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ABSTRACT. The present work is concerned with integrability properties of derivatives
of classical solutions of Dirichlet's problem for a linear second-order elliptic
equation Lu = f. With the aid of special weighted Hilbert spaces of locally square
integrable functions, we determine the nature of singularities that f can have near
the boundary, in order that such classical solutions are in the Sobolev space wl.

By means of an example it is shown that the obtained result is exact.
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1. INTRODUCTION.

The question of whether the classical solution u(x) of Dirichlet's problem for
an elliptic equation Lu = f 1is in the Sobolev space wl was studied in [2], [3] and
[4]. The main result concerning this question is that ueJﬂ'provided the coeffic~
ients of L are essentially bounded and fGI?. Here, we prove a result showing that
u may be in wl even when f 1is not in the class L2. With the aid of special
weighted Hilbert spaces of functions, we determine exactly the class of functions f,
for which ué€ Wl .

Let Gc:Rn be a bounded region, whose boundary 3G is a closed (n-1)-dimensional
surface in the class Cz. For p>0, we let GP = {x€G: d(x) > p}, where d(x) =
dist(x,9G). As was shown in [5], there exist positive numbers m,b, depending only

on G, and a function r(x)éCZ(E) such that
r(x) = d(x), x€G\ Gm,

bd(x) < r(x) < b td(x), xE€G.
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Moreover, if p€[0,m], then GP is a region with boundary oGP in C2, and the
relation xp = xp(x) = x - pN(x), x€ 3G, determines a Cl—diffeomorphism of 3G onto
BGP. Here N(x) denotes the unit outward normal to 3G at x.

In G we consider a non-self-adjoint operator defined by
Lu=-D,(a..D,u) + a.D.u + au,
i 1ij7] iTi

where we used summation convention, that is, we sum over an index that appears twice,
and Di =3/ axi. It is assumed that aij,ai,aE(ZUD, and L 1is strictly elliptic

in G, that is

v|£|2 < aij(x)&iij < ul&]z; v,u = const >0, X &G, (1.1)
for all real vectors ¢£ = (§ £); [F]z = gi 52 .
1" n’> ’ 1=1 °i

. 2 -
Throughout this paper, u(x) € C°(G) n C(G)denotes a classical solution of the
problem

Lu = f(x), x6G0G,
(1.2)

u, 0,

6
where f€ C(G).
. k,2 Yk, 2
We shall employ usual notation W (G) and W (G) for Sobolev spaces [1],

but, conventionally, without the index "2'". By Li(G) we shall denote the Hilbert
space of all measurable functions v(x) in G for which
2 s 2
fvll 2@ " bT (v (x)dx < .
9]
Lemma. If vewl(c), then VGLEZ(G) and
vl =<clovll , (1.3)
L-2(G) L7(G) .
where D = (Dl,...,Dn) and C > 0 depends only on m, b and the diameter of G .
The proof is similar to that of the lemma in [5].
2. MAIN RESULTS
Our main result is the following:
THEOREM. Let the operator L be strictly elliptic and have coefficients
a;, aéIﬁYG). If problem (1.2) has a classical solution u, then for arbitrary
fE.Li(G) with s < 2, this solution is in Wl(G).
Moreover,
ufl | =cClgll , #+ dull (2.1)
W (G) LS(G) L (G)

where C is independent of f and u.
Proof. Let f(p)€ L2(G) be the function defined by

£(x),, x€cP,

(p) _
E00 =, X €G \GP.

Recalling the properties of Tr(X) and using the absolute continuity of Lebesgue

integral, we have

) 2
lim frs(f - P2 = 1im f r5¢%ax = 0,
r=»0 G p—>0 c\cP
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f(p)

that is, as p<®0 the functions converge to f in the Lz(G)—norm.

Since lléC(E) and U\BG = 0, we can choose a decreasing sequence of numbers
{p, } such that
1 P
k '“] < x> X € G\G k,
(2.2)
P
P
We write Gk for G k and fk for f( k), k=1,2,...
Let q be sufficiently large positive number such that
q + inf a - Z% sup % a? -5>0 (2.3)
G ¢ i=1 *
and consider the problem
Luk+quk=f+qu, xeGk, ’L

(2.4)
u lac = 0. J

Since f + unIJ(G ), problem (2.4) has a weak solution in w (G )[1,p 175]. Such
solution is understood to he a function in w (G ) satisfying the integral identity

[a,.D,uD.v + (a.D,u, + au, + au, + quk)V]dx = (f + qu)v dx (2.5)

k "% i i°1% k k k

G

ol
for all vGVJ(Gk). Taking v = uy in (2.5), and using (1.1) and the well known
Cauchy inequality |ab| < - a2 + (1/4e)b2, we obtain

(v-e) be

{'G[ fukdxl + %qz _[ uzdx.
k k
xEGk,

* Yy
Letting u = %O, xeG\Gk and recalling the definition of fk’ the last inequality

can be rewritten as
1 2 jf «2
(v =€) IDu I dx + (q + 1nf a - Ze sup ) u, dx

I[f uy dx |+ /2q2 [uzdx. (2.6)

The first term on the right of (2.6 ) we estimate by using Cauchy inequality and

(1.3) as follows:
dx < " r2f2 dx + €y (u* /r )dx
be 7

< % (max r2 ) f r°f dx + clcﬁDu | “dx. (2.7)
1 6 G

Since 2 - s > 0, the function rZ—s is bounded, and it follows from (2.3), (2.6)

n
5 IDuklzdx + (q + inf a - L sup % a? -k 7!.uidx
Kk G G i=1"

-]

and (2.7) with sufficiently small €, € that

2
R * *
ﬁ|Du 12 4w yax < ¢ () 552 +f Zax) <K, (2.8)
¢ k G G

where C depends only on m, b, s, G and the coefficients of L. Hence, K 1is

*
independent of k. Consequently, there is a subsequence of {uk} weakly converging
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0
in the metric of Wl(G) to some function wéfwl(G). Without loss of generality, we can
assume that the sequence itself weakly converges to w. In view of (2.8), we have

[ wll 2 < c(|l £l 2 + | UIl ). (2.9)
1 2
W (G) L7(G) L (G)

Since u tC?(Ek) and U is a weak solution of problem (2.4), the function u - u

is a weak solution in Wl(Gk) of the problem

Lv, + quv, = 0, x€G

k k k’

v lsck = u]ack

The conditions imposed in our theorem and the fact that q + a > 0; cf.(2.3), are

sufficient to apply the weak maximum principle [1,p. 168] to the function u - u

K
Hence,
*
Ju = u | < max |u]
k aG
k
almost everywhere (a.e.) in Gk' Taking (2.2) into consideration, we find that a.e. in
G
* 1
|u—uk| E:

that is, the sequence {u } uniformly converges to u a.e. in G. But, as was shown
above, the same sequence weakly converges to w in the metric of w (G). Hence,
u =w a.e. on G, which completes the proof of the theorem.

Now we show that the condition f Li(C). s < 2, is exact in the sense that, it
cannot be weakened to allow functions f with singularities near the boundary of
degree higher than the second. If f is in L§+h(C) for any h > 0, but it is not in
LZ(C) then the inclusion ur-w (G) may be false. This may be seen from the following
example.

Let B be the unit disk {| x | < 1} in Rz. In B consider the function

u(x) = |x|2(l - le)li It is easlly verified that UG(Z(B) n C(B), u‘ -1 0 and
U¢w1(B). At the same time AueL p(B) for any h > 05 8 =D, + D,y while

2 11 2
Au¢L2(B) .
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