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ABSTRACT. It is shown how Godel's famous diagonal argument and a generalization of
the recursion theorem are derivable from a common construation. The abstract fixed
point theorem of this article is independent of both metamathematics and recursion
theory and is perfectly comprehensible to the non-specialist.
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1. INTRODUCTION

In G8del's seminal 1931 paper [1], he proves the incompleteness of a particular
formal system--that of Principia Mathematica. He states, however, that his method is
applicable not only to that particular system (as well as the Zermelo-Fraenkel system
of set theory) but to an extensive variety of systems. Just what is this "extensive
variety"? Various interpretations of this phrase have been given, and Gddel's argument
has accordingly been generalized in many ways. Curiously enough, one of the ways that
is the most direct and most easily accessible to the general mathematical reader is
also the way that appears to be the least generally known. What is particularly curious
is that the way in question is the very way indicated in the introductory section of
Godel's original paper! However, Godel apparently did not regard this introductory
section as anything more than a heuristic sketch, because it involved not only the notion
of provability, but also the notion of truth, which had not yet been formalized (it was
formalized later by Alfred Tarski [2]). Since the notion of truth has been formalized,
it is now possible to reformulate Gdodel's '"heuristic" sketch as a precise theorem, which
is what we do in §2 of this article. Godel's argument uses an ingenous device known

as diagonalization. A closely related technique underlines a basic result in Recursion

Theory known as the Recursion Theorem (Kleene, [3]). We present a simple abstract
version of this theorem in §3. Next, in §4, we consider a related fixed point result-
a variant of the Mocking Bird Puzzle, which appeared in [4]. We conclude with a
demonstration of how these apparently diverse results are all derivable from a common

basic fixed point theorem.



284 R.M. SMULLYAN

2. AN ABSTRACT FORM gf»GﬁDEL'S DIAGONAL ARGUMENT
The axiom systems for which Godel's argument goes through all possess the following
features: There is a well defined set S of expressions called sentences, a well

defined subset T of S whose elements are called true sentences, and a well defined
subset P of T whose elements are called provable sentences (provable in the sys-

tem, that is). Certain sets of positive integers are called nameable in the system;
there are denumerably many such nameable sets, and they are arranged in a specified
infinite sequence Aj,Aj A5, .. . We call a positive integer n an index of a name-
able set A if An = A . (In general, a nameable set will have infinitely many dif-
ferent indices.) There is also given a function S(x,y) which assigns to each or-
dered pair <i,j> of positive integers a sentence S(i,j) which is a true sentence
(element of T) if and only if i 1is a member of the set Aj

Each sentence X is assigned a positive integer g(x) called the Ggdel number
of X . For any set W of sentences, by a(W) we mean the set of Godel numbers of
all the sentences in W . For any positive integers i, j , we let 1 *j be the
Godel number of the sentence S(i,j) . We let d(x) be the number x*x . (The func-
tion d is sometimes called the diagonal function of the system. We note that for
any i , the number d(i) is the Godel number of the sentence S(i,i) , which is true
if and only if i belongs to Ai .) For any set A of numbers (positive integers)
by d'](A) is meant the set of all positive integers i such that d(i) ¢ A . Thus
the statements i « d'1(A) and (i*i) ¢ A are equivalent. By the complement A
of A is meant the complement with respect to the set of positive integers — thus
A is the set of all positive integers not in A .

We let (S) be the system consisting of the sets S, T,P, the enumeration of
the nameable sets, the function S(x,y) , and the Godel numbering g of the sentences.
We shall call the system rich if the set g(P) of Godel numbers of the provable sen-
tences is one of the nameable sets. We shall call (S) complemented if the complement
of every nameable set is again nameable. We shall call (S) diagonalizable if for
every nameable set A , the set d'](A) is also nameable in (S) .

Theorem A (An Abstract Form of Godel's Theorem).

Every rich, complemented diagonalizable system must contain a true sentence which
is not provable in the system.

