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ABSTRACT. Motivated by Cauchy's functional equation f(x+y) = f(x) + f(y) , we study

in §1 special rings, namely, rings for which every endomorphism f of their additive

group is of the form f(x) ax . In §2 we generalize to R algebras (R a fixed
commutative ring) and give a classificatior theorem when R 1is a complete discrete
valuation ring. This result has an interesting consequence, Proposition 12, for the

theory of special rings.
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1. INTRODUCTION.

Our starting point is Cauchy's functional equation
(*) f(x+y) = £(x) + f(y)

where f 1is a real function with domain (-<,©) and the equality holds for every
real x,y . If f 1is assumed to be continuous throughout (-®,®) , or even merely
at one point, or merely bounded above or below on some set of positive measure, then
necessarily f(x) = f(1)x . On the other hand, using a Hamel basis, one can construct
noncontinuous solutions of (*). For more details and references the reader is
referred to [ 1], pp. 31-36.

By using (*) merely for integral (or rational) x and y , one easily con-
cludes [1, pp. 31-32] that f(x) = f(1)x for every integral (respectively, rational)
x . This raises the following general problem: what are the rings A for which

every endomorphism f of their additive group is of the form f(x) = ax ? We call

such rings special.
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In [ 2, Problem 45, p. 232] L. Fuchs raised the related question of characterizing
the rings A which are isomorphic to the endomorphism ring End(A+) of A+ , the
additive group of A . This question was studied by P. Schultz [ 5] who found a number
of interesting results.

In §1 we study special rings. Some of this material was considered in a differ-
ent form by P. Schultz in [5]. 1In §2 we generalize our problem to R-algebras (R a
fixed commutative ring) and give a classification theorem whem R is a complete dis-
crete valuation ring. This result has an interesting consequence, Proposition 12,
for the theory of special rings. It would be nice to give a complete classification
of special rings themselves, but this, so far, has eluded us.

2. SPECIAL RINGS.

PROPOSITION 1: If A 1is a special ring, then A 1is commutative and has an
identity.

PROOF: The identity endomorphism is given by left multiplication by an element
e . Similarly, the endomorphism x —> xe is given by left multiplication by an
element e' . Thus e = e2 = e'e . For every x € A we find xe = e'x = e'ex = e'x
= ex = x . This shows that e 1is an identity. We set e =1 from now on.

If a€ A, consider the map X —> ax-xa . This is in End(A+) SO ax-xa = Ax
for some A and all x . Taking x =1 shows XA =0, and so ax = xa for all x .

PROPOSITION 2: If A 1is special and A = M;-N as abelian groups, then M and
N are ideals.

PROOF: Let 7T be the projection on M . Since 7 € End(A+) , we have T1mx = ex
for some e and all x . It follows that M = Ae . [ ]

PROPOSITION 3: Suppose A 1is special and A = M;-N;-P . Then Hom(M,N) = (0) .

PROOF: Let f € Hom(M,N) . Define f*: A+ A by f*(mn+p) = f(m) where

meEM, neN and pe€ P. Then f* ¢ End(A+) and so f*(x) = rx for some r and

all x . Since M,N and P are ideals by Proposition 2, we see that f(m) = m for

all meM and ne€e N. Take now n =0 . ]
PROPOSITION 4: Suppose A = Ml;-M2;"";-Mt as groups. If A 1is a special

ring, then so is each Mi and, moreover, Hom(Mi,M.) = (0) whenever i # j . Con-

versely, if each Mi is special and Hom(Mi,Mj) = (0) whenever 1 # j , then A is
special.
PROOF: Straightforward, using the last two propositions. |
COROLLARY 1: If A is special and a Q-algebra, then A = Q . (Q 1is the field
of rational numbers.)
COROLLARY 2: If A 1is special and A+ is finitely generated, then either
AS7Z or A= Z/nZ for some ne Z . (Z is the ring of ordinary integers.)
COROLLARY 3: If ﬁ is special and A+ is torsion-free and completely decompos-
able, then A = Mli-M2+n.. ;-Mt , where the Mi are subrings of Q of incomparable
types as abelian groups. The converse is also true.

PROOF: The decomposition of A into rank one groups has only finitely many
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many summands because these summands must be ideals and A has an identity. The rest
follows from Proposition 4 and Proposition 85.4 of [ 3].

PROPOSITION 5: Let A be a commutative ring with identity and I = {I} a
collection of ideals, closed under finite intersection. Suppose: i) f(I) ¢ I for
all f ¢ End(Af) and I €1, ii) A/I is special for all I € I , and

iii) A = 1im A/I . Then A is special.
L—
PROOF: If f € End(A+) , then, by i), f induces fI € End(A/I) . Thus, by

1 € A/I such that fI(i) = r1§ for all x € A/I . The collection

{rI} defines an element in the inverse limit and so, via iii), an element r € A .

ii), there is an r

It is easily seen that f(x) = rx for all x € A . [ ]
COROLLARY 1: Z = lim Z/nZ and Zp = lim Z/pmz are both special rings. Here

< <
p 1is a prime and Z is the ring of p-adic integers.

