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ABSTRACT. This paper is concerned with the r-th mean differentiability. In the
mathematical developments regarding the asymptotic expansion and the asymptotic
distribution of the likelihood function, there arises the question whether the
assumptions made on the model imply differentiability in the r'-th mean of the under-
lying random functions, for integer values r'<r. The present paper provides an
answer to this question and also gives the explicit form of the derivatives in the

r'-th mean involved.
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1. INTRODUCTION AND SUMMARY.

For n>0, intcger, let X()’XP"”Xn be the first n+! r.v'.s from a
stochastic process, defined on the probability space (X,A,%‘), whosc pro-
bability law depends on a k-dimensional parametcr 6€6, an open subset of
Rk , k21 and satisfies certain rcgularity conditions. Then, for 6,¢*e@,

let

qj(e;e*) = Qj(ineve*) = a;~——— , nzG
n,o

be specified versions of the Radon-Nikodvm derivatives involved, whcregjr(xo,
X],...,Xn) and Pn’e is the restriction of Pe to the o-ficld An=0(X0’X1’°“’Xn) induced
bv the r-v'.s NPX1,“.,Xn.Also, for anv two parameter points 6 and 8*, let
cu(§ﬂ§j_]xge*)hc the quoticent of the probability density functions of the
random vectors XfJXO,M,.“,ﬁ) and Xj-r Then, as is well known, for large
sample statistical inference, -bascd on the likeclihood function, thc unde-
rlving conditions arc set primarily on the quantitics, qi(fi!5i-1;c’0*)’
j=1.2,...n. Typically thesc conditions include pointwisce differentiabi-
lity with respect to the "moving' paramcter 9% of up to third order. 1t

is also known, howcver, that thesce conditions fail to be satisficd, for
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instance, in such a simple and interesting case as that of the double
exponential distribution.

In relatively recent asymptotic statistical work, the above mente-
oncd type of conditions have been replaced by conditions refering to the
ditferentiability in the r-th mean of the quantities

©;(0,0%;1) = [q.(X.

j ~Jl§j~1 ; e,e*)]]/r , jz1, for some intcger r:1. (1.1)

These conditions do not suffer from the kind of inadequacies mentioned
above and, in addition, are of probabhilistic rather than of analytical
naturc. (See, for cxample, LeCam [1,2], Johnson and Roussas [3-5], Rous-
sas [6], Lind and Roussas [7-8] Akritas [9] and, in particular, Akritas
and Roussas [10].)

2. ASSUMPTIONS AND MAIN RESULT.

In this scction, the assumptions are formulated under which the main
result of this note holds true. To this end, let © be an open subsct of
mk , k-1, and for cach 8:0, let XO’XI"‘° be r.v-.s defined on the pro-
bability space (X,A,% ) and taking valucs in (S,S); here S is a Borel su-
bsct of a Euclidean space and S is the o-field of Borel subsets of S.
These r.v”.s comc from a certain class of stochastic processcs which sa-
tis{y suitablc conditions to be explicitly mentioncd below. Let A, be
the o-ficld induced by the first n+1 r.v-.s, An=0(X0,X1,...,Xn), and lct

P be the restriction of P, to An; that is,

n,o0 6

P =P A, A_ = o(X

A, 0 XqreeesX ). (2.1)

It will be assumed in the following that, for cach €,8%e6, Pn g% Pn g*
for all n>0. Thus, the quantities mj(e,e*;r), jz1, arc wecll defined by

(1.1). Then we have
Assumptions

(A1) For cach n>0, thec probability mecasures {%’e;eee}, defined by
(2.1), arc mutually absolutely continuous.

For 6,6* in ©, definc wj(e,e*;r) by (1.1)
Then

(A2) For each 6e€0, the random functions mj(O,.;r) are differcentiab-
lc[%] in the r-th mean at 6, uniformly in j21, for somc intcger r>i.

