Internat. J. Math, & Math. Sci. 361
Vol. 7 No. 2 (1984) 361-370

THE EXTRAPOLATED SUCCESSIVE OVERRELAXATION (ESOR)
METHOD FOR CONSISTENTLY ORDERED MATRICES

N. M. MISSIRLIS

Department of Applied Mathematics
University of Athens
Panepistimiopolis 621

Athens, Greece.

D.J. EVANS
Department of Computer Studies
Loughborough University of Technology
Loughborough, Leicestershire, U.K.

(Received September 30, 1982 and in revised form April 2, 1983)

ABSTRACT. This paper develops the theory of the Extrapolated Successive Overrelaxatior
(ESOR) method as ingtoduced by Sisler in [1],[2],[3] for the numerical solution of
large sparse linear systems of the form Au=b, when A is a consistently ordered 2-
cyclic matrix with non-vanishing diagonal elements and the Jacobi iteration matrix B
possesses only real eigenvalues. The region of convergence for the ESOR method is
described and the optimum values of the involved parameters are also determined.

It is shown that if the minimum of the moduli of the eigenvalues of B, u does not
vanish, then ESOR attains faster rate of convergence than SOR when l-E?<(1Jﬁz)i,

where | denotes the spectral radius of B.
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1. INTRODUCTION.

In [4]) it is shown how one can explain the origin of the well known first
order iterative methods for the numerical solution of linear systems of the form,
Au = b , (1.1)
where A is a real non-singular matrix with non-vanishing diagonal elements of
order N, using the preconditioning approach [5]. A result of this was the
formulation of two first order iterative schemes, the Extrapolated Gauss-Seidel
(EGS) and the Extrapolated Successive Overrelaxation (ESOR). The analysis of the

former method, when A is a consistently ordered (2-cyclic matrix [6]) [7] and the
iteration matrix B of the Jacobi method possesses only real eigenvalues with

T=S(B)>1, S(.) denotes the spectral radius, revealed that its rate of convergence
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is twice as fast as that of the GS method [4]. Since ESOR was formulated following
a similar approach, a study of its rate of convergence as well as its comparison

with SOR [6]),([7] is of vital importance.
Let us commence our analysis by assuming that A can be expressed as,

A= D—CL--CU B (1.2)
where D is a diagonal matrix possessing the same diagonal elements as A and
—CL,—CU are the strictly lower and upper triangular parts of A, respectively.

The ESOR method is defined by [8],[4],[9]),
2t (n) (n+1) (n) (n)

(1-T)u +wLu +(T-w)Lu +TUu +Tc , (1.3)

or u(n*l) =I% wu(n)+T(IquL)-1c R (1.4)
vhexe Liw:® (1-1) T [(1-1) I+ (1) Letu) = I-1 (1=p) "p7la (1.5)
L = D'ch , U= D'lcU and ¢ = D 'b (1.6)

with w, T (#0) real parameters. At this point one may note that when T=w (1.3)

(or (1.4)) yields the SOR method. Further, from (1.3) it is observed that for

one complete ESOR iteration we need more than one matrix-vector multiplication.
However, if éuring the nth iteration the vector Lu(n) is stored, it can be used

in the following (n+l)st step. Thus, with the exception of the first iteration,
the amount of work involved for the computation of one complete ESOR iteration is
equivalent to that pf an SOR one. In the remainder of this paper we (i) establish
the convergence conditions of ESOR and (ii) determine the values for T and w which
are optimum in the sense of minimising S(LT'w) when A is consistently ordered and

the matrix B=L+U possesses real eigenvalues.

2. CONVERGENCE ANALYSIS.
Theorem 2.1: Let A be a consistently ordered 2-cyclic matrix with non-vanishing

diagonal elements. If p is an eigenvalue of B and A satisfies,

1-02 = w2 (2.1)
then A is an eigenvalue of the matrix,
A, = (1-wp) 1p7la . (2.2)

Conversely, if A is an eigenvalue of Aw and if u satisfies (2.1), then ¥ is an
eigenvalue of B.
Proof: The proof of this theorem is analogous to that of Theorem 5-2.2 in [7]
and is therefore omitted. o]

