RINGS ALL OF WHOSE ADDITIVE ENDOMORPHISMS ARE LEFT MULTIPLICATIONS

MICHAEL I. ROSEN

Department of Mathematics Brown University Providence, RI 02912

and

OVED SHISHA

Department of Mathematics University of Rhode Island Kingston, RI 02881

(Received October 6, 1983)

ABSTRACT. Motivated by Cauchy's functional equation f(x+y) = f(x) + f(y), we study in §1 special rings, namely, rings for which every endomorphism f of their additive group is of the form $f(x) \equiv ax$. In §2 we generalize to R algebras (R a fixed commutative ring) and give a classification theorem when R is a complete discrete valuation ring. This result has an interesting consequence, Proposition 12, for the theory of special rings.

KEY WORDS AND PHRASES. Ring, group, endomorphism, idea¹, R-algebra, valuation ring. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. Primary 13A99, Secondary 20K30.

1. INTRODUCTION.

Our starting point is Cauchy's functional equation

$$f(x+y) = f(x) + f(y)$$

where f is a real function with domain $(-\infty,\infty)$ and the equality holds for every real x,y. If f is assumed to be continuous throughout $(-\infty,\infty)$, or even merely at one point, or merely bounded above or below on some set of positive measure, then necessarily $f(x) \equiv f(1)x$. On the other hand, using a Hamel basis, one can construct noncontinuous solutions of (*). For more details and references the reader is referred to [1], pp. 31-36.

By using (*) merely for integral (or rational) x and y, one easily concludes [1, pp. 31-32] that f(x) = f(1)x for every integral (respectively, rational) x. This raises the following general problem: what are the rings A for which every endomorphism f of their additive group is of the form $f(x) \equiv ax$? We call such rings special.

In [2, Problem 45, p. 232] L. Fuchs raised the related question of characterizing the rings A which are isomorphic to the endomorphism ring $\operatorname{End}(A^+)$ of A^+ , the additive group of A. This question was studied by P. Schultz [5] who found a number of interesting results.

In §1 we study special rings. Some of this material was considered in a different form by P. Schultz in [5]. In §2 we generalize our problem to R-algebras (R a fixed commutative ring) and give a classification theorem when R is a complete discrete valuation ring. This result has an interesting consequence, Proposition 12, for the theory of special rings. It would be nice to give a complete classification of special rings themselves, but this, so far, has eluded us.

2. SPECIAL RINGS.

 $\underline{\text{PROPOSITION 1:}} \quad \text{If} \quad \text{A} \quad \text{is a special ring, then} \quad \text{A} \quad \text{is commutative and has an} \\ \text{identity.}$

<u>PROOF</u>: The identity endomorphism is given by left multiplication by an element e. Similarly, the endomorphism $x \longrightarrow xe$ is given by left multiplication by an element e'. Thus $e = e^2 = e'e$. For every $x \in A$ we find $xe = e'x = e'ex = e^2x = ex = x$. This shows that e is an identity. We set e = 1 from now on.

If a ϵ A, consider the map x —> ax - xa . This is in End(A⁺) so ax-xa = λ x for some λ and all x . Taking x = 1 shows λ = 0 , and so ax = xa for all x .

<u>PROPOSITION 2</u>: If A is special and A = M + N as abelian groups, then M and N are ideals.

<u>PROOF</u>: Let π be the projection on M. Since $\pi \in End(A^+)$, we have $\pi x = ex$ for some e and all x. It follows that M = Ae.

<u>PROPOSITION 4:</u> Suppose $A = M_1 + M_2 + \cdots + M_t$ as groups. If A is a special ring, then so is each M_i and, moreover, $Hom(M_i, M_j) = (0)$ whenever $i \neq j$. Conversely, if each M_i is special and $Hom(M_i, M_j) = (0)$ whenever $i \neq j$, then A is special.

PROOF: Straightforward, using the last two propositions.

<u>COROLLARY 1</u>: If A is special and a Q-algebra, then A = Q. (Q is the field of rational numbers.)

COROLLARY 2: If A is special and A^+ is finitely generated, then either $A \cong Z$ or $A \cong Z/nZ$ for some $n \in Z$. (Z is the ring of ordinary integers.)

COROLLARY 3: If A is special and A^+ is torsion-free and completely decomposable, then $A = M_1 + M_2 + \ldots + M_t$, where the M_i are subrings of Q of incomparable types as abelian groups. The converse is also true.

PROOF: The decomposition of A into rank one groups has only finitely many

many summands because these summands must be ideals and A has an identity. The rest follows from Proposition 4 and Proposition 85.4 of [3].

<u>PROPOSITION 5</u>: Let A be a commutative ring with identity and $I = \{I\}$ a collection of ideals, closed under finite intersection. Suppose: i) $f(I) \subseteq I$ for all $f \in \text{End}(A^+)$ and $I \in I$, ii) A/I is special for all $I \in I$, and iii) $A \cong \lim_{n \to \infty} A/I$. Then A is special.

<u>PROOF:</u> If $f \in End(A^+)$, then, by i), f induces $f_{\overline{I}} \in End(A/I)$. Thus, by ii), there is an $r_{\overline{I}} \in A/I$ such that $f_{\overline{I}}(\overline{x}) = r_{\overline{I}}\overline{x}$ for all $\overline{x} \in A/I$. The collection $\{r_{\overline{I}}\}$ defines an element in the inverse limit and so, via iii), an element $r \in A$. It is easily seen that f(x) = rx for all $x \in A$.

COROLLARY 2: Suppose $\{A_j\}$ is a collection of special rings and, for each j_0 , Hom($\prod_{j \neq j_0} A_j, A_{j_0}$) = (0). Then $\prod_j A_j$ is a special ring.

