our deductions, and can be roughly described as a set function
analogue of the Fundamental Theorem of Calculus.

3. L -BOUNDED&ESS, SUM SUPREMUM AND SUM INFIMUM FUNCTIONALS, UPPER AND LOWER
INTEGRALS, AND DTFFERENTIAL EQUIVALENCE.

DEFINITION 3.1. The statement that a is If-bounded on V with respect to D means

that o is in exp( R)XF), V is in F, D << {U} and {ZEb(I) : E << {V}, E&some H << D,

b an a-function on E} is bounded.

In what follows, when in a given discussion or expression it is clear what
subdivision or subdivision element or elements are being referred to, we shall feel
free to dispence with distinguishing superscripts and subscripts.

THEOREM 3.1. 1If a is Z-bounded on U with respect to D, then, for each V in F,
a is I-bounded on V with respect to D.

DEFINITION 3.2. If a is I-bounded on U with respect to D, then L(a) and G(a)
denote, respectively, the element of exp( R )}(F) given, for each V in F by sup(S) and

inf(S), where

S = {XEb(I) : E << (V}, ESsome H << D, b an a-function on E}. (3.1)
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THEOREM 3.2. 1If a is I-bounded on U with respect to D, W is in F and P << {W},
Q << {W)}, H<< P and H <% Q, then

Zp GOXD) < B6(w) (1) £ EyL@) (1) < IoL(a) (1), 3.2)

so that each of L(a) and G(a) is integrable on W and

FEE@(D) </ L) (D), (3.3)

¢yuality holding iff o is integrable on W, in which case

JS@)(D) = £ a(T) = [ L@) (D). (3.4)

THEOREM 3.3. 1If a is integrable on W, then, for each V in F such that YGDL
is integrable on V.

We must pause here to consider some conventions.

DEFINITION 3.3. Suppose that N is a positive integer, S is a set, M& SN, f is
a fun tion with domain M, W is a set, and {ak}ﬁ=l is a sequence of functions from W
into exp(S) such that if x is in W, then al(x)x...XGN(x)Q M. Then f(Gl,...,uN)
denotes the function with domain W such that if x is in W, then f(ul,...,uN)(x)
= f(ul(x),...,aN(x)), which, in turn is defined to be {f(zl,...,zN) : (zl,...,zN)
in ul(x)X...XGN(x)}.

DEFINITION 3.4. 1f a is integrable on U, and therefore integrable on V for
each V in F, then Jo denotes the function with domain F given, for each V in F, by
Jy(D.

Finally, we trust that in various statements and expressions, minor modifications
of the notations in the above definitions will not be confusing.

We now state an elementary linearity theorem.

THEOREM 3.4. 1f each of o and B is integrable on V and each of p and q is in

R, then pa + qB is integrable on V and

-

Tylpa(I) + qB(I)] = p/yal(l) + qfyB(1). (3.5)

THEOREM 3.5. If a is I-bounded on U with respect to D, H << E << D and, for
each I in E, H(I) = {J : J in H, J< T}, and b is an a-function on E and b' is an

a-function on H, then

Zelb(1) = I, 1b" ()] < 2 IL(@) (D) - G(a) (D], (3.6)

H(I)
so that, if « is integrable on U, then
fylam - fa@] = o. (3.7)

THEOREM 3.6. 1f a is in exp( R)(F), D << {U} and O < K, then the following two

statements are equivalent:

1) a is Z-bounded on U with respect to D and

fU[L(a)(I) - G(a)(1)] =K, (3.8)
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and
2) 1f 0 < c, then there is B in exp( R)(F) such that B is I-bounded on U with

respect to D,

IU[L(B)(I) - G(B)(D] <K, (3.9)

and there is H << {U} such that if Q << H and w is an a-function on Q, then there
is v, a B-function on Q such that
qux(r) - v(D)] < c. (3.10)

We end this section with two corollaries which, in spite of their rather
specialized appearance, apply very frequently and fundamentally in the work that

follows.
COROLLARY 3.5. TIf each of v and 6 is in exp( R )(F), Y hus bounded range union

and § is integrable on U, then
fyhv@llsa - 18l = o, (3.11)
so that if V is in F, then fvv(l)ﬁ(l) exists iff fvy(I)fIS(J) exists, in which case

equality holds.
COROLLARY 3.6. 1If each of a and B is integrable on U, then

s yUmin{a(D),B(D} - min{fIa(J),IIB(J)}| + max {a(1),B(1)} - (3.12)
max{fla(J),fIB(J))I] =0,

so that, if V is in F and Q is "max" or "min", then IVQ(u(I),B(I)} exists iff

IVQ{f]u(J),le(Jﬂ'exists, in which case equality holds.

4, CONCERNING THE SPACE OF REAL-VALUED BOUNDED FINITELY ADDITIVE SET FUNCTIONS.

DEFINITION 4.1. (AB)( R XF) denotes the set to which £ belongs iff € is a
function from F into a bounded subset of R such that if V1 and V2 are mutually
exclusive sets of F, then

f,(levz) = £(V)) + £(V,). 4.1)

THEOREM 4.1. 1f & is in (AB)(R)(F) and E << D << {U}, then

tple| z.xFls(V)l < 2 supf|eW)| : win F} = 2%, (4.2)

so that IU|£(I)| exists; furthermore,

X < IUIC(I)I < 2X. 4.3)

In accordance with our suppositions concerning the reader's knowledge, we state
the well-known theorem below in explicit form.

THEOREM 4.2. The following statements are true:

1) If each of £ and v is in (AB)( R )(F), and each of r and s is in R, then
r& + sk is in (AB) ( R )(F), and
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Flee@ + suml < Ielrgleml] + Islfulu(l)l- (4.4)

2) Suppose that {gk}z=l is a sequence of elements of (AB)( R )(F) such that
IUIEn(I) - Em(1)|*0 as min {m,n}»>. Then there is v in (AB)( R )(F) such that

- - —>-c0
IUICH(I) W(I)|+0 as n>=.
We now make some observations concerning the existence of integrals of the type

discussed in Corollary 3.6.

LEMMA 4.1. T1f each of a, b, ¢ and d is in R, then

min{a,b} + min{c,d} < min{a+c,b+d} < max{a+c,b+d} < max{a,bl + max {c,d}. (4.5)
THEOREM 4.3. 1If each of £ and p is in (AB) (R)F), D << {V}, El << D,

and E, << D, then

2
SUyle@m] + s ]l < zElmin{g(J),u(J)} < rpmin{£(D),u(D)}
(4.6)

Ezmax{E(J),u(J)) < syl + s,

< XDmax{E(I),u(I)} <z

so that each of min{&,u} and max{f,n} is integrable on V; furthermore, each of
Smin{&,u} and Smax{&,u} is in (AB) ( R )(F).

