DOUBLY STOCHASTIC RIGHT MULTIPLIERS

CHOO-WHAN KIM

Department of Mathematics Simon Fraser University Burnaby, B.C., Canada V5A 1S6

(Received June 13, 1983)

ABSTRACT. Let P(G) be the set of normalized regular Borel measures on a compact group G. Let D_r be the set of doubly stochastic (d.s.) measures λ on $G \times G$ such that $\lambda(As \times Bs) = \lambda(\Lambda \times B)$, where $s \in G$, and A and B are Borel subsets of G. We show that there exists a bijection $\mu \leftrightarrow \lambda$ between P(G) and D_r such that $\psi^{-1} = m \Leftrightarrow \mu$, where m is normalized Haar measure on G, and $\phi(x,y) = (x,xy^{-1})$ for $x,y \in G$. Further, we show that there exists a bijection between D_r and M_r , the set of d.s. right multipliers of $D_r = \mu \times G$. It follows from these results that the mapping $\mu \to T_\mu$ defined by $D_r = \mu \times G$ is a topological isomorphism of the compact convex semigroups $D_r = \mu \times G$ and $D_r = \mu \times G$ is the closed convex hull of left translation operators in the strong operator topology of $D_r = \mu \times G$.

KEY WORDS AND PHRASES. Compact group, regular Borel measures, doubly stochastic measures, multipliers.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES, 28C10, 43A22, 43A77, COB15.

1. INTRODUCTION.

Let G be an arbitrary compact Hausdorff group, let B(G) be the σ -algebra of Borel subsets of G, and let m be normalized Haar measure on G. Let P(G) be the set of regular Borel measures μ on G such that $\mu(G)=1$. Assume that $1\leq p\leq \infty$. Let $L_p(G)$ denote the complex Banach space $L_p(G,B(G),m)$, and let $B[L_p(G)]$ denote the complex Banach space of bounded linear operators from $L_p(G)$ into itself. An operator T in $B[L_p(G)]$ is called a positive contraction on $L_p(G)$ if Tf ≥ 0 for each nonnegative f in $L_p(G)$ and $\|T\|_p \leq 1$.

For each positive contraction T on $L_1(G)$, the adjoint T* determined by the equation $\int_G (Tf)g \ dm = \int_G f(T^*g)dm$ for $f \in L_1(G)$ and $g \in L_\infty(G)$ is a positive contraction on $L_\infty(G)$. A positive contraction T on $L_1(G)$ such that T1 = 1, or equivalently, $\int_G T g \ dm = \int_G g dm$ for $g \in L_\infty(G)$, is called a doubly stochastic (d.s.)

operator. Let D be the set of d.s. operators. Note that $T \in D$ if and only if $T^* \in D$. By the Riesz convexity theorem, each d.s. operator T is also a positive contraction on $L_p(G)$, $1 , with <math>\|T\|_p = 1$. Let Φ be the class of measure-preserving maps Φ from (G,B(G),m) onto itself, and let Φ_1 be the class of maps Φ in Φ that are invertible and $\Phi^{-1} \in \Phi$. Then each Φ in Φ gives rise to a d.s. operator T_{Φ} that is defined by $T_{\Phi}f(x) = f(\Phi(x))$. For brevity we also write Φ for $\{T_{\Phi} \colon \Phi \in \Phi^1 \text{ and } \Phi_1 \text{ for } \{T_{\Phi} \colon \Phi \in \Phi_1^1 \}$. For $s \in G$, let L_{S} and R_{S} be the left and the right translation operators defined by $L_{S}f(x) = f(s^{-1}x)$ and $R_{S}f(x) = f(xs^{-1})$. Then both L_{S} and R_{S} are in Φ_1 .

An operator T in D is called a right multiplier (centralizer) of $L_1(G)$ if T commutes with right translation operators, that is, $TR_s = R_sT$ for each $s \in G$. Let M_r be the set of d.s. right multipliers of $L_1(G)$. The set M_ℓ of d.s. left multipliers of $L_1(G)$ is defined in an analogous fashion. We see readily that $L_s \in M_r$ and $R_s \in M_\ell$ for each $s \in G$. Let $M = M_r \cap M_\ell$. It is plain that $L_s = R_s \in M$ for each $s \in G^z$, the center of G. Note that if G is Abelian, then $M = M_r = M_\ell$.

For a semigroup S, the set of elements x in S such that xy = yx for each y in S is called the center of S and is denoted by S^z . For topological semigroups S_1 and S_2 , an (algebraic) isomorphism of S_1 into S_2 which is also a homeomorphism is called a topological isomorphism of S_1 into S_2 . All functions on G are Borel mesurable and will always be considered up to m-equivalence. For two functions f and g on G, f = g, f g mean that the equality and the inequality, respectively, are satisfied in the almost everywhere (a.e.) sense with respect to m.

It follows from Theorem 1 of Wendel [1] (see also Edwards [2]; Hewitt and Ross [3], 35.5) that for each T in M_r , there exists a unique μ in P(G) such that Tf = $\mu*f$ for each f \in L₁(G). Using a d.s. measure, Brown [4] gave an alternate proof of the above result when the underlying group G is Abelian and compact. The purpose of this paper is to extend Brown's work [4] for an arbitrary compact group.

Certain preliminary results on P(G) and d.s. measures are given in Section 2. In Section 3 we show that there exists a bijection between M_r and D_r (Proposition 5), and that there exists a bijection between D_r and P(G) (Proposition 6). Using Propositions 5 and 6, we prove (Theorem 1) that the mapping $\mu \to T_{\mu}$ defined by $T_{\mu}f = \mu * f$ is a topological isomorphism of the compact convex semigroups P(G) and M_r. In Section 4 we show that $T \in M_r$ is an isometry of L₁(G) if and only if T is a left translation operator (Theorem 3), and that the set of extreme points of M_r is the group G of left translation operators, and M_r is the closed convex hull of G in the strong operator topology of B[L₂(G)] (Theorem 4). By minor modifications of our arguments we obtain analogous results for M_g.

