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ABSTRACT. Let P(G) be the set of normalized regular Borel measures on a compact
sroup G. Llet D be the set of doubly stochastic (d.s.) measures X on G*G such
that A(AsxBs) = A(A«B), where s ¢ G, and A and B are Borel subsets of G. We
show that there exists a bijection p +> X\ between P(G) and Dr such that

\¢_l =m |, where m is normalized Haar measure on G, and ¢(x,y) = (x,xy_l) for
X,y ¢ G. Further, we show that there exists a bijection between Dr and Mr’ the
set of d.s. right multipliers of Ll(G). It follows from these results that the
mapping p> T defined by Tuf = puxf is a topological isomorphism of the compact
convex semigroups P(G) and Mr' It is shown that Mr is the closed convex hull of

left translation operators in the strong operator topology of B[LZ(G)].
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1. INTRODUCTION.

Let G be an arbitrary compact Hausdorff group, let B(G) be the (-algebra of
Borel subsets of G, and let m be normalized Haar measure on G. Let P(G) be the
set of regular Borel measures p on G such that p(G) = 1. Assume that 1 < = e,
Let Lp(C) denote the complex Banach space Lp(G,B(G),m), and let B[LP(G)] denote
the complex Banach space of bounded linear operators from L (G) into itself. An
operator T in B[Lp(G)] is called a positive contraction on LP(G) if Tf =2 0 for
each nonnegative f in LP(G) and HTIIp < 1.

For each positive contraction T on Ll(G)’ the adjoint T* determined by the
equation fG (Tf)g dm = fcf(T*g)dm for f € Ll(G) and g € Lm(G) is a positive
contraction on Lm(C). A positive contraction T on Ll(G) such that Tl = 1, or

equivalently, fCT g dm = fc gdm for g & L _(G), is called a doubly stochastic (d.s.)
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operator. Let D be the set of d.s. operators. Note that T € D if and only if

T* € D. By the Riesz convexity theorem, each d.s. operator T is also a positive

contraction on L (G), 1 < p < =, with [Tl = 1. Let ¢ be the class of measure-

preserving maps g from (G,B(G),m) onto itself, and let ¢1 be the class of maps

¢ in ¢ that are invertible and ¢-1 € ¢. Then each ¢ in ¢ gives rise to a d.s.

operator T¢ that is defined by T¢f(x) = f(¢(x)). For brevity we also write ¢

for {T¢: ¢ € ' and ¢1 for {T¢: ¢ € @l}. For s € G, let L§1 and RS be the

left and the right translation operators defined by Lsf(x) = f(s "x) and

Rsf(x) = f(xs_l). Then both Ls and RS are in él'
An operator T in D 1is called a right multiplier (centralizer) of Ll(G) if

T commutes with right translation operators, that is, TRs = RsT for each s € G.

Let Mr be the set of d.s. right multipliers of Ll(G). The set Mt of d.s. left

multipliers of Ll(G) is defined in an analogous fashion. We see readily that

LS € Mr and Rs € M, for each s € G. Let M = Mr n M,.

LS = Rs € M for each s € Gz, the center of G. Note that if G is Abelian, then

It is plain that

For a semigroup S, the set of elements x in S such that xy = yx for each
y in S 1is called the center of S and is denoted by s?. For topological
semigroups S, and SZ’ an (algebraic) isomorphism of S into S, which is also a

1 1 2
homeomorphism is called a topological isomorphism of S into S,. All functions on

G are Borel mesurable and will always be considered uplto m-equiialence. For two

functions f and g on G, f =g, f g mean that the equality and the inequality,

respectively, are satisfied in the almost everywhere (a.e.) sense with respect to m.
It follows from Theorem 1 of Wendel [1] (see also Edwards [2]; Hewitt and

Ress [3], 35.5) that for each T in Mr’ there exists a unique 4. in P(G) such

that Tf = p*f for each f € Ll(G). Using a d.s. measure, Brown [4] gave an alternate

proof of the above result when the underlying group G is Abelian and compact. The

purpose of this paper is to extend Brown's work [4] for an arbitrary compact group.
Certain preliminary results on P(G) and d.s. measures are given in Section 2.