DEFINITION 4.2. (AB)(I!R)(F)+ denotes the set to which & belongs iff € is a
function from F into RY = {x : x in R, 0 < x} such that if V1 and V2 are mutually

exclusive sets of F, then

5(vlbv2) =) + f,(vz). 4.7)

THEOREM 4.4. The following statements are true:

1) B (R) (M < (4B)(R)F).

2) If € is in (AB)(R)XF), then J|E| is in (AB)( R )F)™.

3) (AB)(RXF) = (AB)(]R)(F)+ - (AB)(R)(F)+, i.e., £ is in (AB)( R )XF) iff

for some ul and uz, each in (AB)(‘R)(F)+,

E=u - u,. (4.8)

DEFINITION 4.3. If a is in exp ( R )(F), then sgn(a) denotes the function from
F into exp({-1,1}) such that for each V in F, sgn(a) (V) contains -1 iff x < 0 for
some x in a(V), and sgn(a)(V) contains 1 iff 0 < x for some x in u(V).

We end this section with a theorem that bears directly on our discussion and
which is typical of the ways that we shall apply differential equivalence, in this
case Corollary 3.5.

THEOREM 4.5. 1f € is in (AB)( R )(F) and V is in F, then

Jysen(E)(DE) =/ |e)] (4.9)

and

Tysen ) (DI [£Q) ] = Jisgn@) (D 6] = (V). (4.10)
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5. CONCERNING STIELTJES-TYPE SET FUNCTION INTEGRALS.
DEFINITION 5.1. exp(R)(F)(B) denotes the set of elements of exp(R)(F) with

bounded range union, exp(R)(F)+ denotes the set of elements of exp(R (F) with range
union a subset of the nonnegative numbers, and exp(]R)(F)(B)+ denotes exp(R)(F)(B)f]
exp (RX(F)*.

THEOREM 5.1. 1If each of a and £ is in exp(R)(F)(B), v is in (AB)(R)(F)+ and
each of fUa(I)u(I) and IUB(I)M(I) exists, then each of fumax{a(]),B(I)}u(I) and
fUmin{u(I),B(l)}u(I) exists. (HinF: Each of fap and fBu is in (AB) (R)(F); consider
Theorem 4.3 and Corollary 3.6.)

We now state a well-known fact about approximations of functions.

THEOREM 5.2. Suppose that a < b and f is a function with domain [a;b] and
range < R. Suppose that 0 < ¢ and W is a finite collection of nonoverlapping
intervals with union [a;b] such that if [p;q] is in W and each of y and z is in [p;q],

then lf(y) - f(z)| < c¢. Then, if x is in [a;b], then

|£(x) - [f(a) + Xw[f|g/(q—p)]max{min{x~p,q—p],0)]| < c. (5.1)

A consequence of Theorems 5.1, 5.2, uniform continuity and Theorems 3.4 and 3.6
is the following integral existence theorem:

THEOREM 5.3. Suppose that a < b, f is a function with domain [a;b] and range
€ R, continuous on [a;b]. Suppose that a is in exp(R)F)(B) and that the range union
of a& [a;b]. Suppose that u is in (AB)(R)(F)+ and fUa(I)u(I) exists. Then
fo(a(I))u(I) exists.

The question naturally arises as to whether the condition of continuity on f of
Theorem 5.3 could be replaced by something weaker. Not only is the answer no, but,
as we shall see at the end of this section, functions having the sort of integrability
preservation property described in the above theorem must be continuous. The lemmas
that follow lead to a mathematical induction argument for a characterization theorem
of the type described above.

LEMMA 5.1. If f, a and u satisfy the hypothesis of Theorem 5.3 and for each x
in [a,b], f(x) = x2, then fo(a(I))u(I) exists.

Note: For f as given in Lemma 5.1, f(a) is not to be confused with a.a.

The statement of the next lemma is given in a form suggesting a method of proof.

LEMMA 5.2. Suppose that f, o and u satisfy the hypothesis of Lemma 5.1 and B
is an element of exp(R)(F)(B) with range union & [a;b] such that IUB(I)U(I) exists.

Then, if V is in F, then
a(V)B(V) € () [f(a(I)+B(I)) - f(a(I)) - £(B(1))]; (5.2)

this implies that fua(I)E(I)u(I) exists.

LEMMA 5.3. If @ is in exp(R(F)(B) and & is in (AB) (R)(F), then fUa(I)ﬁ(I) exists
iff fua(l)f1|&(J)| exists. (Hint: Let B be sgn(£).)

The reader, in handling a certain half of the proof of the theorem below, will
have to show the existence of a particular field of subsets of a set as well as the

existence of set functions having particular properties.
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THEOREM 5.4. Suppose that N is a positive integer, {[ai;bi]}?=1 is a sequence

of number intervals and f is a function from [al;bl]X...X[aN;bN] into R. Then the
following two statements areequivalent:

1) If F' is a field of subsets of U', ¢ is in (AB) (R)F') and bi}?=l is a
sequence of elements of exp(R)(F')(B) such that for each i=l,...,N, the range union of

a; < [ai;bi] and fUai(I)g(I) exists, then fo(al(I),...,aN(I))g(I) exists, and

2) f is continuous.
6. ABSOLUTE CONTINUITY FOR ELEMENTS OF (AB) (R)(F).

There are intimate connections between absolute continuity, as defined below,

and the sort of integrability questions discussed in the preceding section. In this
section we develop fundamental facts about absolute continuity and mutual singularity,
as the terms apply to (AB)(R)(F).

DEFINITION 6.1. If py is in (AB)(B)(F)+, then A+ denotes the set to which g
belongs iff £ is an element of (AB)(R)(F)+ such that gf 0 < ¢, then there is d>0
such that if V is in F and p(V) < d, then (V) < c.

DEFINITION 6.2. If n is in (AB)(R)(F), then A denotes the set to which
belongs iff ¢ is in (AB) (R)F) and f|g| is in A:, where py = flnl.

THEOREM 6.1. If v is in (AB)(R)(T), then the following statements are true:

1) If each of ¢ and y is in Av and each of r and s is in R, then each of
Smax{&,u}, fmin{g,p} and r§ + sy is in Av'

2) Statement 2) of Theorem 4.2 is true if '"(AB) (R)(F)" is replaced by "Av“.

DEFINITION 6.3. If p is in (AB) (R)(F), then LIP(y) denotes the set to which g

belongs iff £ is in (AB) (R)F) and for some K >0 and all V in F,

le| < Kkrylu(m]. (6.1)

THEOREM 6.2. Suppose that p is in (AB) (R)(F). Then ¢ is in Lip(g) iff ¢ is in
(AB) (R)F) and f|&| is in Lip(u). Also,

Lip(u) & Au. (6.2)

The following lemma, with statement 1) of Theorem 6.1, is useful in proving
Theorem 6.3 below.