2. PRELIMINARIES.

Let C(G) be the Banach space of complex continuous functions on G. For μ , ν f P(G), there exists, by the Riesz representation theorem, a unique measure $\mu \star \nu$

in P(G) such that $\int f(z)d\mu*\nu(z) = \iint f(xy)\ d\mu(x)\ d\nu(y)$ for each $f\in C(G)$. Thus P(G) is a semigroup under the convolution operation. It follows from Theorem 2 of Stromberg [5] that $\mu*\nu(A) = \int_G \mu(Ay^{-1}) d\nu(y) = \int_G \nu(x^{-1}A) d\mu(x)$ for each $A\in B(G)$. As usual we shall identify P(G) with a subset of C(G)*, the dual space of C(G). We show readily that P(G) is convex and is compact in the weak* topology. It is well-known (Rosenblatt [6]) that for μ,ν in P(G), the convolution operation $\mu*\nu$ is jointly continuous in μ and ν with respect to the weak* topology. Therefore P(G) with the convolution operation and the weak* topology, is a compact, convex, Hausdorff semigroup.

We state without proof the following result of Stromberg [5].

LEMMA 1. (Stromberg). Let X be a compact Hausdorff space and f a continuous mapping of X into itself. If μ is a regular Borel measure on X, then so is the measure μf^{-1} .

For $\mu \in P(G)$, the adjoint μ' defined by $\mu'(A) = \mu(A^{-1})$ is an element of P(G) and $(\mu')' = \mu$. For each $x \in G$, ε_x be the probability measure such that $\varepsilon_x'(A) = \chi_A(x)$ for $A \subseteq G$, where χ_A is the characteristic function of A. Note that $\varepsilon_x' = \varepsilon_x - 1$. It is easily seen that the mapping $x + \varepsilon_x$ is a topological isomorphism of G into the compact semigroup P(G).

A characterization of the center $P^{Z}(G)$ of the semigroup P(G) is given by Stromberg [7]. It is straightforward to prove the following proposition.

PROPOSITION 1. $P^{Z}(C)$ is a compact, convex, Abelian subsemigroup of P(C).

Let $P^{i}(G)$ be the set of idempotents μ of P(G), that is, $\mu*\mu=\mu$. For any compact subgroup H of G, let m_{H} be normalized Haar measure on H. We shall always extend the measure m_{H} in P(H) to a unique measure in P(G), denoted also by m_{H} , as follows: $m_{H}(A) = m_{H}(A\cap H)$ for $A \in B(G)$. Then $m_{H} \in P^{i}(G)$. Theorem 1 of Wendel [8] states that $\mu \in P^{i}(G)$ if and only if there exists a unique compact subgroup H of G such that $\mu = m_{H}$. It is routine to verify that $P^{i}(G)$ is a compact subset of P(G). Since, for arbitrary compact subgroups H and K of G, the set HK is not always a subgroup of G and $m_{H}*m_{K} = m_{HK}$, the set $P^{i}(G)$ is not necessarily a subsemigroup of P(G). Let e denote the identity of G. Observe that

$$\frac{1}{2}(m + \epsilon_e) * \frac{1}{2}(m + \epsilon_e) = (3m + \epsilon_e)/4 \neq \frac{1}{2}(m + \epsilon_e).$$

Therefore $P^{i}(G)$ is not a convex set.

The set $P^{\mathbf{i}}(G)\cap P^{\mathbf{z}}(G)$ contains Haar measure m and the point mass ϵ and is a compact subset of P(G). For $\mu\in P(G)$, let $S(\mu)$ be the support of μ .

PROPOSITION 2. Let μ be in P(G). The following assertions are equivalent: (i) μ is in Pⁱ(G) \cap P^Z(G);

(ii) there exists a unique compact subgroup H of G such that $\mu = m_{H}$ and $\epsilon_{S}*m_{H}*\epsilon_{S}' = m_{H}$ for each $s \in G$;

(iii) there exists a unique compact normal subgroup H of G such that $\mu = m_{H}$.

PROOF. It is known (Stromberg [7]; Wendel [8]) that (i) and (ii) are equivalent. Suppose that (ii) holds. Then we have, for each s & G, $H = S(m_{H}) = S(\varepsilon_{S} * m_{H} * \varepsilon_{S}') = S(\varepsilon_{S}) S(m_{H}) S(\varepsilon_{S}') = sHs^{-1}, \text{ so that } H \text{ is a compact normal}$ subgroup of G. Thus (ii) implies (iii).

Suppose that $\mu = m_{H}$, where H is a unique compact normal subgroup of G. We shall show that $s * m_H * \epsilon s = m_H$ for each $s \in G$, or equivalently, $m_H (s^{-1}Es) = m_H(E)$ for $s \in G$ and $E \in B(G)$. Let $\phi_S(x) = sxs^{-1}$. Since the inner automorphism ϕ_S of C is a homeomorphism of G onto itself, and $\phi_S(H) = H$, we have, from Lemma 1, $m_H^{\rho_S^{-1}} \in P(G)$, and $S(m_H^{\rho_S^{-1}}) = H$. For $s \in G$, $a \in H$, and $E \in B(G) \cap H$, we have $h = s^{-1}a^{-1}s \in H$, $\phi_c(x)a^{-1} = \phi_c(xh)$, and

$$m_{H}^{\rho} = m_{H}^{\rho} = m_{H$$

so that by the uniqueness of Haar measure on H, $m_H = m_H \phi_s^{-1}$. That is, $m_H(E) = m_H \phi_s^{-1}(E) = m(s^{-1}Es)$. Therefore (iii) implies (ii). \Box It is easy to verify that for $\mu \in P^i(G)$ and $\nu \in P^i(G) \cap P^Z(G)$, $\mu \star \nu = \nu \star \mu \in P^i(G)$.