In Section 3 we show that there exists a bijection between Mr and Dr (Proposition

5), and that there exists a bijection between Dr and P(G) (Proposition 6). Using

Propositions 5 and 6, we prove (Theorem 1) that the mapping . ~ Tu defined by

Tuf = puxf 1is a topological isomorphism of the compact convex semigroups P(G) and

Mr' In Section 4 we show that T € M_ is an isometry of Ll(G) if and only if 1 is a

left translation operator (Theorem 3), and that the set of extreme points of Mr is

the group G of left translation operators, and Mr is the closed convex hull of G

in the strong operator tcpology of BfLZ(C)] (Theorem 4). By minor modifications of

our arguments we obtain analogous results for M

2. PRELIMINARIES.

7"

Let C(G) be the Banach space of complex continuous functions on G. For i,

v € P(G), there exists, by the Riesz representation theorem, a unique measure |ukv
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in P(G) such that [ f(z)dpxv(z) = [/ f(xy) du(x) dv(y) for each f € C(G). Thus
P(G) 1is a semigroup gnder the convolggion operation. It follows from Theorem 2 of

Stromberg [5] that uxv(A) = qu(Ay-l)dv(y) = va(x-lA)du(x) for each A € B(G). As
usual we shall identify P(G) with a subset of C(G)*, the dual space of C(G). We
show readily that P(G) 1is convex and is compact in the weak* topology. It is well-

known (Rosenblatt |6]) that for u,v in P(G), the convolution operation p*v is
jointly continuous in 1 and v with respect to the weak* topology. Therefore P(G)
with the convolution operation and the weak* topology, is a compact, convex, Hausdorff
semigroup.

We state without proof the following result of Stromberg [5].

LEMMA 1. (Stromberg). Let X be a compact Hausdorff space and f a continuous

mapping of X into itself. 1If 4 is a regular Borel measure on X, then so is the

-1
measure uf .
For p € P(G), the adjoint y' defined by p'(A) = u(A—l) is an element of P(G)
and (p'")' = p. For each x € G, " be the probability measure such that -X(A) = XA(x)

for A <« G, where XA is the characteristic function of A. Note that a; = £ 1

It is easily seen that the mapping x - tx is a topological isomorphism of G into
the compact semigroup P(G).

A characterization of the center PZ(G) of the semigroup P(G) 1is given by
Stromberg [7]. It is straightforward to prove the following proposition.

PROPOSITION 1. PZ(C) is a compact, convex, Abelian subsemigroup of P(G).

Let Pi(G) be the set of idempotents 1 of P(G), that is, p*xu = p. For any
compact subgroup H of G, let m be normalized Haar measure on H. We shall always
extend the measure L in P(H) to a unique measure in ?(G), denoted also by My
as follows: mH(A) = mH(AﬂH) for A € B(G). Then my € Pl(G). Theorem 1 of Wendel
[8] states that u € P(G) if and only if there exists a unique compact subgroup H
of G such that . = my. It is routine to verify that Pi(c) is a compact subset
of P(G). Since, for arbitrary compact subgroups H and K of G, the set HK is

not always a subgroup of G and the set Pl(G) is not necessarily a

Mg T Phk?
subsemigroup of P(C). Let e denote the identity of G. Observe that

%(m + ne)* %(m + &e) = (3n + ae)/4 # %(m + ee).

Therefore Pi(G) is not a convex set.
The set Pi(G) n PZ(G) contains Haar measure m and the point mass o and
is a compact subset of P(G). For p € P(G), let S(u) be the support of .
PROPOSITION 2. Let i be in P(G). The following assertions are equivalent:
(1) u is in PY(E) N PP(0);
(ii) there exists a unique compact subgroup H of G such that p =m, and

H

LS*mH*nj = m, for each s € Gj

(iii) there exists a unique compact normal subgroup H of G such that p = m,.
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PROOF. It is known (Stromberg [7]; Wendel [8]) that (i) and (ii) are equivalent.

Suppose that (ii) holds. Then we have, for each s € G,

H = S(mH) = S(eS*mH*eé) = S(es)S(mH)S(eé) = sHs_l, so that H 1is a compact normal
subgroup of G. Thus (ii) implies (iii).