LEMMA 6.1 If y is in (AB)(RXF)T, n is in A: and fmin{n(1),u(D} = 0, then
n(U) = 0.

THEOREM 6.3 Suppose that each of ¢ and p is in (AB)(R)(F)+

and A is the element
of exp(R)(F) given by

AQV) = sup{fvmin{g(l),Kp(I)] : 0 < K}, (6.3)
The following statements are true:

1) A is in A: and £- A is in (AB) (RXF)T;

2) JEing (1) = A (D, (D} = 03 (6.4)
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3) 1if cach of v and £ - v is in (AB) (RXF)*, then v is in A:' iff A - v is in
(AB) (R)(F)¥;
4) if each of v and £ - v is in (AB) (R)(F)", then

fumin{E(I) - v(D,u (D} =0 (6.5)

iff v - X is in (AB)(R)(F)+;

5) fumin{E(I) - A(D),A (D} = 0. (6.6)

Now, the equation of statement 5) of the above theorem, though it has arisen in
a very specific way, is of significance in more than one setting. We shall meet it
again in the next section, in which we treat integrability characterizations of
absolute continuity, and in section 14, in which we develop a general closest approxi-
mation and decomposition theorem. We end this section with a characterization theorem
for this equation.

THEOREM 6.3. If each of u, p and v - p is in (AB)(IU(F)+, then the following

two statements are equivalent:
1) IUmin{u(I) - p(D),p(1)} =0, 6.7)

and
2) There is a function B from F into {0,1} such that if V is in F, then

fVS(T)IJ(I) =p(V). (6.8)

(Hint: Showing that 2) implies 1) is a fairly routine application of Corollary 3.6;
in showing that 1) implies 2), a desired B can be defined quite briefly.)
7. INTEGRABILITY AND ABSOLUTE CONTINUITY.

We trust that it is clear to the reader that on the basis of Definition 6.2 and

Lemma 5.3, we are not losing generality in this section by considering elements of
(AB)(R)(F)+, rather than merely of (AB)(R)F).

We begin with an immediate consequence of Theorem 6.3.

COROLLARY 7.1. If £, u and A are as in Theorem 6.3, then £ is in A\ iff £ = A,

The following lemma is an immediate consequence of Theorem 6.1, and along with
the corollary above, should prove useful.

LEMMA 7.1. 1f each of & and i is in (AB)(RXF)', then £ is in AY 1ff
Smax{&,u} is in A:.

We now state the first of the two characterizations theorems of this section.

THEOREM 7.1. 1If each of £ and u is in (AB)(]O(F)+, then the following three
statements are equivalent:

1) If a is in exp(B)(F)(B)+, fUa(l)u(I) = 0 and fUa(I)u(I) exists, then
fUa(I)E(I) = 0.

2) 1f vy is a function from F into {0,1}, fUY(I)u(I) = 0 and fUY(I)C(I) exists,

then IUY(T)Q(I) = 0.
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3) £ is in A:.

The second of our characterization theorems is a consequence of the first. We
first state a lemma.

LEMMA 7.2. If n is in (AB)(R)(F)+ and n(U) > 0, then there is § in exp(l()(F)(B)+
such that fué(I)n(I) does not exist.

THEOREM 7.2. If each of £ and u is in (AB) (R)F)', then the following three

statements are equivalent:
1) If vy is in exp(R)F)(B) and fuy(I)u(I) exists, then fUY(I)g(I) exists.

2) If y is in exp(R)F)(B)' and S (DU exists, then JY(1E(I) exists.
. . +
3) & is in Au.
8. SET FUNCTION MEASURABILITY AND A CHARACTERTZATION THEOREM.

The reader may, if he chooses, consult any of a number of standard treatises on
real analysis for the notion of a real-valued measurable function. The definition
given below is clearly an extension of this notion to set functions.

DEFINITION 8.1. If u is in (AB)(R)(F)+, then Mu is the set to which a belongs
iff o is an element of exp(R)(F) such that

i) if Kl <0 j_Kz, then fUmax{min{a(I),Kz],Kl}u(I) exists, and

ii) if 0 < ¢, then there is K > 0 and D << {U} such that if E << D, b is an
a-function on E and E' = {I : I in E, |b(1)] > K}, then L u(1) < c.

LEMMA 8.1. 1If N is a positive integer, h is a boungzd continuous function from

I(N into R, p is in (AB)(B)(F)+ and {ui}? is a sequence of elements of M“, then
fUh(ul(I),...,aN(l))u(I) exists.

THEOREM 8.1. 1f N is a positive integer and g is a function from IlN into R,
then the following two statements are equivalent:

1) If F' is a field of subsets of U', 1 is in (AB) (R)F')T

, and {“ij?=1 is a
sequence of elements of Mu’ then g(al...,uN) is in Mu.

2) g is‘continuous.

Before we go on to the next section, where in one of the theorems we encounter
set function measurability again, we remark that Theorem 8.1 implies that if u is in
(AB)(B)(F)+, each of a and B is in M“, each of r and s is in R, then each of ra +
sB,aB, max{a,B} and min{u,R} is in Mu.

9. SET FUNCTION SUMMABILITY AND THE SUMMABILITY OPERATOR.

We begin by stating a definition which is an extension, to set functions, of the

standard notion of summability.

DEFINITION 9.1. If u is in (AB)(IO(F)+, then SU is the set to which a belongs
iff a is in exp(R)(F) and there is a number interval [p;q] such that if l(l <0 < Kz,
then fUmax{min{a(I),Kz},Kl}u(l) exists and is in [p;q].

THEOREM 9.1. If p is in (AB)(R)(F)+, a is in exp(R)(F) and for each number
interval [KI;KZ] containing 0,fUmax{min[a(I),Kg,Kl}u(l) exists, then the following

three statements are equivalent:
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1) o is in S .

2) There is ”l andpz, each in A , such that if K 1 <0 §_K2, then
J‘UIUZ(I) - J’Imax{min{a(J),Kz},O}u(J)| +
fU|ul(I) + fImax{min{a(J),0},Kl}u(J)l+0 as min{-Kl,K2}+w. (9.1)
3) There is £ in Au such that if K 20 <K,, then
fyle - fImax{min{a(J),Kz},Kl]u(J)I*O as min{-K ,K,}>. 9.2)

THEOREM 9.2. If p is in (AB)(R)(F) , then S C-M (so that, by Theorem 8.1,

if N is a positive integer, g is a continuous function from R into R and {a, }1 1

is a sequence of clements of S“, then g(al,...,aN) is in Mu).