The conclusion of Theorem A says nothing more nor less than that there is at least
one element of T not in P . As will be seen from the proof, there are numbers i,
such that S(i.j) 1is such a sentence; thus 1 1is a member of the set Aj , but the
sentence S(i,j) 1is not provable in the system. Also, if we are given a number p
which is an index of the set g(P) and if given any n , we can effectively find an

index n' of the complement of An , and if given any n we can effectively find a
number n’ which is an index of the set d'](An) (and these "effective" conditions

do indeed hold for the various systems to which Godel's arguments have been applied),
then we can actually find numbers i ,J such that the sentence S(i,j) 1is true but
not provable in the system. As an instructive illustration of this, suppose p =2 ,

and for every n , n' = 2" and n# = 3" . Now the reader has enough information to
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actually find numbers i ,j (either the same or different) such that i 1is a member
of Aj , but the sentence S(i,j) (which expresses this fact) is not provable in the

system. (This is an instructive puzzle rather like that posed in [5]. There are in-
finitely many solutions, and at least two in which i ,j are both less than 600 .)
Godel Sentences

Before proving Theorem A (which, incidentally, solves the above puzzle)., we will

consider a basic property of diagonalizable systems.

We call a sentence X a Godel sentence for a set A of positive integers if
either X is true and its Gddel number is in A , or X 1is false and its Gdodel num-
ber is not in A .

Theorem 1 — [The Diagonal Lemma]

If the system (S) is diagonalizable, then for any nameable set A , there is a

Gddel sentence for A .
Proof
Take any nameable set An . By the hypothesis of diagonalizability, there is a

number n# such that A 4= d-](An) . This means that for all x, X € An# if and
n :

only if (x *x) € An . And so for every x , the sentence S(x,n#) is true if and
only if (x*x) e An . Therefore S(n#,n#) is trve if and only if (n# *n#) ¢ An .
But n# *n# is the Godel number of the sentence S(n#,n#)! And so S(n#,n#) is a
Godel sentence for An .

Proof of Theorem A

Assume hypothesis. Since the system is rich, there is a number p sSuch that
Ap = g(P) . Then by complementation, there is a number p' such that Ap. = g(P) .
Since the system is diagonalizable, then by Theorem 1, there is a Godel sentence G

for the set Ap, (namely S(p‘#,p‘#) , where p'#

is any index of Ap, ). This sen-
tence G is true if and only if g(G) ¢ A, , and so G is true if and only if
g(G) € g(P) . Also g(G) e g(P) if and only if G ¢ P . And so G is true if and
only if G 1is not provable in the system. Therefore, either G 1is true and not
provable in the system, or G 1is not true but provable in the system. The latter al-
ternative is ruled out by the assumption that P < T . Therefore G is true but not
provable in the system.
Exercise

Show that for any number k which is an index of the set d-1(5757) , the sentence
S(k,k) is true but not provable in the system. What about the sentence S(p#',p#') s

where p# is an index of d

(Ap) , and p#' is an index of the complement of Ap# H
can its truth be determined? Can its provability be determined?

Tarski's Theorem

The diagonal lemma has another important consequence: Consider a system (S)
which is complemented and diagonalizable without necessarily being rich. Can it be
determined whether the set g(T) (the set of Godel numbers of the true sentences) is
nameable in the system? As was shown by Tarski [2], g(T) 1is not nameable in the
system. Here is the argument.
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Suppose g(T) were nameable in the system. Then by complementation §TTT> would
also be nameable. Then by the diagonal lemma, there would be a Godel sentence X for
3(77 , and we would have XeT if and only if g(X)e g(T).but g(X) eg(T) if and only
if X¢ T, and so we would have the absurdity that X is in T if and only if X is
not in T . Therefore g(T) 1is not one of the nameable sets.

It should be of interest to note that this result of Tarski provides an alterna-
tive proof of Godel's theorem: Suppose (S) is rich, complemented, and diagonalizable.
By Tarski's result, the set g(T) is not nameable in the system, but by richness, the
set g(P) is nameable in the system. Therefore P, T must be different sets. Since
PcT, then T must contain a sentence not in P , which alternatively proves Theo-

rem A.

3. AN ABSTRACT RECURSION THEOREM
Consider now a denumerable set of any objects whatsoever arranged in an infinite

sequence E1,E ,En,... . Let £ be a collection of functions from the positive

integers to thg positive integers. I 1is said to be closed under composition if for
any functions f, g in £ , there is a function h in £ such that for all (posi-
tive integers) x , h(x) = f(g(x)). We shall also consider a function F(x,y) from
the set of ordered pairs of positive integers to the positive integers.
Theorem 2

Suppose the following three conditions hold:

C]: T is closed under composition.

CZ: The function F(x,x) is in ¢ .