Suppose that u = me, where H 1is a unique compact normal subgroup of G. We
shall show that (S*mH*e; = m, for each s € G, or equivalently, mH(s—lEs) = mH(E)
for s € G and E € B(G). Let ¢S(x) = sxs_l. Since the inner automorphism ¢S of
C is a homeomorphism of G onto itself, and ¢S(H) = H, we have, from Lemma 1,

me;l € P(G), and s(mH¢;1) =H. For s €G, a €H, and E € B(G) N H, we have
h = s_la-ls € H, ¢>s(x)a_l = ¢S(xh), and

m T (E) = [ (o (0a™h) dm G = Jxp (e (ehdmy () = k(o (x0)dm () = me™ (B,
so that by the uniqueness of Haar measure on H, my = mH¢;l. That is,
mH(E) = mH¢;1(E) = m(s_lEs). Therefore (?ii) implies (ii?. [a) ]
It is easy to verify that for u € Pl(G) and v € Pl(G) n Pz(G), KAV = vip € Pl(C).
We also have
PROPOSITION 3. Pi(C) n PZ(G) is a compact, non-convex subsemigroup of P(G).
We omit the elementary proof of this proposition.

For u € P(G), let P: GxB(G) - [0,1] be such that
' -1
P(x,A) = 1 *ax(A) = p(xA 7).

Then P(x,A) 1is a transition (probability) function which is a regular probability
measure on B(G) for each x € G and a Borel function of x for each A € B(G). It

follows easily that
fGP(x,A)dm(X) = m(A) 2.1)

for A € B(G), and
P(xs,As) = P(x,A) (2.2)

for s,x € G and A € B(G). Note that the transition function P(x,A) has an
invariant measure m and is invariant under right translations. The transition
function P(x,A) = u(xA-l) gives rise to the Markov operator P = P“ from C(G) into
itself by the formula Pf(x) = ICP(x,dy)f(y) = fo(y‘lx)du(y). It follows from (2.1)
and (2.2) that fGPfdm = fcfdm for f € C(G), P1 = 1, and PRS = RSP for s € G.
See Rosenblatt [6] for details. By the usual argument the Markov operator Pu is
uniquely extended to an operator T’J in Mr' We shall see in Proposition 7 that each
T ¢ Mr is induced by a unique Markov operator Pu on C(G).

Let P(G<G) be the set of regular probability measures on (GxG,B(GxG)), where
B(GxG) denotes the n-algebra of Borel subsets of GxG. A measure X\ 1in P(GxC) is

called a d.s. measure on GxG if



DOUBLY STOCHASTIC RIGHT MULTIPLIERS 481

N(AXG) = N(GxA) = m(A) (2.3)

for each A € B(G). Let D be the set of d.s. measures on GXG. A probability measure
A on the product measurable space (GXG,B(G)*B(G)) satisfying (2.3) is called doubly
stochastic by Brown [4]. Let {Xn: n =2 1} be the right random walk on G generated
by m and p € P(G). That is, {Xn} is the Markov process with state space G,
initial distribution m, and stationary transition function P(x,A) = u(xA-l). If X\
denotes the joint distribution of Xl and X2, then X\ is a d.s. measure on
(6xG,B(G)*B(G)). If G 1is metrizable, then B(G)*B(G) = B(GXG), so that these two
definitions are equivalent. However we have B(G)xB(G) g B(GxG) in general, so that
a d.s. measure in the sense of Brown [4] is not an element of D. Let BO(C) be the
o-algebra of Baire subsets of G, and let BO(GXG) be the o-algebra of Baire subsets
of G»G. Note that Bo(cxc) = B,(G) B (G).

LEMMA 2. For each probability measure o on (GxG,B(G)xB(G)) satisfying (2.3),
there exists a unique X in D such that X(E) = o(E) for each E in B(G)xB(G).