THEOREM 9.3. If p is in (AB)(IO(F)+, then @ is in Su iff for each number
interval [KI;K7] containing 0, fUmax{min{a(I),Kz},KI}u(I) exists, and |a| is in Sp.

N
THEOREM 9.4. If N is a positive integer and f is a function from R~ into R,
then the following two statements are equivalent:

1) 1f F' is a field of subsets of U', u is in (AB)(R)(F')+ , and {ai}§=l is a

sequence of elements of Su, then f(&¢,,...,0,.) is in S .
N N
i i .. : < L 3 .
2) f is continuous, and {If(xl,. ,xN)|/(Zk=1 |xk|) 1< k=1 |xk|} is bounded
Now, we have the following corollary to Theorem 9.1 and definition; the corollary
is really just an amended restatement of statement 3) of that theorem.
COROLLARY 9.1 and DEFINITION 9.2. Under the hypothesis of Theorem 9.1, @ 1is in

Su iff there is € in Au such that if K; <0 <K,, then IUIC(I) - fImax{m1n{a(J),K2},

Kl}p(I)|+0 as min{—Kl,K2}+w; £ is the only element n of (AB) (R)(F) such that if V
is in F, then fvln(I) - fImax{min{a(J),Kz},Kl}u(JH*O as min{—KI,Kz}*W. We denote £
by ou(u).

THEOREM 9.5. 1If u is in (AB)(B)(F)+ and each of B and y is in Su, then the
following statements are true:

1) B+ y is in SU’ and
0, (B +7v) =0 ,(B) +0 (V). 9.3)
2) 1If Q is "max" or "min", then Q(B,Y) is in Su and
9, Q(B,Y)) = fQ(0 (8),0 (Y)) (9.4)
3) If B is in exp(RXF)(B), then By is in Su’ and
o, (8Y) = f[BOu(Y)]- 9.5)

4) 1f, for some H > 0 and all x in the range union of B, |x| > H, then 1/B is

in exp(R)XF)(B) (clearly), S (1/B(T)u(1) exists and is IU(l/B(I)Z)ou(B)(I).
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We direct the reader's attention to certain fundamental sum and exponent
inequalities. We also adopt the convention that if each of x and y is a number, then
x/y = 0 1f y = 0, and has the usual meaning otherwise.

We end this section with a final existence and equality theorem.

THEOREM 9.6. If u is in (AB) (R)F)¥ and each of B and y is in suflexp(lo(F)+,
then the following statements are true:

1) If 0 <p <1, then 8PP is in S,» and, for each V in F,
o, (8P PY(W) = 1€, (8) ()P, () (1), (9.6)
2) If 1 < p, then 8P is in s, Lff fU(cu(B)(I)/u(l))pu(I) exists, in which case,
if V is in F, then
0, (BP) (V) = f (o (B) (1) /u(1))Pu(D). (9.7)

10. A DOMINATED CONVERGENCE THEOREM FOR SUMMABLE SET FUNCTIONS.

In this section we prove a convergence theorem for summability operators. We

begin with two well known definitions.

DEFINITION 10.1. 1If W is a set, then the statement that P is a partial ordering
on W means that PS WAW such that:

i) if x is in W, then (x,x) is in P, and

ii) if each of (x,y) and (y,z) is in P, then (x,z) is in P.

DEFINITION 10.2. 1f W is a set, then the statement that P is a partial ordering
with respect to which W is directed means that P is a partial ordering on W such
that if each of x and y is in W, then there is z in W such that each of (%,z) and (y,z)
is in P.

We now state a lemma.

LEMMA 10.1. Suppose that Y is in exp(R)(F)(B), u is in (AB)(R)(F)+, W is a set,
P is a partial ordering with respect to which W is directed, @ is a function from W
into S , and K ‘Is a number such that if x is in the range union of Yy or a(t) for some
t in W, then [xl < K. Suppose further that if 0 < min{c,d}, then there is z in W such
that if (z,y) is in P, then there is D << {U} such that if E << D , h is a y-function
on E and m is an a(y)-function on E and E¥ = {T : I in E, |h(I) - m(I)|i_ c}, then
ZE*U(I) < d. Then fUY(T)u(I) exists, and fU|Y(I) - u(L)(I)IU(I)*O with respect to P,
i.e., (and we trust that the reader can gather a general definition from this para-

phrase) if 0 < ¢, then there is v in W such that if (v,t) is in P, then

Sl (m) = a(e) () (@) < e.

Now, the use of a set directed with respect to a partial ordering, instead of
just the set of positive integers, is not generalization for its own sake. We will
need such an ordering to develop a finitely additive analogue of Fubini's Theorem in

section 11.
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Here is our dominated convergence theorem.

THEOREM 10.1. Suppose that y is in exp(R)(F), u is in (AB)(IO(F)+, W is a set,
P is a partial ordering with respect to which W is directed, a is a function from W
into Su’ p is in A: and for each t in W, p _.f|0u(a(t))| is in (AB)(]O(F)+, Supposé
further that if 0 < min{c,d}, then there is z in W such that if (z,y) is in P, then
there is Dy << {Uu} iuch that if E << D , h is a Y-function on E and m is an a(y)-
function on E and E = {I : I in E, |h(I) - m(I)I > c}, then ZE*u(I) < d. Then Y is
in S“, and fulou(Y)(I) - ou(a(t))(1)|*0 with respect to P.

11. SUMMABILITY AND PRODUCT FIELDS.

We begin this section with some special cases of well-known theorems about
"product fields" of collections of fields of sets.
THEOREM 11.1. Suppose that F, is a field of subsets of U1 and F2 is a field of

1
subsets of U,. Let Rp = {xlxx2 : X, in F} and X, in Fz}. Let Fjdenote {L)HY : Ha
finite subcollection of Rp’ no two elements of which have an element in commonl}.
Then F, is a field of subsets of UlXU2 such that if FO is a field of subsets of

3
x CF <
U U2 such that Rp PO’ then F3 FO.

1
THEOREM 11.2. Suppose that Fl’ Ul’ F2, U2’ Rp and F3 are as in Theorem 11.1.

is in (4B) (R)F)T and v, is in (AB)(R)(F2)+. Then there is exactly

Suppose that ¥y 2

one element Hq in (AB)(]R)(F3)+ such that if X1 is in F and X2 is in F2, then

“3(Xlxx2) = ul(xl)uz(xz). (11.1)

Let us now suppose that Fl’ Ul’ F2, U2, F3, ul, u2 and u3 are as in Theorem 11.2,
a is in exp(R)(FB), and B is a function with domain {(x,I,y,J) : I in Fl’ J in FZ’ (x,y)
in IxJ} such that if I is in Fl’ J in FZ’ x is in I and y is in J, then B(x,I,y,J)&a
(IxJ).