A sufficient and necessary condition for ESOR to converge is S(LT w)<l’ Thus,
if we let A=a+ib, where a,b are real numbers and i=/:Tz be an eigenvalée of Aw’

then ESOR converges iff |1-T(a+ib)|<l or

12(a2+b2)<21a ’ (2.3)
which implies that 1a>0 . (2.4)
Therefore, (2.3) is equivalent to either,

a>0 , o<1<2a/(a2+b2) or a<O and 2a/(a2+b2)<1<0 (2.5)
When b=0, then (2.5) becomes a>0, 0<1<2/a or a<0, 2/a<1<O.
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Theorem 2.2: If A is a consistently ordered 2-cyclic matrix with non-vanishing

diagonal elements such that the matrix B possesses real eigenvalues Mo i=1,2,...,N

with u=min|ui|#o and E=m@x|uil, then ESOR converges iff 1i=S(B)<l and the parameters
=i i

w,T lie in any of the corresponding domains given by Table 2.1.

w-Domain* 1-Domain* Condition
~o<wgw' (1) o<t<2/x, (W) -

w' (1) sws2 0<t<h(w,u) -
2c0<2/5° O<t<h (w,u) -

2/u% <wsw" () h (W) <T<0 142 <75 }
w" (1) swe+e 2/x_(0)<1<0 "

*
h(w,u) and A+(u) are given by (2.12) and (2.7), respectively, whereas
w'(py) and w"(p) are defined by (2.9).

TABLE 2.1

Proof: If pu,\ are eigenvalues of B and Aw' respectively, then,

Ao 2ewndia? = o . (2.6)
The roots of (2.6) are given by,
A = e-alsty 2, (2.7)
- 222
where, A= A() = 1 [wu -4(u-1)] . (2.8)

The kind of A (u) (real or complex) depends upon the sign of A which in turn is
determined ac;ording to the position of w with respect to the quantities,

o ) = 270 (D) ana v = 2/00-aad ) (2.9)
which obviously are the roots of A. 1In the sequel we examine the sign of A by
distinguishing the following three basic cases. Case I: All A (u) are complex,

Case II: All A, (u) are real and Case III: Some A _(u) are compl;x and others are real.
Case I: In thi; case A, (u) are complex conjugate—pairs and A(u)<O for all u2 such
that O<£2suzsﬁ2, hence_w'(ﬁ7$wsw"(i). Evidently, !A+(u)i2=l—u2 and Rex+(u)=(2-wu2)/2.
Next, we also note that Rek+(u)>o implies w<2/32, wh;reas in order for Rei  (u)<O we

_2)§

B
must have 2/u <w" (u) or lﬁ32<(l-u

' (2.10)
in which case m>2/£2. We therefore split the above interval of w into the
following: (i) w'(i)5w52/ﬁ2, (ii) 2/£?<w{w"(i) and examine each subcase separately.
When w lies in the interval given by (i), ReA_ (#)>0 and from (2.5) it follows that

T must lie in the range, O<t<min h(w,u) , (2.11)
2 2 =2
Y oSSy

where, hw,u) = (j:bvz)/(l-u2) . (2.12)
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However, sign [8h(w,u)/3u2]=sign(24»), hence for this subcase the ranges for
w and T such that ESOR converges are,

w' (M)sws2 and O<T<h(w,p) , (2.13)
or 2w<2/7% and oct<h@ i) . (2.14)
Alternatively, if (ii) is valid then (2.10) must hold and the range of T is

(see (2.5)),
h(w,u)<T<0 . (2.15)

Case II: In this case we assume that all A+(u) are real. If they are all
positive, then -»<wgw'(y) and (2.5) yields (b=0) o<r<2/A+(u). But, X+(u) is
an increasing function of u2, hence 0<r<2/)+(i3. Similarly, if all X+(u) are

negative we find w" (y)sw<+> and 2/A_(H3<T<O.