PROOF. Let o, be the Baire restriction of o, that is, OO(E) = o(E) for each

0

E ¢ BO(GXG). Then % is a Baire measure on (GXG,BO(GXG)) such that

OO(AXG) = OO(GXA) = m(A) for each A € BO(G). Let X\ be the unique, regular Borel
measure on (GxG,B(GXG)) which extends o (see Halmos [9], 54.D). We shall show

0
that A also extends o. It is enough to show that X(Clxcz) = G(ClXCZ) for all
compact sets C1 and C2 in G. By the regularity of Haar measure m there exist
' _ s o .
compact Gés, Al and A2, such that Cj « Aj and m(Aj Cj) 0 for j 1,2. Since

m is completion regular by a theorem of Kakutani-Kodaira [10] (see also, Halmos [9],

64 .H), there exist B and B in B_(G) such that A, - C, ¢« B, and m(B,) = 0
1 2 Y ] ] j h|

for j = 1,2. Note that

AR, - CIXC2 = [(Al-Cl)XAZ]U[C1X(A2-C2)]£(leG)U(GXB2).

Then we have

X(Ale - Clxcz) = X(lec) + X(GXBZ) = oo(BlXG) + OO(GXBZ) = m(Bl) + m(Bz) =0,

2

so that X(Clxcz) = X(AlXAZ) = UO(AleZ). Similarly we also have

O(ClXCZ) = o(Alez) = o (A, xA_ ), and so our assertion is proved.

01 2
If Xl and Xz are any two measures in D both of which extend v, then they
also extend the Baire measure 00, so that Xl = XZ. a]

We obtain readily from Corollary of Brown [11], together with Lemma 2, the
following proposition.

PROPOSITION 4. There exists a bijection T +> A between D and D such that

A(A*B) = fGXATXBdm (2.4)

for all A, B € B(G).
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3. DOUBLY STOCHASTIC RIGHT MULTIPLIERS.
Let l)r be the set of measures A in D such that A(AsxBs) = A(AxB) for all

A,B € B(G), s € G. For each s € G, let Ts(x,y) = (xs_l,ys_l) for x,y € G. It is
easy to see that for each X €D, X € l)r if and only if XT;I = X for each s € G.

PROPOSITION 5. There exists a bijection T «» X between Mr and Dr satisfying
relation (2.4).

PROOF. Let T and X be the associated d.s. operator and d.s. measure as in
Proposition 4. Then T € Mr iff T = RS-ITRS for all s € G iff TXB = RS“ITRSXB
for all B € B(G), s € G iff X(AxB) = (AsxBs) for all A,B € B(G), s € G. O

For u,v € P(G), there exists, by the Riesz representation theorem, a unique

regular Borel measure usv  in  P(GXG) such that

[ AEx,y)dusv(x,y) = fG(fo(X,y)du(X))dV(y) = fG(fo(x,y)dV(y))du(x)

GG

for all continuous functions f(x,y) on GxG. Note that u%v is the unique regular
Borel measure on GxG which extends the product measure uxv on (GxG,B(G)*B(G)).
Note also that Haar measure m#m on the compact group GXG is an element of Dr'
Let % and m be the mappings from GXG onto G defined by &(x,y) = lex and

n(x,y) = xy-l. Then both & and 7 are continuous surjections. Define ¢ and V

on GxG by
-1 -1
e (x,y) = (x,xy 7), ¥(x,y) = (x,y "x).
Then ¢ 1is a homeomorphism of GXG onto itself with ¢-l =V and is mm measure-
preserving.

PROPOSITION 6. There exists a bijection X <= i between D and P(G) such
-1 r
that M = m~jL.

LEMMA 3. There exists an injection A — p from D into P(G) such that
X¢-l = msl, and in this case we have L = Xn_l. i

PROOF. For each \ € Dr and for each B € B(G), let OB be the Borel measure
on G defined by GB(A) = X¢_1(AXB). It follows from the regularity of Haar measure

m that, for + > 0 and A € B(G), there exist a compact set C and an open set U
such that C ¢ A « U and m(U-C) < ¢. Then we have QB(U-C) : m(U-C) < £, so that

SB is a regular Borel measure. Since, for each s ¢ G, the mapping
-1 -1
TS(x,y) = (xs ",ys ') is \ measure-preserving,

1

0g(A) = o Liax) = xT; oo L (axB) = m'l(Ast) = €,(as)

for all s € G, A € B(G), so that by the uniqueness of Haar measure there exists c = 0
such that OB = cm. It follows that ¢ = eB(G) = Xn_l(B) and X¢-1(AXB) = m(A)Xn-l(B)
for all A, B € B(G). By Lemma 1 we have X¢—l € P(G*G) and Xn—l € P(C). Since two
regular Borel measures X¢_l and m«&n_l agree on all Baire sets of GxG, we have
*¢_1 = mwkn_l. 1f X¢-l = mmi1 for some . € P(G), then