COROLLARY 2: Suppose {Aj} is a collection of special rings and, for each j,,
Hom( I A,,A. ) = (0) . Then IIA, is a special ring.
i# 0 k|
RET
COROLLARY 3: For each prime p , let Cp be either cyclic of p-power order, or
isomorphic to Zp . Then 1I Cp is special.
PROOF: Almost immediate, from Corollary 2. |
PROPOSITION 6: If A is special and A =B+C , with B Q , then C 1is tor-

[}

sion.
PROOF: By Proposition 3, Hom(C,B) = Hom(C,Q) = (0) . Tt is standard, however,
that Hom(C,Q) = (0) if and only if C is torsion. .
PROPOSITION 7: A 1is special and A+ is torsion if and only if A 1is cyclic.
PROOF: Let 1 be the identity of A . If A+ is torsion, nl = 0 for some
positive integer n . But then na =0 for all a€ A . Thus A+ is a bounded tor-
sion group and so, a direct sum of cyclic groups (Theorem 17.2 of [3]). Since A has
an identity, and the summands are ideals, there are only finitely many of them. The
result now follows rapidly from Proposition 3. ]
gROPOSITION 8 (P. Schultz): If A is special, and A+ is not reduced, then

A S Q+Z/nZ and conversely.
PROOF: Suppose A is special and let D be its maximal divisible subgroup. D
is a direct summand of A and so, must be a special ring. If D # (0) , then D

cannot be torsion, by the last proposition. Thus D # (0) implies that D contains

a copy of Q . Since Q 1is divisible, A = BJ-C where B = Q and C 1is torsion,

by Proposition 6. By Proposition 7, C must be cyclic. The converse follows from

Proposition 4. |
+

PROPOSITION 9: Suppose A 1is special and the torsion subgroup T of A is a
proper direct summand. Then A = Z/nZ+C where C is a special ring which is tor-
sion-free and divisible by n . The converse is also true.

PROOF: Immediate from Propositions 4 and 7. [ ]
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PROPOSITION 10: Suppose A 1is special and satisfies the descending chain con-

dition on ideals. Then A is isomorphic to either Z/nZ , Q or Z/nZi—Q . The
converse is also true.

PROOF: Using Theorem 122.4 of [ 3], we see that A+ is the direct sum of a tor-
sion group and a Q-vector space. By previous results, the torsion group must be cyc-
lic and the vector space must have dimension < 1 . The converse is clear. [ |
3. R-ALGEBRAS.

Let R be a fixed commutative ring. We consider the class of R-algebras A .
The notion of a special ring can be generalized as follows. An R-algebra A is
called special if every element of EndR(A) is given by a left multiplication by an
element of A . We may now ask for a classification of special R-algebras. Using a
theorem in [4], we will give such a classification when R is a complete discrete
valuation ring, for example, when R is some Zp .

We note that, suitably modified, Proposition 3 remains valid in the context of
R-modules and R-algebras.

PROPOSITION 11: Let R be a complete discrete valuation ring, and K 1its quo-

tient field. Let C represent a cyclic torsion module. An R-algebra A is special
if and only if A is isomorphic to either C, R, K or K;-C .

PROOF: If A is special as an R-algebra and not reduced as an R-module, then
the proof of Proposition 8 is easily adapted to show that A 1is isomorphic to either
K or K;-C . Thus we can assume A 1is reduced. By Corollary 1 to Theorem 23 in
[4], every reduced R-module has a cyclic direct summand. If A = B+D where B = R,
then HomR(R,D) = (0) implies D = (0) , and so, A=R . If A= C+D , then
HomR(C,D) = (0) implies D 1is torsion-free. If D were not trivial, it would have
a direct summand isomorphic to R , but this cannot occur since HomR(R,C) # (0) .
Thus, in this case, A = C .

Conversely, C, R, K and KJ—C are easily seen to be special. |

We can derive a consequence of this proposition for the theory of special rings.

Let p be a prime. Let us call a ring A p-complete if A = lim A/pmA .

Such a ring is clearly a Zp algebra. Moreover, every Z—endom;;ghism automatic-
ally commutes with the Zp action. Since Zp is a complete discrete valuation ring,
we have

PROPOSITION 12: A ring A 1is special and p-complete if and only if A is iso-

morphic to either Zp or Zp/mep for some m .
PROOF: This follows from Proposition 11. Qp , the quotient field of Zp , can-

not occur since it is infinite dimensional over Q . ]

Thanks are due to R. A. Beauregard for his interest and contribution.
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