We now state two theorems, the second of which is a consequence and generalization

of the first.
THEOREM 11.3. Suppose the o has bounded range union and IU U O(V)ua(V) exists.
1 72

Then, if Q is either L or G (see section 3), then each of the integrals

fullfuzQ(B(x,I,...)uz)(w“)]ul(l) (11.2)
and

Ty, U QB Gy, D) () () (11.3)

exists and is

fulxuza(v)“a(v)' (11.4)
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THEOREM 11.4. Suppose that a is in Su , and that if p < 0 < q and Y is a function
3
whose range <exp(R), then Yp q = max{min{y,q},p}. Then, if Q is L or G, then

ful|lcu3(a)(VxU2)/ul(V)] - fuzQ(Bp’q(x,V,-.-)uz)(w")lvl(v) -
fullou3(u)(vxu2) - /V[fuzQ(Bp’q(x,I,...)uz)(w")]ul(l)l < (11.5)
fulf”zlo“a(a)(Y) = IRy (D@ [0, minl-p,q),

and

/ '[°u3(“)(“1*X)/“z(X)] " Ty Ay g Gy R ) u, (%) =

U2 »q
fuzlcp3(a)<UIXX) - IXIIUIQ(Bp’q(.--,y,J)ul)(w')]uz(J)l < (11.6)
fule2|0“3(u)(Y) - fYap’q(Z)uS(z)l»o, min{-p,q}>=.

12. THE SPACE HiVAND EXPLICIT FORMS OF THE BOCHNER RADON NIKODYM THEOREM.

Suppose that u is in (AB)(]O(F)+. We let Hﬁ denote the set to which £ belongs
iff € is in (AB) (R)X(F), for each V in F, £(V) = 0 if u(V) = 0, and fU[F,(I)z/u(I)]
exists.

Certain of the results of this section are special cases of matters treated in
statement 2) of Theorem Y.6. We begin, even so, with a lemma from which, by now,
the reader should be able to deduce a useful refinement-sum inequality.

LEMMA 12.1. 1If each of p, q, r and s is a number such that 0 < min{r,s} and
p=0if r =0 and q = 0 if s = 0, then (p+q)2/(r+s) f_pz/r + qz/s.

THEOREM 12.1. The following statements are true:

1) 1If & is in (AB)(R)(F), then the following statements are equivalent:

i) € is in Hﬁ.

ii) For each V in F, E§(V) = 0 if u(V) = 0, and {ED[ﬁ(V)Z/u(V)] : D<<{U}}
is bounded.

1ii) For some p in (AB) (R)F)¥, pu-£2 is in exp(R)(F)™.

2) 1If each of n and ¢ is in Hﬁ and each of r and s is in R, then rn + s¢ is
in Hi.

3) 1If each of n and ¢ is in Hi, then fu[n(I)C(l)/u(I)] exists.

4) Suppose that {ni}:=l is a sequence of elements of Hﬁ such that
fU[(nm(I) - nn(I))z/u(I)]*O as min{m,n}>=
then there is § in Hi such that fU[(E(I) - nn(I))z/p([)]*O as nore,

The reader, in working through the above theorem, has most likely seen that, in
statement 2), a sum and exponent inequality of the type mentioned just before Theorem

9.6 comes into play. We suggest now that the reader formulate a set function integral
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extension of this inequality; it will be effective in establishing Theorem 12.2

below.

We now proceed with our development of a fundamental approximation theorem.
LEMMA 12.2. Lip(u) S K.,
THEOREM 12.2. If n is in Lip(u) and D << {U}, then

E (D = (A AMI@] < UMM - 2@ aOITTHWIE a2.1)

THEOREM 12.3. If € is in Au, then

IU|5(1) - flmax{min{g(J),Kzu(J)},xlu(J)}l+o as min{-K ,K,}>=. (12.2)

THEOREM 12.4. If £ is in A“, then

Syl lE@ = e /o]l = o, (12.3)
i.e., if 0 < ¢, then there is D << {U} such that if E << D, then

Ile (@ = B/ M| < c.

THEOREM 12.5. If a is in exp(R)F) and fUa(I)u(I) exists, then the following
two statements are equivalent:

1) Jau is in A“.

2) Fylyls ) - a(Wu(n |1 = o0, (12.4)

i.e., if 0 < ¢, then there is D << {U} such that if E << D and b is an a-function on

E then ZEIVIqu(J)u(J) - bW < c.

The above theorem has considerable application; indeed we shall open the next
section with a corollary of it which we shall use not only in that section, but in
the next as well. Furthermore, we shall consider a special "nonintegrable" form of
it on our development of an extension of the notion of distribution function to set
functions.

13. CONCERNING CLOSEST APPROXIMATIONS.

We begin with the corollary mentioned at the end of section 12.
COROLLARY 13.1. Suppose that WS (AB(R)(F) and if X is in W, then AA&-W. Suppose
that K > 0 and T is a transformation from W into (AB) (R)(F) such that if each of p

and p is in W and V is in F, then

IT(e) (V) = T W] < kS [e(D) - w(D]. (13.1)
Then, if A is in W, « is in exp (R)(F)(B) and fUa(I)X(I) exists, then
fU[fVIT(fu\)(I) - T(a(V)A)(I) 1 = 0O, (13.2)

i.e., if 0 < ¢, then there is D << {U} such that if E << D and b is an a-function on

E, then ZEIVIT(IaA)(I) - T(b(WN(1)] < c.
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DEFINITION 13.1. The statement that M is a C-set means that M& (AB) (R)(F) and M
satisfies the following two conditions:

1) If p is in M, u is in (AB)(R)F) and f|p| = /|u is in (AB) (RXF)T, then v is
in M, and

ii) If £ is in (AB)(I{)(F)+ and a is the element of exp(R)(F) given by

a(V) = suply(V) : vy inM[) (AB)(RXF)", £-v in (aB)(RXF)'), 13.3)

then a is in M f)(AB)(ID(F)+-

Clearly, if W is in (AB)(F)(F)+, then Au is a C-set and is just one of many C-sets.
We shall consider some further examples in this paper.

We now assume that M is a C-set.

The three lemmas that follow lead to the principal result of this section, namely
a closest approximation theorem for C-sets.

LEMMA 13.1. If each of X and u is in M r](AB)(IU(F)+, then so is Smax{A,u}.

DEFINITION 13.2. & denotes the transformation with domain (AB) (R)(F) and range

M
< exp(R)(F) given by

L (€)(V) = sup{y(V) : v in M N sy (RYET, slel- v in @B (RYX®TL. (13.4)

Clearly the range of QMCM n (AB)(R)(F)+.