-1 - -
p(A) = m~u(GxA) = M (GXA) = X\ 1(A) for A € B(G), so that p = An l. It is clear
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that the mapping X » g is injective. 0O

PROOF OF PROPOSITION 6. It remains to show that the injection defined in Lemma
3 is surjective. TFor each p € P(G), let X\ = (méu)w—l. By Lemma 1 we have
X € P(GxG). 1t follows that, for A and B in B(G),

MAXB) = (¥ (AB) = [ m(ANyBYdu(y),

so that A(A%G) »(GxA) = m(A). Since m(AsflyBs) = m(ANyB) for all
A,B € B(G), s,y € G, we obtain XA(AxB) = A(AsxBs). Therefore \ € Dr' Using ¢ = W-l
we also have X¢-l = mML. O

PROPOSITION 7. There exists a bijection u +— T“ between P(G) and Mr such
that T“f = pyxf for each f € Ll(G).

PROOF. Let u € P(G), M\ € Dr’ and T € Mr be the associated elements determined
by Propositions 5 and 6. Clearly the mapping u -+ T“ =T 1is a bijection from p(G)

onto Mr. Then we have
[k Txgdn = MAXB) = (ma)¥ ™ (AXB) = J X, () (U, (v ) du(y) )amte)

for A and B in B(G), so that TXB(x) = fGXB(y’lx)du(y). Therefore we have
Tf = uxf for each f € Ll(G). 0

It is shown by Brown [11] that D with the weak operator topology of B[LZ(G)]
is a compact, convex Hausdorff semigroup, and that on the set D the weak operator
topologies of B[LP(G)], 1 £ p < », coincide. An elementary argument shows that Mr
is a compact, convex subsemigroup of D.

THEOREM 1. The mapping p ~> Tu of Proposition 7 is a topological isomorphism
between the compact convex semigroups P(G) and Mr

PROOF. It is straightforward to show that T T =T , T ,=T*% , and
[TAY) L

*
Tt“+(1—t)v = tTu + (l-t)TV for p,v € P(G) and t € [O,IT.v By Propos?tion 7 the
mapping p - Tu is an isomorphism of P(G) onto Mr' Note that the mapping is a
regular representation of P(G) (see Hewitt and Ross [12], 22.11).

To prove that the mapping p - Tu is a homeomorphism it is enough to show that
the mapping is continuous, or equivalently, whenever a net(ua) converges to |1 in

P(G), the net (T“ ) converges to Tu in Mr’ Let £ and g be real continuous
a
functions on G such that [f(x)| = 1, |g(x)] =1 for x € G. Since

fog(x,y) = f(y—lx) is right uniformly continuous on GxG, there exists, for each
€ > 0, a neighbourhood U of the identity e of G such that for all y € G,

|f(y—lx) - f(y—lx')| < ¢/8 for xTeu.

Since G is compact, an open covering {Ux: x € G} of G has a finite subcovering

{Uj: j =1,2,...,n}, where Uj = ij. Then we have that for all y € G,

-1 -1 .
sup [f(y"™x) - £(y "x")| < €/4, j = 1,2,...,n,
x,x' € Uj
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and that

sup [P £G) - P (x| < e/4, § =1,2,...,m,
x,x' € Uj
for all v € P(G), where Pvf(x) = fcf(y_lx)dv(y). Let ha(x) = P“ f(x) - Puf(x).
It follows that for all a , a

sup |ha(x) - ha(x')| <e/2, j=1,2,...,n.

x,x'" € U,
J
Define a finite partition {Ej: j=1,2,...,n} of G by E, = U and
j-1
E.=U, - UU, for j =z 2. Choose a point a, in E,, j = 1,2,...,n. Then we
S i j

obtain that for all a ,

sup |ha(x) - ha(a.)| < ef/2, j =1,2,...,n.
x € E, J

A simple calculation yields

n
|jh(x)(quf(x) - Puf(X))dm(X)I = Jolh () [dm(x) = jzlejlha(X)ldm(X)
n n |
< 2 J. |h(x) -h(a.)]dn(x) + £ |h (a,)
. E.'"n a . a
=1 ) =1 * J
n
<e/2+ T |P f(a,) - P f(a.)]|
j=1 Mo J v
for all a . Since Ry ™ My there exists 9 such that for all a =2 Ry
lPu f(aj) - Puf(aj)l < €/2n, j =1,2,...,n,

a
so that

|ng(X)(P“af(x) - Puf(x))dm(x)l <e for azag.