We also have

PROPOSITION 3. $P^{i}(G) \cap P^{z}(G)$ is a compact, non-convex subsemigroup of P(G). We omit the elementary proof of this proposition.

For $\mu \in P(G)$, let P: $G \times B(G) \rightarrow [0,1]$ be such that

$$P(x,A) = \mu' * \epsilon_x(A) = \mu(xA^{-1}).$$

Then P(x,A) is a transition (probability) function which is a regular probability measure on B(G) for each $x \in G$ and a Borel function of x for each $A \in B(G)$. It follows easily that

$$\int_{G} P(x, \Lambda) dm(x) = m(\Lambda)$$
 (2.1)

for $A \in B(G)$, and

$$P(xs,As) = P(x,A)$$
 (2.2)

for s,x \in G and A \in B(G). Note that the transition function P(x,A) has an invariant measure m and is invariant under right translations. The transition function $P(x,A) = \mu(xA^{-1})$ gives rise to the Markov operator $P = P_{\mu}$ from C(G) into itself by the formula $Pf(x) = \int_C P(x,dy)f(y) = \int_C f(y^{-1}x)d\mu(y)$. It follows from (2.1) and (2.2) that $\int_C Pfdm = \int_C fdm$ for $f \in C(C)$, P1 = 1, and $PR = R_S P$ for $s \in C$. See Rosenblatt [6] for details. By the usual argument the Markov operator P_{ii} is uniquely extended to an operator T_{u} in M_{r} . We shall see in Proposition 7 that each T f M_r is induced by a unique Markov operator $P_{i,l}$ on C(G).

Let $P(G \times G)$ be the set of regular probability measures on $(G \times G, B(G \times G))$, where $B(G\times G)$ denotes the σ -algebra of Borel subsets of $G\times G$. A measure λ in $P(G\times G)$ is called a d.s. measure on G×G if

$$\lambda(A \times G) = \lambda(G \times A) = m(A) \tag{2.3}$$

for each $A \in B(G)$. Let \mathbb{D} be the set of d.s. measures on $G \times G$. A probability measure λ on the product measurable space $(G \times G, B(G) \times B(G))$ satisfying (2.3) is called doubly stochastic by Brown [4]. Let $\{X_n : n \neq 1\}$ be the right random walk on G generated by M and M and M are M and M are M and M are M are space M and M are space M and M are space M and stationary transition function M and M are space M and denotes the joint distribution of M and M and M and M and M are space M and M and M are space M and M and M are space M and M and M and M and M and M are space M and M and M are space M and M and M and M are space M and M and M are space M and M and M are space M and

LEMMA 2. For each probability measure σ on $(G\times G,B(G)\times B(G))$ satisfying (2.3), there exists a unique λ in $\mathbb D$ such that $\lambda(E)=\sigma(E)$ for each E in $B(G)\times B(G)$.

PROOF. Let σ_0 be the Baire restriction of σ , that is, $\sigma_0(E) = \sigma(E)$ for each $E \in B_0(G \times G)$. Then σ_0 is a Baire measure on $(G \times G, B_0(G \times G))$ such that $\sigma_0(A \times G) = \sigma_0(G \times A) = m(A)$ for each $A \in B_0(G)$. Let λ be the unique, regular Borel measure on $(G \times G, B(G \times G))$ which extends σ_0 (see Halmos [9], 54.D). We shall show that λ also extends σ . It is enough to show that $\lambda(C_1 \times C_2) = \sigma(C_1 \times C_2)$ for all compact sets C_1 and C_2 in G. By the regularity of Haar measure m there exist compact G_0 's, A_1 and A_2 , such that $C_1 \times A_2$ and $m(A_1 - C_1) = 0$ for j = 1, 2. Since m is completion regular by a theorem of Kakutani-Kodaira [10] (see also, Halmos [9], 64.H), there exist B_1 and B_2 in $B_0(G)$ such that $A_1 - C_2 \times B_1$ and $m(B_1) = 0$ for j = 1, 2. Note that

$${\bf A_1} \times {\bf A_2} - {\bf C_1} \times {\bf C_2} = [({\bf A_1} - {\bf C_1}) \times {\bf A_2}] \cup [{\bf C_1} \times ({\bf A_2} - {\bf C_2})] \cup ({\bf B_1} \times {\bf G}) \cup ({\bf G} \times {\bf B_2}).$$

Then we have

$$\lambda(A_1 \times A_2 - C_1 \times C_2) \leq \lambda(B_1 \times G) + \lambda(G \times B_2) = \sigma_0(B_1 \times G) + \sigma_0(G \times B_2) = m(B_1) + m(B_2) = 0,$$

so that $\lambda(C_1 \times C_2) = \lambda(A_1 \times A_2) = \sigma_0(A_1 \times A_2)$. Similarly we also have $\sigma(C_1 \times C_2) = \sigma(A_1 \times A_2) = \sigma_0(A_1 \times A_2)$, and so our assertion is proved.

If λ_1 and λ_2 are any two measures in \mathbb{D} both of which extend σ , then they also extend the Baire measure σ_0 , so that $\lambda_1 = \lambda_2$.

We obtain readily from Corollary of Brown [11], together with Lemma 2, the following proposition.

PROPOSITION 4. There exists a bijection $T \longleftrightarrow \lambda$ between D and D such that

$$\lambda(A \times B) = \int_{G} X_{A} T X_{B} dm \qquad (2.4)$$

for all A, B \in B(G).

3. DOUBLY STOCHASTIC RIGHT MULTIPLIERS.

Let \mathbb{D}_r be the set of measures λ in \mathbb{D} such that $\lambda(As \times Bs) = \lambda(A \times B)$ for all $A, B \in B(G)$, $s \in G$. For each $s \in G$, let $\tau_S(x,y) = (xs^{-1},ys^{-1})$ for $x,y \in G$. It is easy to see that for each $\lambda \in \mathbb{D}$, $\lambda \in \mathbb{D}_r$ if and only if $\lambda \tau_s^{-1} = \lambda$ for each $s \in G$.