LEMMA 13.2. If p is in (AB)(R)(¥)Y, 1 is in M [) (aB)(RYF®)Y and v # £,(0), then
Fle(@ = 9, () (D] < £lo(D) - w(D]. (13.5)

DEFINITION 13.3. a*M denotes the transformation with domain (AB)R)(F) and range
S exp(R)(F) given by

a*M(&)(V) = fv sgn(&)(I)ﬁM(z)(I) (13.6)

(why does this integral exist?)

We shall for the remainder of this section, let £ denote QM and a* denote a*M.

LEMMA 13.3. The range of a*S M.
THEOREM 13.1. 1If £ is in (AB)(R)(F), u is in M and u # a*(£), then

fgle@ - ax@ @] < syle - wl. (13.7)

The question, stated in intuitive terms, that naturally arises is: "If 51 is

'close to' €, is a*(El) 'close to' a*(£2)?" We begin by considering the following

four lcmmas:2
LEMMA 13.4. If each of W and ¢ is in (AB) (R)XF)¥, then fmax{&(u),2(z)} =
2(fmax{p,z}) and Smin {«(n),2(2)} = L(min{u,zl}).
LEMMA 13.5. If each of p, 4, and p - u is in (AB)(IU(F)+, then so is p - u -

[2(p) = 2(w)].
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LEMMA 13.6. If each of p and y is in (AB) (RXF)', then so is f[|p—yu|-|2(p)-2 (W] ].
LEMMA 13.7. If each of £ and p is in (AB) (R)(F) and V is in F, then

I tUsgn(e - sen(alsleh @ < sytlleml-le@ll+ le@m-e @l a3.8)

THEOREM 13.2. 1If each of ¢ and p is in (AB)(R)(F) and V is in F, then

fylax (@ (D-a*() (D] < ryl2l[eM]-[o ] [+[g(M-p (D]]. (13.9)

We give, after stating two lemmas, a functional equation theorem that is an

extension of Lemma 13.4.
LEMMA 13.8. If p is in (AB)(R)(F)+, B is a function from F into exp({0,1}) and

IUB(I)p(I) exists, then
reeu) = £ (fBw. (13.10)

LEMMA 13.9. If u is in (AB)(R)F), then
a*(fmax{y,0}) = Smax{a*(u),0}, and a*(/min{y,0}) = Smin{a*(u),0}. (13.11)
THEOREM 13.3. If each of £ and u is in (AB) (R)(F), then
a*(fmax{g,u}) = Smax{a*(g),a*(u)} and a*(fmin{g,u}) = (13.12)
Jmin{a*(£),a*(u)}.

We end this section with an "addition and scalar multiplication" closure char-
acterization theorem and some observations.

THEOREM 13.4. The following four statements are equivalent:

1) 1If each of ¢ and u is in M and each of r and s is in R, then rp + sp is in M.

2) If ¢ is in (AB) (RXF)T, then
L(g -2(£))(U) = 0. (13.13)
3) If £ is in (AB) (RXF)V, then
J'Umin{C(I) - 2(E)(1),2(8)(T)} =0 (13.14)
4) If u is in M [ (aB) (RXP)Y, then so is 2u.

THEOREM 13.5. Suppose that M satisfies one of the conditions of Theorem 13.4.
Then the following statements are true:

1) 1If each of p and u is in (AB)(R)(F)+ and 0 < r, then each of £(p) + &(u) -
2(p + 1) and rt(p) - L(rp) is in (4B) (RYX(P)T.

2) 1f ¢ is in (AB) (R)F), u is in M and u # a*(¢), then

ax(g£ - w)(D|. (13.15)

0 = fyla*(e - a*(EN D] < 4,

3) If each of £ and u is in (AB)(R)(F) and each of r and s is in R, then

a*(rf + sp) = ra*(g) + sax(u). (13.16)
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We point out that the following subsets of (AB) (R)(F) are C-sets, the last three
also satisty condition 1) of Theorem 13.4.

Ex. 13.1. For u in (AB)(RXF)* and 0 < K, {£:£ in (AB)(RXF), |£(V)| Ku(V) for
all V in F}.

Ex. 13.2. Given a collection G of C-sets, r)GX.

Ex. 13.3. For u in (AB)(RXF)Y, A .

Ex. 13.4. For a in exp (R)(F)(B), {£:£ in (AB)(R)(F), IUa(I)g(I) exists}.

Ex. 13.5. {£:£ in (AB) (R)(F), J’UIE(I)]Z = 0}.

14, CONCERNING A CLASS OF TRANSFORMATIONS.
We begin by considering a special case. Suppose that p is in (AB)(IO(F)+. As

observed in section 13, Au satisfies each of the conditions of Theorem 13.4 and so,

*

*
= aM, we see that a

u has the properties given in Theorem 13.5.

for M = A and a*
u u

Throughout this section, for each u in (AB)(R)(F)+, a: shall have the meaning
given in the above papagraph.

We now define collection of transformations from (AB) (R)(F) into (AB)(R)(F)
which, for each u in (AB) (R)F)Y, contains a:.

DEFINITION 14.1. C denotes the collection to which T belongs iff T is a trans-
formation from (AB)(R)F) into (AB) (R)F) such that for some K > 0 and all § and u
in (AB) (R)(F) and all r and s in R,

i) T(r& + su) = rT(£) + sT(u), and

i1) K€ - ]T(E)| is in (aB) (RYE)T.

OBSERVATION 14.1. 1If each of T1 and T2 is in C and each of r and s is in R,
THEN rT1 + sT2 is in C.

THEOREM 14.1. If u is in (AB)(IO(F)+, £ is in A“ and T is in C, then, for each
V in F,

fv[T(U)(l)/u(I)IE(I) = T(&) (V). (14.1)
THEOREM 14.2. If w is in (AB)(IU(F)+, T is in C, and n is in (AB) (R)(F), then
T(a}, (n)) = a} (T(n)). (14.2)

THEOREM 14.3. If p is in (AB)(B)(F)+, each of S and T is in C, and for each ¢
in (AB)(R)F), a} (S(€)) = S(£), then for each n in (AB)(RXF),

S(T(n)) = T(S(n)). (14.3)
THEOREM 14.4. 1If each W and T is in C, then, for each £ in (AB) (R)(F),
W(T(E)) = T(W(E)). (14.4)

THEOREM 14.5. If T is in C, then the following two statements are equivalent:
1) If each of £ and u is in (AB) (R)XF) and T(£) = T(u), then § = yu.

2) If p is in (AB)(R)F), then p is in AT(p)'
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We end this section with an observation which is an easy consequence of various
theorems of the preceding section and which will be the basis of the "mapping' theorem

of the next section.