Thus T - T . o
W
a

REMARK 1. We may show readily that there exists a homeomorphism . -» Tu between

2
and that this mapping is not an isomorphism. (See Hewitt and Ross [12], 22.21)

the compact convex semigroups P(G) and M, such that Tuf = f*u for f € L2(G),

COROLLARY 1. The mapping u - Tu of Theorem 1 carries P°(G) onto M and is
a topological isomorphism between the compact convex Abelian semigroups PZ(G) and M.
PROOF. In view of Proposition 1 and Theorem 1, it is enough to show that the

mapping | > T is a bijection between PZ(G) and M . Note that Ls = Te for
.~.
s
s € G . Then we have from Theorem 1, together with Theorem 2.5.1 of Stromberg (7],

z
th € i * = * =

at p € P7(G) iff p € ek for s € G iff TuLs T”*ES
s € G iff T“ € M. o

=T ,,=L.T for
€ *u s K
s

We also have from Theorem 1, the following corollary.

COROLLARY 2. M 1is the center of the semigroup Mr

As an immediate consequence of Proposition 3 and Corollary 1 we have
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COROLLARY 3. The mapping u - Tu of Th:orem i induces a topologi;al
isomorphism between the compact semigroups P (G)NP"(G) and {T € M: T = T}.

It is easy to see that'the mapping p - T“ of Theorem 1 induces a homeomorphism
between the compact sets P (G) and (T € M : 12 = T}.

PROPOSITION 8. Let p € P(G) and T € Mr be the associated elements as in
Theorem 1. The following assertions are equivalent:
(1) u*u
(ii) % - T;
(iii) T(fTg) = TfTg for f£f,g € L_(G).

PROOF. The equivalence of (i) and (ii) is obvious. If we put f =1 in (iii),
then ng = Tg for all g € L _(G), so that T2 = T. Therefore (iii) implies (ii).

s

Suppose that (i) holds. Then u = M, where H 1is a compact subgroup of G .
It follows that for f,g € L_ and x € G,

T(T8) (x) = J,f &y 0 Taly 0 du(y) = Jyf () Ta(yx)du(y)
= Ty G0 (s (T 0 du@Xey) = [y () (Jyg () du(2))dity)
= J'Hf(yX)(ng(ZX)du(Z))du(y) = Tf(x)Tg(x).

Thus (i) implies (iii). o

4. LEFT TRANSLATION OPERATORS.

Let G be the set of left translation operators, G = {L_: s € G}. Then it is
plain that G 1is a subgroup of the compact semigroup Mr .

THEOREM 2. The mapping s - Ls is a continuous injection of G into Mr and
is a topological isomorphism of the compact groups G and G .

PROOF. We shall show that the mapping s - LS is a continuous map from G into

M . For s € G, let
U(LS: f,g,e) = {T: T € Mr’ |<g,(LS-T)f>|<e),

where f,g € C(G) and € > 0. Since h(x,s) = g(x)f(s-lx) is right uniformly
continuous on GxG, there exists a neighborhood V of e such that
|h(x,s) - h(x,t)| <~ ¢ for all t in Vs and for all x in G, so that
Lt € U(Ls: f,g,e) for all t in Vs. This proves that the mapping is continuous.
We verify easily that the mapping is an algebraic isomorphism of the groups
G and G. It follows that, since G 1is compact, G is a compact subgroup of Mr'
and so the assertion follows. O
As an immediate consequence of Theorem 2 we obtain
COROLLARY 4. The mapping s - LS of Theorem 2 carries the center G2 of G
onto the center g? of G and is a topological isomorphism between the compact
Abelian subgroups ¢ and gz.
We prove the following characterization of a left translation on G.
LEMMA 4. Let ¢ be a mapping from G into itself. The following assertions

are equivalent:
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(i) ¢(xy) = ¢(x)y for all x,y € G;
(ii) there exists an element s in G such that ¢(x) = sx for all x € G.