PROPOSITION 5. There exists a bijection $T \leftrightarrow \lambda$ between M_r and D_r satisfying relation (2.4).

PROOF. Let T and λ be the associated d.s. operator and d.s. measure as in Proposition 4. Then T \in M_r iff T = R_{s-1}TR_s for all s \in G iff TX_B = R_{s-1}TR_sX_B for all B \in B(G), s \in G iff λ (A×B) = (As×Bs) for all A,B \in B(G), s \in G. \square

For $\mu, \nu \in P(G)$, there exists, by the Riesz representation theorem, a unique regular Borel measure $\mu \not\sim \nu$ in $P(G \times G)$ such that

$$\int_{G\times G} f(x,y) d\mu \wedge \nu(x,y) = \int_{G} (\int_{G} f(x,y) d\mu(x)) d\nu(y) = \int_{G} (\int_{G} f(x,y) d\nu(y)) d\mu(x)$$

for all continuous functions f(x,y) on $G \times G$. Note that $\mu \times \nu$ is the unique regular Borel measure on $G \times G$ which extends the product measure $\mu \times \nu$ on $(G \times G, B(G) \times B(G))$. Note also that Haar measure $m \times m$ on the compact group $G \times G$ is an element of \mathbb{D}_r . Let ξ and η be the mappings from $G \times G$ onto G defined by $\xi(x,y) = y^{-1}x$ and $\eta(x,y) = xy^{-1}$. Then both ξ and η are continuous surjections. Define ϕ and ψ on $G \times G$ by

$$\phi(x,y) = (x,xy^{-1}), \psi(x,y) = (x,y^{-1}x).$$

Then ϕ is a homeomorphism of G×G onto itself with $\phi^{-1} = \psi$ and is m/m measure-preserving.

PROPOSITION 6. There exists a bijection $\lambda \leftrightarrow \mu$ between \mathbf{D}_r and P(G) such that $\lambda \phi^{-1} = m \sim \mu$.

LEMMA 3. There exists an injection $\lambda \to \mu$ from $\mathbf{D}_{\mathbf{r}}$ into P(G) such that $\lambda \phi^{-1} = \max_{\mathbf{r}} \mu$, and in this case we have $\mu = \lambda \eta^{-1}$.

PROOF. For each $\lambda \in \mathbb{D}_r$ and for each $B \in B(G)$, let θ_B be the Borel measure on G defined by $\theta_B(A) = \lambda \phi^{-1}(A \times B)$. It follows from the regularity of Haar measure m that, for $\kappa > 0$ and $A \in B(G)$, there exist a compact set C and an open set U such that $C \subseteq A \subseteq U$ and $m(U-C) < \varepsilon$. Then we have $\theta_B(U-C) \leq m(U-C) < \varepsilon$, so that θ_B is a regular Borel measure. Since, for each $s \in G$, the mapping $\tau_S(x,y) = (xs^{-1},ys^{-1})$ is λ measure-preserving,

$$\theta_{B}(A) = \lambda \phi^{-1}(A \times B) = \lambda \tau_{S}^{-1} \circ \phi^{-1}(A \times B) = \lambda \phi^{-1}(A s \times B) = \theta_{B}(A s)$$

for all $s \in C$, $A \in B(G)$, so that by the uniqueness of Haar measure there exists $c \ge 0$ such that $\theta_B = cm$. It follows that $c = \theta_B(G) = \lambda \eta^{-1}(B)$ and $\lambda \phi^{-1}(A \times B) = m(A) \lambda \eta^{-1}(B)$ for all A, $B \in B(G)$. By Lemma 1 we have $\lambda \phi^{-1} \in P(G \times G)$ and $\lambda \eta^{-1} \in P(G)$. Since two regular Borel measures $\lambda \phi^{-1}$ and $m \wedge \lambda \eta^{-1}$ agree on all Baire sets of $G \times G$, we have $\lambda \psi^{-1} = m \vee \lambda \eta^{-1}$. If $\lambda \phi^{-1} = m \wedge \mu$ for some $\mu \in P(G)$, then $\mu(A) = m \wedge \mu(G \times A) = \lambda \phi^{-1}(G \times A) = \lambda \eta^{-1}(A)$ for $A \in B(G)$, so that $\mu = \lambda \eta^{-1}$. It is clear

that the mapping $\lambda \rightarrow \mu$ is injective. \Box

PROOF OF PROPOSITION 6. It remains to show that the injection defined in Lemma 3 is surjective. For each $\mu \in P(G)$, let $\lambda = (m \cdot \mu) \psi^{-1}$. By Lemma 1 we have $\lambda \in P(G \times G)$. It follows that, for A and B in B(G),

$$\lambda(A \times B) = (m \times \mu) \psi^{-1}(A \times B) = \int_{C} m(A \cap yB) d\mu(y),$$

so that $\lambda(A\times G)=\lambda(G\times A)=m(A)$. Since $m(As\cap yBs)=m(A\cap yB)$ for all $A,B\in B(G)$, $s,y\in G$, we obtain $\lambda(A\times B)=\lambda(As\times Bs)$. Therefore $\lambda\in D_r$. Using $\phi=\psi^{-1}$ we also have $\lambda\phi^{-1}=m\not\sim\mu$. \square

PROPOSITION 7. There exists a bijection $\mu \leftrightarrow T_{\mu}$ between P(G) and M such that $T_{\mu}f = \mu *f$ for each $f \in L_1(G)$.