C3: For any f ¢ ¢ , there is a positive integer a such that for all x ,

Erax) T EBr(x)

Conclusion: For any f ¢ L there is at least one positive integer i such that
Ei = Ef(i) .
Proof

Take any function f in © . By C2’ the function F(x,x) 1is in £ , and so by
C] , the function f[F(x,x)] 1is in £ . Then by C3, there is a number a such that
for all x , EF(a,x) = Ef(F(x,x))' Taking a for x , it follows that EF(a,a) =
Ef(F(a,a))' We take F(a,a) for 1 , and so Ei = Ef(i) .
Discussion

In applications to Recursion Theory, I 1is the class of recursive functions of
one argument. This class is closed under composi;ion, so G4 holds. For one form of

the recursion theorem, we take Ei to be the i partial recursive function of one

argument (in a standard enumeration). By a result known as the iteration theorem

there is a recursive function F(x,y) satisfying C3, and condition C2 is automatic
(because for a recursive function G(x,y) , the function G(x,x) is recursive). Then
by Theorem 2, for any recursive function f(x) there is an i such that the partial
recursive function Ei is the same as the partial recursive function Ef(i) 5 this is
one form of the Recursion Theorem.
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4. A MOCKING BIRD PUZZLE
We next consider a variant of a problem posed in [4].
We are given a collection of birds. Given any birds B, C , if a spectator calls

out the name of C to B , the bird B responds by calling back the name of some
bird B(C) . (Thus each bird B induces a function from birds to birds.) If
B(C) = C , then we say that B is fixated on C . We call B egocentric if B is
fixated on itself. We are given that the set of functions induced by the birds is
closed under composition (more explicitiy, for any birds B, C there is a bird D
such that for every bird X , D(X) = B(C(X))). We are also given that there is a
bird M (called a mocking bird) such that for every bird B , M(B) = B(B) . The
problem is to prove that every bird is fixated on at least one bird, and that at least
one bird is egocentric. For the solution, take any bird B . By closure under com-
position, there must be a bird C such that for every bird X , C(X) = B(M(X)) (M
is a mocking bird). Then taking C for X , C(C) = B(M(C)). Also C(C) = M(C) .
Therefore C(C) = B(C(C)), and so B is fixated on the bird C(C) .

Since the mocking bird M 1dis one of the birds, it is also fixated on some bird
E . Thus M(E) = E , but also M(E) = E(E) . Therefore E(E) = E , and so E s
egocentric. (Incidentally, removing the parentheses from "M(E)" tells its own tale.)

5. A GENERAL FIXED POINT THEQREM
Now we come to the finale: Theorems 1, 2, as well as the solution of the Mocking

Bird Puzzle, are all derivable from a common construction.

It is usual to call an element x a fixed point of a function f if f(x) = x .
The first thing we shall do is to generalize this notion: Consider a set N , a func-
tion f from N into N and an equivalence relation = on N . We shall say that
an element n of N is a fixed point of f with respect to the equivalence relation

if f(n) = n . Under this extended sense of "fixed points" we will see that Theorems
1 and 2 are indeed fixed point theorems.

Our general setup is this: We consider a set N , an equivalence relation = on
N, and a collection § of functions from N into N . For any function F(x,y)
from ordered pairs of elements of N to elements of N , we shall say that F enumer-
ates I with respect to = , if for every f ¢ I there is some a ¢ N such that for
all x ¢ N, F(a,x) = f(x) . Lastly, given any function h from N into N (but
not necessarily one of the functions in % ), we shall say that h 1is admissible
(with respect to £ and = ), if for every f ¢ £ , there is some f' ¢ I such that
for all x in N, f'(x) = f(h(x)). (We might note that for the special case that
= 1is the identity relation, the statement that every element of & 1is admissible is

equivalent to the statement that £ is closed under composition.)
Theorem F — (A General Fixed Point Theorem)

A sufficient condition that every element of I has a fixed point with respect to
= 1is that there is a function F(x,y) with the following two properties:
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P]: F(x,y) enumerates I (with respect to =) .
P2: F(x,x) is admissible (with respect to I , =) .
Proof

Suppose F(x,y) 1is a function satisfying P] s P2 Take any f ¢ Z . By P2,
there is some f' ¢ & such that for all x ¢ N, f'(x) = f(F(x,x)). By P] , there
is some a ¢ N such that for all x , F(a,x) = f'(x) . Hence for all x ,
F(a,x) = f(F(x,x)). Taking a for x , F(a,a) = f(F(a,a)), and hence f(F(a,a))
F(a,a) . Letting b = F(a,a) , f(b) =b , and so b is a fixed point of f with
respect to = .
Applications

(1) The application of Theorem F to the Mocking Bird Puzzle is quite obvious:
We clearly take N to be the set of birds, I to be the set of functions induced by
the birds, = to be identity, and for any birds X, Y we define F(X,Y) to be
X(Y) . The rest should be transparent.