PROOF. If (i) holds, we put s = ¢(e), so that ¢(x) = ¢(ex) = ¢(e)x = sx for
all x € G. Clearly (ii) implies (i). o

Similarly we prove that a mapping ¢ from G into G is a right translation
iff ¢(xy) = x¢(y) for all x,y € G.

LEMMA 5. &, NM_=0NM =G

PROOF. Since G - ¢ n Moo n M_, it suffices to show that ¢ n M -G If
T¢ €onN M, then R _1T¢ = T¢R 1 for each y € G, so that ¢(xy) = ¢(x)y for
x,y € G. By Lemma 4ythere exisZs s € G such that ¢(x) = sx for all x € G, and
so T¢ = LS_1 €G. 0o

THEOREM 3. Let T be in Mr' The following assertions are equivalent:

(i) T 1is an isometry of LP(G) into itself for all p € [1,»);
(ii1) T 1is an isometry of PP(G) into itself for some p € [1,¢);
(iii) T is in G.

PROOF. Clearly (i) implies (ii). Suppose that (ii) holds. Let T € Mr and

it € P(G) be the associated elements as in Proposition 7. Let P be the Markov
operator on C(G) defined by Pf(x) = fGP(x,dy)f(y), where P(x,A) = u(xA_l). It
follows from (ii), together with Jensen's inequality, that, for each nonegative f
in ¢(6), |P£|P(x) = P|f|P(x) m-a.e. If the equality holds at a point x € G, then
the measure P(x,.) 1is a unit mass at some point o(x) € G, that is,
P(x,.) = ec(x)(')' Thus we have P(x,.) = eo(x)(') m-a.e. The mapping o(x) is
defined on G m-a.e., but it can be defined everywhere on G in the usual manner.
We show readily that T = Tc €onN Mr’ and so by Lemma 5 T 1is in G. Therefore
(iii) holds. Clearly (iii) implies (i). o

COROLLARY 5. Let T € Mr' The following assertions are equivalent:

(i) T 1is an isometric, algebra isomorphism of LI(G);
(ii) T 1is an isometry on LI(G);
(iii) T dis in G.
COROLLARY 6. Let T € Mr' The following assertions are equivalent:
(i) T 1is a unitary operator on L2(G);
(ii) T 1is an isometry on L2(C);
(iii) T dis in G.

By a measure-preserving set isomorphism ¥ on (G,B(G),m) we shall mean a
mapping ¥ of the measure algebra <B(G),m> into itself such that V(G) = G,
V(G-A) = G - ¥(a), W(.OG A) = ﬁw(Aj), and m(y(A)) = m(A). Lec ¥ be the family of

j=1 j=1
such set mappings V¥ . Each V¥ € ¥ defines a unique operator TW € D such that
T A = . . y . . . . .
v A XW(A) We also write Y for {T¢' ¥ €V} In particular, if G is a compact

metrizable group, then each set-mapping V € ¥ is induced by a point-mapping
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¢ € @, so that T\yXA = T¢XA, that is, ¥ = ¢. See Lamperti [13]; Royden [14] for
details. We prove the following analogue of Theorem 3 for D.

PROPOSITION 9. Let T be in D. The following assertions are equivalent:
(i) T 1is an isometry of LP(G) into itself for all p € [1,»);

(i1) T 1is an isometry of LP(G) into itself for some p € [1,%);
(iii) T is in VY.

PROOF. Clearly (i) implies (ii). We next show that (ii) implies (iii). If T
is an isometry of L (G) for some p: 1= p <, p# 2, then by Theorem 3.1 of
Lamperti [13], we have T € Y. If T is an isometry of LZ(G)’ then, by the
argument of Brown |11], pages 22, 23, we obtain T € ¥. It is straightforward to
show that (iii) implies (i). o

The following corollary follows from Theorem 3 and Proposition 9.

COROLLARY 7. ¢ N Mr = G.