OBSERVATION 14.2. If M is a C-set satisfying condition 1) of Theorem 13.4, then
a*M is in C.
15. A MAPPING THEOREM FOR A PAIR OF CLASSES OF TRANSFORMATIONS.

Again, for reasons given in the introduction, we "spell out" notions that have

standard and well-known designations in the literature.
Suppose that M is a C-set satiéfying condition 1) of Theorem 13.4.
We shall let M* denote the set to which f belongs iff f is a function from M into
R satisfying the following conditions:
i) If each of p and p is in M and r and s is in R, then f(ru + sp) = rf(u)+sf(p).
ii) {{f(u)l :p in M, fulp(I)[ < 1} is bounded.
Now, for cach f in M*, we let ||f|| denote sup {|f(u)| : u in M, IUIu(I)I < 1}.
OBSERVATION 15.1. T1If each of f, and f_, is in M* and each of r and s is in R,

1 2

then rfl + sf2 is in M%*,

For cach T in C, we let ||T‘| denote sup{fUIT(u)(I)l : fUlu(I)l < 1}.

OBSERVATION 15.2. |la*M|| < 1.

For each p in (AB)(R)F) and W in F, we let u[w] denote the element of (AB) (R)(F)
given by

w o
vy = ww v, (15.1)

We now consider the following subset of C: CM is the set to which T belongs iff

T is an element of C whose range <M, i.e., for each u in (AB) (R)(F), a*M(T(u)) = T(u).

Roughly speaking, the theorem that we are about to state says that M* and CM are

"indistinguishable', a notion made precise as follows:

THEOREM 15.1. Consider the mapping, Y, with domain M*, such that for each f in
M*,
(6 = (0, (6@ 1 vin BD ¢ uin (aB) (RXD). (15.2)
Then Y is a mapping from M* onto CM having the following properties:

i) 1If each of fl and f2 is in M* and r and s is in R, then,

Y(rfl + sz) = rY(fl) + SY(f2)° (15.3)

ii) If f is in M*, then

[y ] = |]e]]. (15.4)
iii) (as a consequence of i) and ii)) Y is one-umne.
COROLLARY 15.1. If u is in (AB)(R)F)t, and W is the mapping with domain A: such

that if f is in A:, then

Wy = Loty 2 vin B (15.5)
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then W is a one-one mapping from A: onto Lip(p) such that if each of g and h is in

A: and each of r and s is in R, then

W(rg + sh) = rW(g) + sW(h). (15.6)
If f is in A:, then
1£]] = supl] £ Thymm] @ 1 in 7, (15.7)
and, for each § in A ,
¥ [1]
f(g) = fU[f(u Y/u(1)]e(T). (15.8)

16. CONCERNING AN INTEGRAL EQUATION.

In this section we treat the following question: Given a in exp(R)(F)(B) and §

in (AB) (R)(F), what is a necessary and sufficient condition that there be an element
p in (AB) (R)(F) such that for each V in F, fva(I)u(I) = £(I)? We begin with two

lemmas.

LEMMA 16.1. If each of B and vy is in exp(R)F) and V is in F, then IVB(I)y(l)
exists iff fvsgn(ﬁ)(1)|8(1)ly(1) exists, in which case equality holds.

LEMMA 16.2. If B is in exp(R)(F)(B), u is in (AB)(R)(F), V is in F and
fVB(I)p(I) exists, then fvsgn(ﬁ)(I)fls(J)u(J) exists.

We now state the main theorem of this section, which not only characterizes
the existence of a solution, but makes a uniqueness assertion; once again, note the

role that absolute continuity plays.
THEOREM 16.1. Suppose that a is in exp(R)(F)(B) and & is in (AB) (R)(F). The
following statements are true:
1) The following two statements are equivalent:
i) There is n in (AB) (R)(F) such that for each V in F,fva(I)n(I) = £(I).
ii) fusgn(u)(I)C(I) exists, and for some B in R and all K > 0,

fUIIC(I)I/max{la(I)I,K}] exists and does not exceed B.

2) There is no more than one A in Ag such that for each V in F,fva(I)A(I) exists

and is £(V).
3) 1If i), or equivalently, ii) of 1) holds, u is the element of (AB)(R)(F)+

given, for each V in F, by

p(v) = sup{fv{ig(x){/max{|a(1)|,x]1 : 0 < K}, (16.1)

and A is the element of (AB)(R)(F) given, for each V in F, by

M) = Jysen(@) (D)sgn(€) (Du(D), (16.2)

then A is in AE’ and, for each V in F, fva(I)X(I) exists and is £ (V).
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17. MORE THEOREMS ABOUT INTEGRAL REPRESENTATIONS.
In section 16 we considered the question, given a in exp(R(FXB) and £ in

(AB) (R)(F), of when there is n in (AB) (R)(F) such that for each V in F,

fVU(I)n(I) = £(V). (17.1)

In this section we consider converse-type remarks of this matter. We begin with a
definition.

DEFINITION 17.1. If S& R and each of £ and p is in (AB)R)(F) , then the state-
ment that £ is p-dense in S means that if 0 < ¢ and V is in F, then there is D << {V}

and a function b from D into S such that

zDIr:(I) - b(Du(D)]| < c. (17.2)

Before we state the next theorem, we remind the reader about our remarks in the
introduction concerning the elementary topological properties of R.

THEOREM 17.1. If S is a closed and bounded subset of R, each of § and p is in
(AB) (R)(F) and ¢ is p-dense in F, then there is a function a from F into S such that

if Vis in F, then

fva(I)u(I) = £(V). (17.3)

Now, notice that, trivially, under the hypothesis of Theorem 17.1, £ is in Lip(u).
The remaining theorems of this section concern the smallest (with respect to inclusion)
closed subset of R "giving" a representation of the type described in the opening
paragraph of this section, for £ in Lip(u) and then for & in Ap, in each case, for
w(U) > 0.

We begin with two well-known theorems about closed and bounded subsets of R.
1 and 82 is a closed and bounded subset of R, then
5, and S, have an element in common iff 0 = inf{|x - y| : x in $;» ¥ in SZ]'

THEOREM 17.C.2. Suppose that G is a collection of closed and bounded subsets of

THEOREM 17.C.1. 1If each of S

R such that if each of S1 and 52 is in G, then there is an element common to S1 and

S2 and an element S3 of G such that S3E-Slr]82. Then there is x such that x is in
each set of G; furthermore, if 0 < ¢, then there is some S* in G such that if z is in
S*, then infl]y - z| : y in ﬂcs} < c.

THEOREM 17.2. Suppose that u is in (AB)(R)(F)+, u(U) > 0, and & is in Lip(u).
Let G denote the collection to which S belongs iff S is a closed and bounded subset

of R for which there is a function o from F into S such that if V is in F, then

IVu(I)u(I) =&(V). (17.4)

Then G satisfies the hypothesis of Theorem 17.C.2 and f]us is in G.