PROOF. Let $\mu \in P(G)$, $\lambda \in \mathbb{D}_r$, and $T \in M_r$ be the associated elements determined by Propositions 5 and 6. Clearly the mapping $\mu \to T_\mu = T$ is a bijection from p(G) onto M_{μ}. Then we have

$$\int_{C} \chi_{A} T \chi_{B} dm = \lambda (A \times B) = (m \cdot A \cdot V) \psi^{-1} (A \times B) = \int_{C} \chi_{A} (x) (\int_{C} \chi_{B} (y^{-1} x) d\mu(y)) dm(x)$$

for A and B in B(G), so that $TX_B(x) = \int_G X_B(y^{-1}x) d\mu(y)$. Therefore we have $Tf = \mu * f$ for each $f \in L_1(G)$. \Box

It is shown by Brown [11] that D with the weak operator topology of $B[L_2(G)]$ is a compact, convex Hausdorff semigroup, and that on the set D the weak operator topologies of $B[L_p(G)]$, $1 \le p < \infty$, coincide. An elementary argument shows that M_r is a compact, convex subsemigroup of D.

THEOREM 1. The mapping $\mu \to T_{\mu}$ of Proposition 7 is a topological isomorphism between the compact convex semigroups P(G) and M_{μ}.

PROOF. It is straightforward to show that $T_{\mu}T_{\nu}=T_{\mu^{*}\nu}$, $T_{\mu^{*}}=T_{\mu}^{*}$, and $T_{t\mu^{+}(1-t)\nu}=tT_{\mu}+(1-t)T_{\nu}$ for $\mu,\nu\in P(G)$ and $t\in [0,1]$. By Proposition 7 the mapping $\mu\to T_{\mu}$ is an isomorphism of P(G) onto M_{r} . Note that the mapping is a regular representation of P(G) (see Hewitt and Ross [12], 22.11).

To prove that the mapping $\mu \to T_\mu$ is a homeomorphism it is enough to show that the mapping is continuous, or equivalently, whenever a $\operatorname{net}(\mu_\alpha)$ converges to μ in P(G), the net (T_{μ_α}) converges to T_μ in M_r . Let f and g be real continuous functions on G such that $|f(x)| \le 1$, $|g(x)| \le 1$ for $x \in G$. Since $f \circ \xi(x,y) = f(y^{-1}x)$ is right uniformly continuous on $G \circ G$, there exists, for each $\varepsilon > 0$, a neighbourhood U of the identity e of G such that for all $y \in G$,

$$|f(y^{-1}x) - f(y^{-1}x')| < \epsilon/8 \text{ for } x'x^{-1} \in U$$
.

Since G is compact, an open covering $\{U_x: x \in G\}$ of G has a finite subcovering $\{U_j: j=1,2,\ldots,n\}$, where $U_j=Ux_j$. Then we have that for all $y \in G$,

$$\sup_{x,x' \in U_{j}} |f(y^{-1}x) - f(y^{-1}x')| < \epsilon/4, j = 1,2,...,n,$$

and that

$$\sup_{\mathbf{x},\mathbf{x}'} \left| P_{\mathbf{y}} f(\mathbf{x}) - P_{\mathbf{y}} f(\mathbf{x}') \right| < \varepsilon/4, \ j = 1,2,...,n,$$

for all $\nu \in P(G)$, where $P_{\nu}f(x) = \int_{G} f(y^{-1}x) d\nu(y)$. Let $h_{\alpha}(x) = P_{\mu}f(x) - P_{\mu}f(x)$. It follows that for all α ,

$$\sup_{x,x' \in U_{j}} |h_{q}(x) - h_{q}(x')| < \epsilon/2, j = 1,2,...,n.$$

Define a finite partition $\{E_j\colon j=1,2,\ldots,n\}$ of G by $E_1=U_1$ and j-1 E $j=U_j$ - $\bigcup_{i=1}^{j}U_i$ for $j \leq 2$. Choose a point a_j in E_j , $j=1,2,\ldots,n$. Then we obtain that for all α ,

$$\sup_{\mathbf{x} \in E_{\mathbf{j}}} |h_{\alpha}(\mathbf{x}) - h_{\alpha}(\mathbf{a}_{\mathbf{j}})| < \varepsilon/2, \ \mathbf{j} = 1, 2, \dots, n.$$

A simple calculation yields

$$\begin{split} & \left| \int_{C} (\mathbf{x}) \left(P_{\mu_{\alpha}} f(\mathbf{x}) - P_{\mu} f(\mathbf{x}) \right) dm(\mathbf{x}) \right| \leq \int_{C} \left| h_{\alpha}(\mathbf{x}) \right| dm(\mathbf{x}) = \sum_{j=1}^{n} \int_{E_{j}} \left| h_{\alpha}(\mathbf{x}) \right| dm(\mathbf{x}) \\ & \leq \sum_{j=1}^{n} \int_{E_{j}} \left| h_{\alpha}(\mathbf{x}) - h_{\alpha}(\mathbf{a}_{j}) \right| dm(\mathbf{x}) + \sum_{j=1}^{n} \left| h_{\alpha}(\mathbf{a}_{j}) \right| \\ & < \varepsilon/2 + \sum_{j=1}^{n} \left| P_{\mu_{\alpha}} f(\mathbf{a}_{j}) - P_{\mu} f(\mathbf{a}_{j}) \right| \end{split}$$

for all α . Since $\mu_{\alpha} \rightarrow \mu$, there exists α_{0} such that for all $\alpha \ge \alpha_{0}$,

$$|P_{\mu_{\alpha}}f(a_{j}) - P_{\mu}f(a_{j})| < \epsilon/2n, j = 1,2,...,n,$$

so that

$$\left| \int_{G} g(x) \left(P_{\mu} f(x) - P_{\mu} f(x) \right) dm(x) \right| < \epsilon \text{ for } \alpha \ge \alpha_0$$
.