REMARK 2. By the Kawada-Wendel theorem (Kawada [15]; Wendel [1,16]), we have
that for each T in D, T is an isometric, algebra isomorphism of Ll(G) onto
itself if and only if T = T¢ € ¢1, where ¢ 1is a homeomorphic automorphism of G.

For a convex subset K of a real or complex vector space, let ext K be the
set of extreme points of K. We write G and G for the sets {ex: x € G} and
{Ex: x € G®}. We verify easily that extP(G) = G and

6% = P%(G) N ext P(G) < ext PZ(G).

Fxample 1 will showthat ext P%(G) # G® in general. It is known (Stromberg [7]) that
for each u € P(G), the measure H defined by H(E) = qu(xEx-l)dm(x) is an element
of P(0).

LEMMA 6. If . is a measure in PZ(C) - Gz such that e € S(u), then it is not
an extreme point of P2(0).

PROOF. Let S(p) = H. Then there exists a neighborhood U of e such that
0<t=u(U) <1. Define the measures Hy and Ky in P(G) by ul(E) = u(ENU) /t
and uZ(E) = w(EN(H-U))/s, where s =1 - t. It follows that Hy # Hys B = iy + sk,
and p = tﬁi + sﬁz. Then there exists a neighbourhood V of e such that x\’x_1 - U
for all x € G. Observe that'ﬂz(v) = % fcu(xVx_lﬂ(H-U))dm(x) = 0. On the other hand,
since f(x) = u(xVx-l) is lower semicontinuous on G , and f(e) = u(V) > 0, there
exists a neighborhood W of e such that f(x) > f(e)/2 for each x € W. Thus
HI(V) = % fo(x)dm(x) = % fwf(x)dm(x) > f(e)m(W)/2t > 0. Accordingly ai * E& so
that p is not an extreme point of P%(G). o

EXAMPLE 1. Let G = S3’ the symmetric group on three symbols. Let
176 2, = (1,2), ay = (1,3), a, = (2,3), ag = (1,2,3),
ag = (1,3,2). For aj € G, let [aj] be the conjugacy class of G which contains

G = {al,az,...,a6}, where a

aj. Then [31] = {e}, [aj] = {32,33,34} for j = 2,3,4, and [aj] = (35,36] for

j =5,6. Let A= [32] and B = [a_]. Note that 6% = {e}.

5
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Let p be the uniform probability measure on A, that is, p(a. ) = 1/3 for
j=2,3,4. Then p € Pz(G) and e f A = s(u). Suppose that p = iy + (l-t)uz,
where Hyoky € P(G) and O < t < 1. We show readily that S(pj) = A “or
j = 1,2, and that u = By = Hy- Thus . € ext Pz(G) -G%.

Let v be the uniform probability measure on B. Clearly u # v. Define
(u+v)/2. 1t follows that v and ) are elements of Pz(G), e § sA)=aUB,
and A ¢ ext PZ(G).

>
1]

THEOREM 4. ext M =G, and M is the closed convex hull of G in the strong
operator topology of B[LZ(G)].

PROOF. Since ext P(G) = G, we have at once from Theorem 1 that ext Mr =G. It
follows from the Krein-Milman theorem, together with Theorem 1, that Mr is the
closed convex hull of G in the weak operator topology of B[L2(G)]. Since the
convex hull of G has the same closure in both the weak operator and the strong
operator topologies of B[LZ(G)] (Dunford and Schwartz [17]), the assertion follows. ©

Since G° ¢« ext PZ(G), or equivalently, g? C ext M, we have from the Krein-Milman
theorem, together with Corollary 1, that M contains the closed convex hull of gz
in the weak operator topology of B[LZ(G)].

REMARK 3. Let T € Mr and L € P(G) be the associated elements as in Theorem
1. Since G and G are topologically isomorphic, we may view the probability
measure | as a probability measure on Mr supported by G = ext Mr . It follows
that for f,g € LZ(G)'

E,Tge = [l £0ORG ARG duy) = S, <£,Lgdu(y) = [ <f,LgdiL),

s0 that p 1is the only probability measure on Mr which represents T and which is
supported by ext Mr . Thus a sharper form of the Choquet-Bishop-de Leeuw theorem
(see Phelps [18], page 24) holds for Mr
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