THEOREM 17.3. Suppose that p is in (AB)(]{XF)+, u(U) » 0 and & is in Au. Then
there is a clused subset P or R such that:

i) If Q is a closed subset of R for which there is B in S“ with range union

< Q such that OH(B) = ¢, then PS<Q, and
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ii) there is a function y from F into P such that if V is in F, then
Ty (Mu(@) = £(v) (17.5)
furthermore, y is in SU and
Ou(Y) =&, (17.6)

18. FINITE ADDITIVITY, SET FUNCTIONS AND UPPER AND LOWER DISTRIBUTION FUNCTIONS.

The reader familiar with the notion of a distribution function, as it arises in

a countably additive setting, will see the motivation behind the definition that we
shall give after some preliminary results.

We first state a consequence of Theorem 13.2.

THEOREM 18.1. Suppose that u is in (AB) (RXF)¥, o is in exp (R)(F)(B),

g = JG(ap), and h = L(ap). (18.1)

Then, if D << {U}, for each V in D, E(V) << {V}, b(V) is in a(V) and for each I in
E(V), c(1I) is in a(I), then
EpEp oy PO = (DU | < 2 [LE) (V) = G (D] = [h(V) - gO)] +
2 2 Y L 2 } 2 L
Uyls @™ /m@] - £le() aWMIYHu) }? + {fU[h(J) /a0 1-2 (V) Ju(v)1}
fu(uy Y2, (18.2)
THEOREM 18.2. 1If p is in (AB)(R)(F)+ and o is in exp(R)F)(B), then

FylLem) () = Glaw) (D] = inflsup{z [b(V) - (1) |u(1):

ETE(V)
E << D, for all V in E, E(V) << {V}, b(V) is in a(V), for all 1 in E(V),
c(I) is in a(I)}: D << {ull. (18.3)

DEFINITION 18.1. For each a in exp(R)F) and x in R, B(a,x) denotes the
element of exp(R(F)such that if 1 is in F, then B(a,x)(T)< {0,1} and contains 1
iff there is y in a(I) such that y < x, and contains 0 iff there is y is a(I) such
that y > x,

THEOREM 18.3. If a is in exp(R)F)(B), u is in (AB) (R)XF)' and t < r, then

£y ILBE@ W (-6(B@,0W) (D] < (r = )71 (L@ (-6 (). (18.4)
THEOREM 18.4. If o is in exp(R)F)(B), u is in (AB)(R)(F)+ and h is a real-
valued nondecreasing continuous function with domain R, then

I_hGOdU LB, 0m ()} < FEM@W ) < [LGE@W W) < f_Th()d

{IUC(B(a,x)u)(J)}. (18.5)

Theorems 18.3 and 18.4 enable us to first show the integrability. character-

ization theorem and representation theorem below.
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THEOREM 18.5. Ifa is in exp(R)(F)(B) and y is in (AB)(R)F)Y, then the
following three statements are equivalent:

1) IUu(I)p(I) exists.
2) If x is in R, then

S L@ xu) (3) = f,6(B(a,x+H)u) (J) (18.6)
3 F_o xd{(SyL(B e (DY = f_Txd{S 6B a,x)u) (1)), (18.7)

THEOREM 18.6. If a and p are as in the hypothesis of Theorem 18.5, k is a real-
valued continuous function with domain R and IUa(I)p(I) exists, then we have the

following existence and equivalence:

U = 7 7KL D) = 5 kA yE(E w2 (D). (18.8)

We now prove two characterization theorems for set function measurability and
summability, respectively.
THEOREM 18.7. If a is in exp(R)XF) and y is in (AB)(IU(F)+, then o is in M, iff

1) if x is in R, then
Sl @ Q,xu) ) = IUC(B(a,X+)u)(I), (18.9)
and

2) fUC(B(u,x)u)(I)»p(U) as x»» and IUL(B(a,x)u)(I)+0 as X, (18.10)

THEOREM 18.8. 1If a is in exp(R)F) and p is in (AB)(RXF)™, then o is in 5, LFf
a is in Mu and f_wxd{fUL(B(a,x)p)(J)} (and hence f_: xd{fUC(ﬁ(a,x)p)(J)}) exists.

THEOREM 18.9. Suppose that p is in (AB) (RXF)Y, a is in S and h is a real-
valued continuous function with domain R such that {|h(x)|/|x| : 1 < x|} is

bounded. Then f_:h(x)d{fUL(B(a,x)u)(J)} (and hence f_:h(x)d{fUG(B(a,X)u)(J)])

exists and is Op(h(a))(U).



FIELDS OF SETS, SET FUNCTIONS, AND SET FUNCTION INTEGRALS 233

REFERENCES

1. Bochner, S., and Phillips, R., Additive Set Functions and Vector Lattices,
Ann. of Math., (2), 42, pp 316-324 (1941).

2. Caratheodory, C., Vorlesungen iiber reele Funcrionen, Second edition,
Teubner, Lelpzig, 1927.

3. Dunford, N., and Schwartz, J.T., Linear Operators, Part I, Interscience
Publishers, New York, 1957.

4, Graves, L.M., The Theory of Functions of Real Variables, McGraw-Hill
Company, New York, 1946.

5. Gunther, N., Sur les Intégrals de Stieltjes et Leurs Applications aux
Probléms de la Physique Mathématlque, Chelsea Publishing Company, New York, 1949.

6. Hellinger, E., Die Orthoginalinvarianten quadratischer Formen von unendlich
vielen Variablen, Diss. Gottingen, 1907.

7. Henstock, R., Theory of Integration, Butterworths, London, 1963.

8. Hobson, E. W., The Theory of Functions of a Real Variable:, Volume I,
Second edition, Cumbridge University Press, 1921.

9. Kolmogoroff, A.N., Untersuchungen iiber den Integralbegriff, Math. Ann.,
103, pp 654-696 (1930).

10. Leader, S., The Theory of LP-Spaces for Finitely Additive Set Functions,
Ann., of Math. (2) 58, pp 528-543 (1953).

11. Lebesgue, H., Lecons sur 1'Integration et la Recherche des Fonctions
Primirives, Gauthier-Villars, Paris, 1904, Second c¢dition 1928.

12, McShane, E.J., Integration, Princeton University Press, Princeton, 1944.

13. Riesz, F., and Sz-Nagy, B., Lecons d'Analyse Fonctionnelle, Akademiai
Kiado, Budapest, 1952.

14. Saks, S., Theory of the Integral, Second ed., Momografje Matematyczne,
vol. 7, Warsaw, 1937. Reprinted Stechert-Hofner Pub. Co., New York.