Thus $T_{\mu_{\alpha}} \rightarrow T_{\mu}$. ω

REMARK 1. We may show readily that there exists a homeomorphism $\mu \to T_{\mu}$ between the compact convex semigroups P(G) and M_{ℓ} such that $T_{\mu}f = f \star \mu$ for $f \in L_2(G)$, and that this mapping is not an isomorphism. (See Hewitt and Ross [12], 22.21)

COROLLARY 1. The mapping $\mu \to T_{\mu}$ of Theorem 1 carries $P^{\mathbf{Z}}(G)$ onto M and is a topological isomorphism between the compact convex Abelian semigroups $P^{\mathbf{Z}}(G)$ and M.

PROOF. In view of Proposition 1 and Theorem 1, it is enough to show that the mapping $\mu \to T_{\mu}$ is a bijection between $P^Z(G)$ and M . Note that $L_S = T_{\varepsilon_S}$ for $s \in G$. Then we have from Theorem 1, together with Theorem 2.5.1 of Stromberg [7], that $\mu \in P^Z(G)$ iff $\mu \star \varepsilon_S = \varepsilon_S \star \mu$ for $s \in G$ iff $T_{\mu}L_S = T_{\mu \star \varepsilon_S} = T_{\varepsilon_S \star \mu} = L_S T_{\mu}$ for $s \in G$ iff $T_{\mu} \in G$ if $T_{\mu} \in G$ iff $T_{\mu} \in G$ if $T_{\mu} \in G$ if

We also have from Theorem 1, the following corollary.

COROLLARY 2. M is the center of the semigroup $M_{\mathbf{r}}$.

As an immediate consequence of Proposition 3 and Corollary 1 we have

COROLLARY 3. The mapping $\mu \to T_{\mu}$ of Theorem 1 induces a topological isomorphism between the compact semigroups $P^{i}(G) \cap P^{z}(G)$ and $\{T \in M: T^{2} = T\}$.

It is easy to see that the mapping $\mu \to T_{\mu}$ of Theorem 1 induces a homeomorphism between the compact sets $P^{i}(G)$ and $\{T \in M_{r}: T^{2} = T\}$.

PROPOSITION 8. Let $\mu \in P(G)$ and $T \in M_r$ be the associated elements as in Theorem 1. The following assertions are equivalent:

- (i) $\mu * \mu = \mu$;
- (ii) $T^2 = T$;
- (iii) T(fTg) = TfTg for $f,g \in L_{\infty}(G)$.

PROOF. The equivalence of (i) and (ii) is obvious. If we put f=1 in (iii), then $T^2g=Tg$ for all $g\in L_{\infty}(G)$, so that $T^2=T$. Therefore (iii) implies (ii).

Suppose that (i) holds. Then $~\mu$ = m $_H,$ where H is a compact subgroup of G . It follows that for f,g f L $_\infty$ and x f G,

$$\begin{split} T(fTg)(x) &= \int_H f(y^{-1}x)Tg(y^{-1}x)d\mu(y) = \int_H f(yx)Tg(yx)d\mu(y) \\ &= \int_H f(yx)(\int_H g(z^{-1}yx)d\mu(z))d\mu(y) = \int_H f(yx)(\int_H g(zyx)d\mu(z))d\mu(y) \\ &= \int_H f(yx)(\int_H g(zx)d\mu(z))d\mu(y) = Tf(x)Tg(x). \end{split}$$

Thus (i) implies (iii). \Box

4. LEFT TRANSLATION OPERATORS.

Let \underline{G} be the set of left translation operators, $\underline{G} = \{L_s : s \in G\}$. Then it is plain that \underline{G} is a subgroup of the compact semigroup M_r .

THEOREM 2. The mapping s \rightarrow L is a continuous injection of G into M and is a topological isomorphism of the compact groups G and C.

PROOF. We shall show that the mapping s \rightarrow L $_{\rm S}$ is a continuous map from G into M $_{\rm r}.$ For s \in G, let

$$U(L_s: f,g,\epsilon) = \{T: T \in M_r, ||<\epsilon\},$$

where f,g \in C(G) and $\varepsilon > 0$. Since $h(x,s) = g(x)\overline{f}(s^{-1}x)$ is right uniformly continuous on G×G, there exists a neighborhood V of e such that $|h(x,s) - h(x,t)| < \varepsilon$ for all t in Vs and for all x in G, so that $L_{\varepsilon} \in U(L_{\varepsilon}; f,g,\varepsilon)$ for all t in Vs. This proves that the mapping is continuous.

We verify easily that the mapping is an algebraic isomorphism of the groups G and \underline{G} . It follows that, since G is compact, \underline{G} is a compact subgroup of $\underline{M_r}$, and so the assertion follows. \Box

As an immediate consequence of Theorem 2 we obtain

COROLLARY 4. The mapping $s \to L_s$ of Theorem 2 carries the center G^z of G onto the center \underline{G}^z of \underline{G} and is a topological isomorphism between the compact Abelian subgroups G^z and G^z .

We prove the following characterization of a left translation on G.

LEMMA 4. Let ϕ be a mapping from G into itself. The following assertions are equivalent:

- (i) $\phi(xy) = \phi(x)y$ for all $x,y \in G$;
- (ii) there exists an element s in G such that $\phi(x) = sx$ for all $x \in G$. PROOF. If (i) holds, we put $s = \phi(e)$, so that $\phi(x) = \phi(ex) = \phi(e)x = sx$ for all $x \in G$. Clearly (ii) implies (i). \Box

Similarly we prove that a mapping ϕ from G into G is a right translation iff $\phi(xy)=x\phi(y)$ for all $x,y\in G$.

LEMMA 5. $\Phi_1 \cap M_r = \Phi \cap M_r = \underline{G}$.