Case III: Since some of A+(u) are complex and the others are real, w lies in
either of the following r;nges (1) m'(E)SwSm'(E) or (ii) w"(ﬁ)Swa"(E). Let
us first sﬁppose that w lies in (i). Then, the real Xt(u) are positive and
O<T<2/A+(u) (Case II), whereas for the complex A+(u), we have that their real
parts are positive and O<t<h(w,u) (Case I). How;ver, it is readily verified
that 0<2/A+(u)<h(9,u) implying that when w lies in (i) the interval for T is
0<1<2/\ . (1). Alternatively, if w lies in (ii), the real Xt(u) are negative
iff 2/u”<w, hence the range (ii) becomes max{2[£2,w"(3)}5w5w"(gj, where equality
on the left holds only when 2/3?<w"(a3. Evidently for this range we have
2/X_(u)<1<0 (Case II). For the complex A+(u), the range of T is h(w,u)<T<0
(Case I). But h(w,u)<2/k_(u)<0, therefor; the necessary and sufficient
conditions in this case are

max{2[gz, w" (1) Jswsw" (1)  and 2/X_(W)<1<0.

Summarising the results of the above cases I,II and III we easily conclude
that the region of convergence for ESOR is described by the ranges given in
Table 2.1. o
Corollary 2.3: Under the hypothesis of Theorem 2.2 and if p=0, ESOR converges
iff i<l and either,

—o<wgl  and o<r<2/A+(U) , (2.16)
or 1<wsg2 and O<t<2 , (2.17)
or 2¢w<2/5° and 0<t<h (w,1) . (2.18)

Proof: Following a similar treatment as in the proof of Theorem 2.2 we
distinguish the following two basic cases.

Case I: Assume that all A+(u) are complex, then their real parts are positive
since when u=0, then Rek+20)=1>o. Thus, the convergence ranges of w and T are

either (Case I of Theorem 2.2) w'(n)<ws2 and 0<1<2 or 25w<2/§2 and O<T<h(w,y) .
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Case II: Suppose now that some A+(u) are complex and the others are real.
Reasoning as in Case I, w lies in—the range -®<wsw' (M) since 2/ﬁ2<w" ).
Evidently, the real Xi(u) are positive hence O<t<2/k+(i), whereas the complex
Xt(u) have positive real parts and O<1<2. Next, since 252/X+(u) iff w2l, it
follows that the convergence intervals for this case are given by (2.16) and
(2.17). a

Corollary 2.4: Under the hypothesis of Corollary 2.3, SOR converges iff ¥<1l and
O<w<2.

Proof: If easily follows from Corollary 2.3. O

Corollary 2.5: Under the hypothesis of Theorem 2.2 and if O<E;ﬁ=u<1, ESOR
converges iff pu<l and the parameters w,t lie in any of the corresponding domains

given by Table 2.2.

w-Domain T-Domain
~o<psw ' (W) O<T<2/A (M)
W' (W) gwe2 /u’ 0<T<h (w 1)
2/u2<w5w" (u) h(w,u)<T<0
w" () Sw<+® 2/h_(w)<1<0

TABLE 2.2

Proof: It is easily derived by following a similar approach to the proof of

Theorem 2.2.

3.3 OPTIMUM
Our aim
respectively

then because

]

VALUES FOR T AND w,

in this section is to determine the optimum values TO’wO of T and w

such that S(LT m) is minimised. Let { be an eigenvalue of I& o'
’

’

of (1.5) we have the following relationship,

g = 1-1A, (2.1)
where A is an eigenvalue of Aw' Next, we first minimise the expression,
max |g]| (3.2)
£2Su25i2
with respect to 1t for the different ranges of w. Secondly, we find the value
of w for which the above expression attains its minimum value. From (3.1)
we ebain, Igl2 = 12(a2+b2)~21a+1 , (3.3)
or in terms of y and w, (3.3) yields,
1c)? = gr,un®) = ) -t2-md) (3.4
Evidently, [glz is minimised if we let,
T A = et /aadn (3.5)

o
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and its corresponding value is given by the expression,

-8/t .