COROLLARY 3: For each prime p , let $^{\rm C}_{\rm p}$ be either cyclic of p-power order, or isomorphic to $^{\rm Z}_{\rm p}$. Then $^{\rm II}$ $^{\rm C}_{\rm p}$ is special.

PROOF: Almost immediate, from Corollary 2.

<u>PROPOSITION 6</u>: If A is special and A = B + C , with B $\stackrel{\sim}{=}$ Q , then C is torsion.

<u>PROOF:</u> By Proposition 3, $Hom(C,B) \stackrel{\sim}{=} Hom(C,Q) = (0)$. It is standard, however, that Hom(C,Q) = (0) if and only if C is torsion.

PROPOSITION 7: A is special and A^+ is torsion if and only if A is cyclic.

<u>PROOF:</u> Let 1 be the identity of A. If A^+ is torsion, nl = 0 for some positive integer n. But then na = 0 for all $a \in A$. Thus A^+ is a bounded torsion group and so, a direct sum of cyclic groups (Theorem 17.2 of [3]). Since A has an identity, and the summands are ideals, there are only finitely many of them. The result now follows rapidly from Proposition 3.

PROPOSITION 8 (P. Schultz): If A is special, and A^+ is not reduced, then $A \cong Q + Z/nZ$ and conversely.

<u>PROOF</u>: Suppose A is special and let D be its maximal divisible subgroup. D is a direct summand of A and so, must be a special ring. If $D \neq (0)$, then D cannot be torsion, by the last proposition. Thus $D \neq (0)$ implies that D contains a copy of Q. Since Q is divisible, A = B + C where B = Q and C is torsion, by Proposition 6. By Proposition 7, C must be cyclic. The converse follows from Proposition 4.

<u>PROPOSITION 9:</u> Suppose A is special and the torsion subgroup T of A^+ is a proper direct summand. Then $A \cong Z/nZ+C$ where C is a special ring which is torsion-free and divisible by n. The converse is also true.

PROOF: Immediate from Propositions 4 and 7.

<u>PROPOSITION 10:</u> Suppose A is special and satisfies the descending chain condition on ideals. Then A is isomorphic to either Z/nZ, Q or Z/nZ+Q. The converse is also true.

<u>PROOF</u>: Using Theorem 122.4 of [3], we see that A^+ is the direct sum of a torsion group and a Q-vector space. By previous results, the torsion group must be cyclic and the vector space must have dimension ≤ 1 . The converse is clear.

R-ALGEBRAS.

Let R be a fixed commutative ring. We consider the class of R-algebras A. The notion of a special ring can be generalized as follows. An R-algebra A is called <u>special</u> if every element of $\operatorname{End}_R(A)$ is given by a left multiplication by an element of A. We may now ask for a classification of special R-algebras. Using a theorem in [4], we will give such a classification when R is a complete discrete valuation ring, for example, when R is some Z_n .

We note that, suitably modified, Proposition 3 remains valid in the context of R-modules and R-algebras.

<u>PROPOSITION 11:</u> Let R be a complete discrete valuation ring, and K its quotient field. Let C represent a cyclic torsion module. An R-algebra A is special if and only if A is isomorphic to either C, R, K or K+C.

<u>PROOF</u>: If A is special as an R-algebra and not reduced as an R-module, then the proof of Proposition 8 is easily adapted to show that A is isomorphic to either K or K+C. Thus we can assume A is reduced. By Corollary 1 to Theorem 23 in [4], every reduced R-module has a cyclic direct summand. If $A = B \dotplus D$ where $B \cong R$, then $\operatorname{Hom}_R(R,D) = (0)$ implies D = (0), and so, $A \cong R$. If $A = C \dotplus D$, then $\operatorname{Hom}_R(C,D) = (0)$ implies D is torsion-free. If D were not trivial, it would have a direct summand isomorphic to R, but this cannot occur since $\operatorname{Hom}_R(R,C) \neq (0)$. Thus, in this case, A = C.

Conversely, C, R, K and K+C are easily seen to be special.

We can derive a consequence of this proposition for the theory of special rings. Let p be a prime. Let us call a ring A p-complete if A = $\lim_{n \to \infty} A/p^m A$.

Such a ring is clearly a Z_p algebra. Moreover, every Z-endomorphism automatically commutes with the Z_p action. Since Z_p is a complete discrete valuation ring, we have

 $\frac{PROPOSITION \; 12:}{p} \; \; \; A \; \text{ring} \; \; A \; \text{ is special and p-complete if and only if} \quad A \; \text{ is isomorphic to either} \; \; Z_p \; \quad \text{or} \; \; Z_p / p^m Z_p \; \quad \text{for some} \quad m \; .$

<u>PROOF</u>: This follows from Proposition 11. Q_p , the quotient field of Z_p , cannot occur since it is infinite dimensional over Q.

Thanks are due to R. A. Beauregard for his interest and contribution.

REFERENCES

- J. Aczel, "Lectures on Functional Equations and Their Applications", Academic Press, New York, 1966.
- 2. L. Fuchs, "Abelian Groups", Publishing House of the Hungarian Academy of Sciences, Budapest, 1958.
- L. Fuchs, "Infinite Abelian Groups", Academic Press, New York. Vol. I: 1970, Vol. II: 1973.
- 4. I. Kaplansky, "Infinite Abelian Groups" (Revised Edition), University of Michigan Press, Ann Arbor, Michigan, 1969.
- 5. P. Schultz, The endomorphism ring of the additive group of a ring, J. Austr. Math. Soc. 15(1973), 60-69.