PROOF. Since $\underline{G} \subseteq \phi_1 \cap M_r \subseteq \phi \cap M_r$, it suffices to show that $\phi \cap M_r \subseteq \underline{G}$. If $T_{\phi} \in \phi \cap M_r$, then $R_{-1}T_{\phi} = T_{\phi}R_{-1}$ for each $y \in G$, so that $\phi(xy) = \phi(x)y$ for $x,y \in G$. By Lemma 4 there exists $s \in G$ such that $\phi(x) = sx$ for all $x \in G$, and so $T_{\phi} = L_{g-1} \in \underline{G}$. \square

THEOREM 3. Let T be in M_r . The following assertions are equivalent:

- (i) T is an isometry of $L_p(G)$ into itself for all $p \in [1,\infty)$;
- (ii) T is an isometry of $\stackrel{1}{P}_{p}(G)$ into itself for some $p \in [1, \infty)$; (iii) T is in G.

PROOF. Clearly (i) implies (ii). Suppose that (ii) holds. Let $T \in M_r$ and $\mu \in P(G)$ be the associated elements as in Proposition 7. Let P be the Markov operator on C(G) defined by $Pf(x) = \int_G P(x,dy)f(y)$, where $P(x,A) = \mu(xA^{-1})$. It follows from (ii), together with Jensen's inequality, that, for each nonegative f in C(G), $|Pf|^P(x) = P|f|^P(x)$ m-a.e. If the equality holds at a point $x \in G$, then the measure P(x,.) is a unit mass at some point $\sigma(x) \in G$, that is, $P(x,.) = \varepsilon_{\sigma(x)}(.)$. Thus we have $P(x,.) = \varepsilon_{\sigma(x)}(.)$ m-a.e. The mapping $\sigma(x)$ is defined on G m-a.e., but it can be defined everywhere on G in the usual manner. We show readily that $T = T_G \in \Phi \cap M_r$, and so by Lemma 5 T is in G. Therefore (iii) holds. Clearly (iii) implies (i). \Box

COROLLARY 5. Let $T \in M_{r}$. The following assertions are equivalent:

- (i) T is an isometric, algebra isomorphism of $L_1(G)$;
- (ii) T is an isometry on $L_1(G)$;
- (iii) T is in \underline{G} .

COROLLARY 6. Let $T \in M_r$. The following assertions are equivalent:

- (i) T is a unitary operator on L₂(G);
- (ii) T is an isometry on $L_2(G)$;
- (iii) T is in G.

 $\phi \in \Phi$, so that $T_{\psi}^{\chi} X_A = T_{\phi}^{\chi} X_A$, that is, $\Psi = \Phi$. See Lamperti [13]; Royden [14] for details. We prove the following analogue of Theorem 3 for D.

PROPOSITION 9. Let T be in D. The following assertions are equivalent:

- (i) T is an isometry of $L_p(G)$ into itself for all $p \in [1,\infty)$;
- (ii) T is an isometry of $\overset{\cdot}{L}_p(G)$ into itself for some $p\in [1,\infty)$; (iii) T is in \forall .

PROOF. Clearly (i) implies (ii). We next show that (ii) implies (iii). If T is an isometry of $L_p(G)$ for some $p: 1 \le p < \infty$, $p \ne 2$, then by Theorem 3.1 of Lamperti [13], we have $T \in \Psi$. If T is an isometry of $L_2(G)$, then, by the argument of Brown [11], pages 22, 23, we obtain $T \in \Psi$. It is straightforward to show that (iii) implies (i). \square

REMARK 2. By the Kawada-Wendel theorem (Kawada [15]; Wendel [1,16]), we have that for each T in D, T is an isometric, algebra isomorphism of $L_1(G)$ onto itself if and only if $T=T_{\varphi} \in \varphi_1$, where φ is a homeomorphic automorphism of G.

For a convex subset K of a real or complex vector space, let ext K be the set of extreme points of K. We write G and G^Z for the sets $\{\varepsilon_{\mathbf{x}} \colon \mathbf{x} \in G\}$ and $\{\varepsilon_{\mathbf{x}} \colon \mathbf{x} \in G^Z\}$. We verify easily that extP(G) = G and

$$G^{z} = P^{z}(G) \cap \text{ext } P(G) \subset \text{ext } P^{z}(G).$$

Example 1 will show that ext $P^{Z}(G) \neq G^{Z}$ in general. It is known (Stromberg [7]) that for each $\mu \in P(G)$, the measure $\widetilde{\mu}$ defined by $\widetilde{\mu}(E) = \int_{G} \mu(xEx^{-1}) dm(x)$ is an element of $P^{Z}(G)$.

LEMMA 6. If μ is a measure in $P^{\mathbf{Z}}(G) - G^{\mathbf{Z}}$ such that $e \in S(\mu)$, then it is not an extreme point of $P^{\mathbf{Z}}(G)$.

PROOF. Let $S(\mu)=H$. Then there exists a neighborhood U of e such that $0< t=\mu(U)<1$. Define the measures μ_1 and μ_2 in P(G) by $\mu_1(E)=\mu(E\cap U)/t$ and $\mu_2(E)=\mu(E\cap (H-U))/s$, where s=1-t. It follows that $\mu_1\neq\mu_2$, $\mu=t\mu_1+s\mu_2$, and $\mu=t\widetilde{\mu}_1+s\widetilde{\mu}_2$. Then there exists a neighbourhood V of e such that $xVx^{-1}=U$ for all $x\in G$. Observe that $\widetilde{\mu}_2(V)=\frac{1}{s}\int_G \mu(xVx^{-1}\cap (H-U))d\pi(x)=0$. On the other hand, since $f(x)=\mu(xVx^{-1})$ is lower semicontinuous on G, and $f(e)=\mu(V)>0$, there exists a neighborhood W of e such that f(x)>f(e)/2 for each $x\in W$. Thus $\widetilde{\mu}_1(V)=\frac{1}{t}\int_G f(x)d\pi(x)\geq \frac{1}{t}\int_W f(x)d\pi(x)>f(e)\pi(W)/2t>0$. Accordingly $\widetilde{\mu}_1\neq\widetilde{\mu}_2$ so that μ is not an extreme point of $P^Z(G)$. U

EXAMPLE 1. Let $G = S_3$, the symmetric group on three symbols. Let $G = \{a_1, a_2, \dots, a_6\}$, where $a_1 = e$, $a_2 = (1,2)$, $a_3 = (1,3)$, $a_4 = (2,3)$, $a_5 = (1,2,3)$, $a_6 = (1,3,2)$. For $a_j \in G$, let $[a_j]$ be the conjugacy class of G which contains a_j . Then $[a_1] = \{e\}$, $[a_j] = \{a_2, a_3, a_4\}$ for j = 2,3,4, and $[a_j] = \{a_5, a_6\}$ for j = 5,6. Let $A = [a_2]$ and $B = [a_5]$. Note that $G^Z = \{e\}$.