. 2 _
min lz|© = f(w,uz) = (3.6)
Next, we examine the behaviour of g(T,w,uz) as a function of u2 Since,
sign(ag/auz) = sign (Tt (w-T1)) , (3.7)

we distinguish six cases in order to determine the sign (T (w-T)) which are

presented in Table 3.1 together with the maximum value of g(T,w,uz) with respect

to u2 for each case.
. . 2
w-Domain T-Domain T (w-T) max{g (1T,w,u )}
2
—<T <Y <0 g(t,w,p")
=2
—®<E<0 w<T<O0 20 g(T,w,u")
2
O<T<+® <0 g(t,w0,u)
2
—0<T<0 <0 g(t,w,u)
Ogw<+ O<TLw >0 g(T.w,32)
2
WLT <+ <0 g(t,w,u)
TABLE 3.1
In addition, we note that,
sign(dg/dw) = sign(Tt) . (3.8)
For the case where X is real, it is known (see e.g.[1l0]) that S(LT ) is
minimised at =1 = 2/(;fl) , (3.9)
where, © max {)} , if A>0 [ min {)} , if 20
*o=q o<’ ;A= g2su2s3 (3.10)
|
¢ min {}} , if <0 { max {A} , if X<o0
2 222 2 2 =2
JTRETINST TRETREST
and its corresponding value is given by the expression
S(Z_ ) = |k(A)-1]1/[k(A )+1], k(A ) = A/} . (3.11)
To,w w w w -
A simple study of the behaviour of A (#) as a function of u2 reveals that,
sign(ax*(u)/apz) = +1 and sign(ak_(u)/auz) = -1. (3.12)

Theorem 3.1: Let A be a consistently ordered 2-cyclic matrix with non-vanishing
diagonal elements such that the matrix B possesses real eigenvalues Ui’ i=1,2,...,N

TO'“) for the different
2,1

with E=m@nlui|#o, E;maxlui§<l. Then, the expressions fors(L
1 i 2 -
Moreover, if 1-u"<(1l-k")

i
ranges of w are presented in Table 3.2.

’ S(LT,(.U) is

imised f - -2 2 2
manimised tor, wp = @' (M = 2/[1+ (-0 ' T, = (2-egE)/[2(1-u0)], (3.13)
and its corresponding value is given by the expression,

3

se. = pEadlsiaadacasdh.

(3.14)
o'%o
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Proof: Following a similar treatment as in Theorem 2.2 we distinguish again three
basic cases. Next, for each case we determine the expression of S(LT ,m) via
(3.6) or (3.11) for the different ranges of w. °
Case I: Let us assume that all A+(u) are complex, then w lies in the range
w'(ﬁ)Swa"(ﬁ3. According to Table 3.1 we consider three subcases.

(;) -®<T<0. This implies Relt(u)=(2—wu2)/2<0 or 2/E?<w, hence this subcase exists

if 2/£?<w"(3) or

1-£2<(1-T12)"’ . (3.15)
Therefore, the range of W becomes 2[£2<w$m"(15, whereas from (3.5) and (3.6)
it follows that ¢ - g, and s(I, ) = -a/taad 1, (3.16)
Ol

where A=A(u).
(ii) O<Tsw. Similarly, in this case w"(ﬂ}sw<2/ﬁ2. Moreover, since TOSw or
2/(2—32)$w, it follows that the range of w becomes 2/(2432)$w<2/32, whereas

T, = q,¥) and s(I W= {-3/taq-i . (3.17)
where Z:A(E). °
(iii) O<w<t<+®_, Again w'(ﬁ3$w<2/ﬁ2 and since w<TO, it follows that w<2/(2-£2).
Therefore, for this case to exist w'(i)<2/(2—£?) or (3.15) must hold. Evidently,
the range of w is w'(ﬁ)5m<2/(2—£2) while (3.16) holds for this subcase also.

Case II: Here we consider the case where all X+(u) are real. If they are positive,

then -*<wsw' (M) and S(LT w) is given by (3.11l) with X=X+(ﬁ3 and A=X_(;3 thus,
o’ - >
s ) = AY/(2-wu”) . (3.18)
T_,w

where TO is determined by (3.9).
Alternatively, if all A _(u) are negative w" (p)sw<+® and,
S(L. ) = B/ it-2) . (3.19)
T ,w
(o)
Case III: Assume now that some of k+(u) are complex and the others are real. This
implies that w lies in either of the following intervals: (i) w'(E)Swsw'(E) or
(ii) w"(ﬁ)Swsw"(E). If w lies in (i), then all real A+(u) are positive and all

complex A (u) have positive real parts. Therefore, in the real case (see Case II)
S(LT m)=A§/(2—wu2), whereas in the complex case S(LT w)={-A/[4(l-u2)]}§.
’ ’
However, since (2 -mu2)254(1—u2) it follows that S(LTO w) is given by (3.16).
’

Similarly, when w lies in (ii) we find that S(LT w) ?s given by (3.17).