(2) To obtain Theorem 2 as a corollary of Theorem F, we take N to be the set
of positive integers. We define i = j if Ei = Ej . The collection I and the

function F(x,y) are already given. Condition C, of the hypothesis of Theorem 2

3
says that for every f ¢ I there is some a ¢ N such that for all x ¢ N, F(a,x) =
f(x) — in other words that F(x,y) enumerates I with respect to = . Conditions
s C2 jointly imply that for every f ¢ £ , the function f(F(x,x)) ¢ £ , and so

taking f'(x) to be f(F(x,x)), f' e , and of course f'(x) = f(F(x,x)) (since
f'(x) = f(F(x,x))). This means that F(x,x) is admissible (with respect to £, =) .
And so C] implies property P] , and C2 ,C3 jointly imply property P2. Therefore by
Theorem F, for every f ¢ £ , there is some i ¢ N such that f(i) = i , which means
that Ef( ) Ei .

(3) The application to Theorem 1 is perhaps the least obvious, and (in our view)
the most interesting: For Theorem 1, we again take N to be the set of positive
integers. Let us call two sentences equivalent if either they are both true (both in
T ) or both false (both outside T). And for any two positive integers i, j , we

define i = j to mean that either i, j are both Gidel numbers of equivalent sen-
tences, or that neither i nor j is a Godel number of a sentence. This defines the
relevant equivalence relation on N . For each i , define fi(x) = x*i , and let
T be the collection of all functions fi , as i vranges over N . Then define
F(i,j) = fi(j) . It is trivial that the function F(x,y) enumerates I with respect
to the identity relation, hence also with respect to the equivalence relation = .
Now, the hypothesis of diagonalizability implies (in fact is equivalent to) the
statement that the function F(x,x) 1is admissible. To see this, we first note that
d(x) = F(x,x) (since d(x) = x*x = fx(x) = F(x,x)). Now suppose the system is di-
agonalizable. Then for any i there is some Jj such that Aj =d” (Ai) . Now take
any x e N. Then x ¢ Aj if and only if d(x) e Ai , hence x ¢ Aj if and only if
F(x,x) e Ai . Therefore the sentences S(x,j) and S(F(x,x),i) are equivalent sen-

tences, which means that x *j = F(x,x) *i , and hence (x) ( (x,x)) , which
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means that F(x,x) is admissible. (Conversely, the admissibility of F(x,x) implies
diagonalizability, as the reader can verify by reversing the steps of the above argu-
ment, but we do not need this fact in what follows.) And so by Theorem F, if (S)

is diagonalizable, then for every i , the function fi has a fixed point n with
respect to = . But the statement that n 1is a fixed point of fi (with respect to
=) implies (in fact is equivalent to) the statement that n is the Godel number of a
sentence which is a Godel sentence for Ai , because suppose it is the case that

n = fi(n) . Then n=n=*i . Since n=*i 1is a Godel number — namely of the sen-
tence S(n,i) — then n is also a Godel number of some sentence X which is equi-
valent to S(n,i) . But S(n,i) is true if and only if n ¢ Ai . Therefore X is
true if and only if its Gddel number n belongs to Ai , which means that X 1is a
Gddel sentence for Ai . (Conversely, if X 1dis a Godel sentence for Ai , then its
Godel number is a fixed point for fi with respect to = , as the reader can easily
verify.)

We now see how Theorem F generalizes both Theorem 1 and Theorem 2 (as well as the
Mocking Bird Puzzle). We have found a host of variants and generalizations of Theo-
rem F, about which a full-length monograph [6] is currently in preparation. A number
of related fixed point theorems and their applications to other forms of Godel's ar-
gument (including purely syntactic forms, which do not employ the notion of truth) can
be found in [7].

Here is one generalization of Theorem F which we would Tike to leave with the
reader as a puzzle: Suppose we have a collection I of binary relations on a set
N . Suppose we have a function d(x) from N into N satisfying the following two
conditions: (1) For every R e £ , there is at least one i ¢ N such that
R(i,d(i)); (2) For every R ¢ £ there is some R' ¢ r such that for all x, y in
N, R'(x,y) implies R(d(x),y) . The first problem is to prove that for every R
in £ , there is at least one i ¢ N such that R(i,i) . Then show how this general-
izes Theorem F.
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