Let μ be the uniform probability measure on A, that is, $\mu(a_j)=1/3$ for j=2,3,4. Then $\mu\in P^Z(G)$ and $e\notin A=s(\mu)$. Suppose that $\mu=t\mu_1+(1-t)\mu_2$, where $\mu_1,\mu_2\in P^Z(G)$ and 0< t<1. We show readily that $S(\mu_j)=A$ for j=1,2, and that $\mu=\mu_1=\mu_2$. Thus $\mu\in \text{ext }P^Z(G)=G^Z$.

Let ν be the uniform probability measure on B. Clearly $\mu \neq \nu$. Define $\lambda = (\mu + \nu)/2$. It follows that ν and λ are elements of $P^Z(G)$, $e \notin S(\lambda) = A \cup B$, and $\lambda \notin \text{ext } P^Z(G)$.

THEOREM 4. ext $M_r = \underline{G}$, and M_r is the closed convex hull of \underline{G} in the strong operator topology of $B[L_2(G)]$.

PROOF. Since ext P(G) = G, we have at once from Theorem 1 that ext $M_r = \underline{G}$. It follows from the Krein-Milman theorem, together with Theorem 1, that M_r is the closed convex hull of \underline{G} in the weak operator topology of $B[L_2(G)]$. Since the convex hull of \underline{G} has the same closure in both the weak operator and the strong operator topologies of $B[L_2(G)]$ (Dunford and Schwartz [17]), the assertion follows. \square

Since G^Z ext $P^Z(G)$, or equivalently, \underline{G}^Z ext M, we have from the Krein-Milman theorem, together with Corollary 1, that M contains the closed convex hull of \underline{G}^Z in the weak operator topology of $B[L_\gamma(G)]$.

REMARK 3. Let $T\in M_r$ and $\mu\in P(G)$ be the associated elements as in Theorem 1. Since G and \underline{G} are topologically isomorphic, we may view the probability measure μ as a probability measure on M_r supported by $\underline{G}=\text{ext }M_r$. It follows that for $f,g\in L_2(G)$,

 $(f, Tg) = \int_{C} \int_{C} f(x) \overline{g}(y^{-1}x) dm(x) d\mu(y) = \int_{C} \langle f, L_{y}g \rangle d\mu(y) = \int_{C} \langle f, Lg, d\mu(L), q \rangle d\mu(x) d\mu(y)$

so that μ is the only probability measure on M_r which represents T and which is supported by ext M_r . Thus a sharper form of the Choquet-Bishop-de Leeuw theorem (see Phelps [18], page 24) holds for M_r .

ACKNOWLEDGEMENT. This work was supported by a grant from NSERC of Canada.

REFERENCES

- 1. WENDEL, J.G. Left Centralizers and Isomorphisms of Group Algebras, Pacific J. Math. 2 (1952) 251-261.
- EDWARDS, R.E. Bipositive and Isometric Isomorphisms of Some Convolution Algebras, <u>Canadian J. Math.</u> 17 (1965) 839-846.
- 3. HEWITT, E. and ROSS, K.A. Abstract Harmonic Analysis, Vol. II, Springer-Verlag, 1970.
- BROWN, J.R. Spacially Homogeneous Markov Operators, Z. Wahrscheinlichkeitstheorie verw. Gebiete. 6 (1966) 279-286.
- STROMBERG, K. A Note on the Convolution of Regular Measures, <u>Math. Scand</u>. 7 (1959) 347-352.
- ROSENBLATT, M. <u>Markov Processes</u>. <u>Structures and Asymptotic Behavior</u>, Springer-Verlag, 1971.
- 7. STROMBERG, K. Probabilities on a Company Group, <u>Trans. Amer. Math. Soc.</u> 94 (1960) 295-309.

- WENDEL, J.G. Haar Measure and the Semigroup of Measures on a Compact Group, Proc. Amer. Math. Soc. 5 (1954) 923-929.
- 9. HALMOS, P.R. Measure Theory, Van Nostrand, 1950.
- 10. KAKUTANI, S. and KODAIRA, K. Über das Haarsche Mass in der Lokal Bikompakten Gruppe, Proc. Imp. Acad. Tokyo. 20 (1944) 444-450.
- 11. BROWN, J.R. Approximation Theorems for Markov Operators, Pacific J. Math. $\underline{16}$ (1966) 13-23.
- 12. HEWITT, E. and ROSS, K.A. Abstract Harmonic Analysis, Vol. I, Springer-Verlag, 1963.
- 13. LAMPERTI, J. On the Isometries of Certain Function-Spaces, Pacific J. Math. $\underline{8}$ (1958) 459-466.
- 14. ROYDEN, H.L. Real Analysis, 2nd ed. McMillan, 1968.
- 15. KAWADA, Y. On the Group Ring of a Topological Group. Math. Japonicae. 1 (1948) 1-5.
- 16. WENDEL, J.G. On Isometric Isomorphism of Group Algebras, Pacific J. Math. $\underline{1}$ (1951) 305-311.
- 17. DUNFORD, N. and SCHWARTZ, J. Linear Operators, Part I, Interscience, 1958.
- 18. PHELPS, R.R. Lectures on Choquet's Theorem, Van Nostrand, 1966.