’
Summarising our results so far we can construct Table 3.2 where the expressions

of S(LT m) and the corresponding ranges of w are presented.
OI
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Case w-Domain Condition SC, w)
o
1 <pgw' (i) - 2t/ wi?)
2 m-(5>sm<z/<z112 * {15/[4(1—312)1}i
3 2/ @002 /?| - {Z/1aaa%nt
4 2w P<wswn @) * (4/taae’n?
5 w" (1) sw<+e * 3t/ wi?o2)

*
implies that condition (3.15) holds.
TABLE 3.2

By studying the behaviour of S(LT w) as a function of w, for all the cases of
’
Table 3.2 we can easily find that it is minimised either at wo=w'ﬁT) or at

wo=w"(ﬁ). A simple comparison of the two candidate minimum values of S(LT w)
’
reveals that the one for wo=w'(u) is the smallest. O °

Corollary 3.2: Under the hypothesis of Theorem 3.1 and if =0, then S(LT w) is
’

minimised at To=wo=w'(;3 and its corresponding value is,
SC, ) =wl= (-3 !

o' o
Proof: Since we always have Rek+(u)>0 and 1>0 it follows (see (3.7)) that

s ashty . (3.20)

sign(ag/au‘)=sign(w-r) and g(T,m,uz) is an increasing function of w (see (3.8)).
In the sequel we distinguish two cases.
- =2
Case I: Suppose that all A+(u) are complex, then w lies in the range W' (M)<Sw<2/u
and, X 2
2 : g(t,w,0) = (1-1)" , if wsT
max |z] = 9 2 (3.21)
Osuzsﬁz L g(t,w,u”) ,  if w37,
Case II: 1In this case we assume that some of X+(u) are complex and the others

are real. Then, S(LT w) is given by (3.16) (see Case III of Theorem 3.1) and w

’

lies in the range -©<@sw' (1) . The results of cases I and II are summarised in

Table 3.3 (note that min (7-1)=w-1)
T<Ww

Case w-Domain s(L )
T_,w
o
1 —w<pgw’ (1) 3}/ 2-ui?)
2 w' (1) SwsT w-1
3 W' (0 stsw<2/i? | -B/taudH
TABLE 3.3

Studying the behaviour of S(LT ) as a function of w we easily arrive at the

’

conclusion that its minimum is attained at To=wo=w'(a3 (Case 2). O

Corollary 3.3: Under the hypothesis of Corollary 3.2, S(Lw U) is minimised at

wo=w'(ﬂ) and its corresponding value is given by (3.20).



EXTRAPOLATED SUCCESSIVE OVERRELAXATION METHOD FOR MATRICES 369

Proof: It follows immediately from Corollary 3.2. O

Corollary 3.4: Under the hypothesis of Theorem 3.1 and if,

oW =W = u<l, (3.22)
then for either wo=»'(u) and TO=1/(lﬂJ2)§ or mozn"(u) and To=—1/(1-u2), we have,
s& ) =0 . (3.23)
Toto

Proof: Following a similar approach we can construct Table 3.4. By studying
the behaviour of S(LT ,w) as a function of w, we easily conclude that its
minimum is attained for woan'(u) and w0=w"(u). Since, these values of wo are
the roots of A(u) (3.23) is obtained. Finally, the optimum values of T are

obtained by using (3.5). O

4. FINAL REMARKS AND CONCLUSIONS,

In Table 2.1 we present sufficient and necessary conditions for ESOR to
converge. Although the same problem was also tackled independently in [11} and (9],
our approach differs from those in the afore-mentioned references. As a result
we extended the convergence region found in [9] (see Theorem 2A) by adding the
first and the last two conditions of Table 2.1. On the other hand, Corollary
2.3 shows that ESOR converges for a wider range of parameters T and w than SOR,
whose convergence conditions are obtained as a by-product of the whole analysis.
In addition, by modifying slightly the simple approach followed in Section 2, we
were able to find the optimum values for the parameters T and w in terms of W
and p. At this point it should be mentioned that these results have also been
obtained in [10). However, the detailed analysis was not presented since "a
tremendous number of cases" ({11]p.184) had to be examined. The conclusion from
our analysis is that ESOR attains a faster rate of convergence than SOR when A
is a consistently ordered matrix and B possesses real eigenvalues such that H#O,
p<l and lﬁ£2<(l—32)§. The ESOR's superiority under these conditions is due to
the fact that in this method one can fully exploit the spectrum of the eigenvalues
of B to achieve the best possible results whereas such a possibiliaty is precluded
in SOR. This is emphasised in Corollary 3.4, where under the special condition
(3.22) an exceptionally fast rate of convergence is obtained by employing the
ESOR method. Further, we note that the basic criterion of using ESOR is to check
whether the value of y is away from zero. This requirement is derived from the
fact that if Efo+ (Corollary 3.2) we have that S(LT )*S(Lw ), whereas if E?E

'

(Corollary 3.4) we have that S(L )*O+. The quagtigy M is negessarily zero

’
whenever the matrix A is consistently ordered of odd order, whereas when A 1s of

even order we clearly need a formula for its estimation. Of course, the
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determination of p is the additional work required in the ESOR method (as
compared with SOR) and may incur some extra computational effort. On the other
hand, condition (3.15) yields a lower bound for u (l-(1—32)§<32), where if we

let u=1l-€,e<<1l, then Ezl—(s/2)§. To realise the information that this result
offers, let us take e=0.1l, then u20.77639. This corresponds to the situation
where all the eigenvalues of B are scattered inside the intervals (-1.0,-0.77639)
and (0.77639,1.0) . Although, such cases do not often arise in practical problems,
this should not obscure the overall performance evaluation of ESOR since the
method is a generalised version of SOR and as such it is expected to exhibit its
real power in more general problems. This was shown recently in [12] where the
superiority of ESOR over SOR was established for linear systems with positive
definite coefficient matrix. Finally, a simple numerical experiment carried

out in [9] shows that ESOR converges twice as fast as SOR for a special non-

cyclic matrix.

REFERENCES

[1) SISLER, M., "Uber ein zweiparametriges Iterationsverfahren", Apl.Math.18,
(1973), 325-332.

(2] SISLER, M., "Uber die Optimierung eines zweiparametrigen Iterationsverfahrens",
Ibid. 20, (1975), 126-142.

[3] SISLER, M., "Bemerkungen zur Optimierung eines zweiparametrigen Iteration-
verfahren"”, Ibid. 21, (1976), 213-220.

[4) MISSIRLIS, N.M. and EVANS, D.J., "On the Convergence of some Generalised
Preconditioned Iterative Methods”, SIAM J.Numer.Anal. 18, (1981), 591-596.

[S) EVANS, D.J. and MISSIRLIS, N.M., "The Preconditioned Simultaneous Displacement
Method (PSD method)", MACS 22, (1980), 256-263.

[6) VARGA, R.S., "Matrix Iterative Analysis", Prentice Hall, Englewood Cliffs,
New Jersey, (1962).

[7) YOUNG, D.M., "Iterative Solution of Large Linear Systems", Academic Press,
New York, (1971).

[8] BADJIDIMOS, A., "Accelerated Overrelaxation Method", Math.Comp. 32, (1978),
149-157.

[9] NEITHAMMER, W., "On Different Splittings and the Associated Iteration Method",
SIAM J.Numer.Anal., 16, (1979), 186-200.

[10) FORSYTHE, G.E. and WASOW, W.R., "Finite Difference Methods for Partial
Differential Equations”, John Wiley & Sons Inc., New York (1960).

[11) AVDELAS, G. and HADJIDIMOS, A., "Optimum Accelerated Overrelaxation Method
in a Special Case"”, Math.Comp. 36, (1981), 183-187.

(12] GAITANOS, N., HADJIDIMOS, A. and YEYIOS, A., "Optimuwn Accelerated Over-
relaxation (AOR) Metrod for Sustems with Positive Definite Coefficievit
Mztrix", SIAM J.Numer.Anal. 20, (1983), 774-783.