Let éj(e;r), j21, be the r-th mecan derivatives involved. Then

(A7) For cach 6e@ and each hemk,

139;h‘<};j(e;r)|r < M_(8,h) (<o), j21.
We may now formulate the main result of this papcr, namcly,

Theorem 2.1. Let the number ry be defined by

|19

T _ r r 2.
rkzm,k-r-1,..., K3 AN
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and let the random functions wj(e,.;rk), j21, be defined by (1.1) with
r being replaced by T Then, for each 6€6 and under assumptions (A1)-
(A3), these random functions are differentiable in the r;-th mean [Pe]
at.0, uniformly in j21. The rk-th mean derivative éj(e;rk) is given by

wj(e;rk) = (r-k)cpj(e;r) (2.3)

and

r
iy . k - .
Eelh wj(e,rk)| < Mrk(e,h) (<), j21. (2.4)
3. PROOF OF MAIN RESULT.
In the course of the proof of Theorem 2.1, the following auxiliary re-
sult will be needed which is formulated here as a lemma. Namely,
LLemma 3.1 For n, j21 integers, let X. and an be r.v”.s defined on

J
the probability space (Q,F,P) and suppose that, for some r>0,

X . {5 X, uniformly in j21.
nj j

Then

E|X_.|T ———>E|Xj|r, uniformly in j21.

nj
Proof. For the two cases (<rs1 and r21, use the cr-inequality and

the Minkowski inequality, respectively (see, for example, Loéve [11] pa-
ges 1955-1956), in order to obtain

1/r T 1/r by T 1/r T
| nJ.| -E |xj| | < EIan - xj[ +E |xnj - X
Since the right hand side above tends to 0, uniformly in j21, so does the
left hand side. The proof is completed.

We may now proceed with the proof of the main result, namely,

Proof of Theorem 2.1. To show that, uniformly on bounded sets of

h and as (U<)A-»0,
1- . Ty . ..
E9|XL¢j(e,e*Ah;rk)-1] - h wj(e;rk)| —> ¢, uniformly in j21, (3.1)

and that relation (2.4) holds.

Suppose for a moment that (2.3) holds true. Then the fact that
rkir implies that

. T r./r
co on k .
Eqlh oj(u,rk)l < (r-K)T Eek Ih‘@j(e;r)|r-

Thus, (2.4) is satisfied by means of assumptions (A3).
In the remaining part of the proof of this theorem, all convergen-
ces will be taken as above, that is, for (0<)A+0 and uniformly on boun-
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ded sets of h. Relation (3.1) holds true for ry =T by assumption (A2).
Assume it to hold true for some rk=1,2,...,r-2 and cstablish it for

rk~|=rk_6 where 8 is defined by the relation
5 - (r-k)°
-k

To this cnd, consider the relation
. - . - . . T 3
(Dj(9,6+?\.h,rk—1) = <pj(e,e+)\h ; rk-ﬁ) = (!’)j(6,9+)\h,rk)(pj(O,6+)\h,—6-) (3.2)

which follows from (1.1). Then by means of (3.2) and (2.3), one has the

following identity

%%[@j(e,e+Ah;rk—1)-1] - h‘éj(e;rk-l)
= Tk mj(6,6+Ah;rk_6)—1] - h'éj(e;rk_s)
=L%—B%(9,9+Ah;rk)-1] - ho (85m)
+{—;\—[(bj(6,6+}\h;%)-1] - hg;(8;5))

+{-}\-[«bj(e,e+)\h;rk)-1] [mj(e,emh;%m]}. (3.3)

Hence the cr-inequality gives

) 1 . rk-l
LelTV[wj(e’e+Ah;rk-]]—1] - h @j(e;rk-1)|
< ? Lol (6,6+Ah;r,)-1 h . (6; [rk—'
- rk-1 RS (p_i ’ ’r]\- ] = (vj ’rl\‘)
R N Eo (6,0+Ah;—) -1 b (05T K
r}\-] 9 T J > 17—8- = - n (pj ( 1-—5")|
2 1 . ] . r ] r-!
+ er'] Eel—f[wj(e,eﬂxh;rpﬂ (nj(e,e+)\h;—5—)-1 |
=I,(A,j)+IZ(A,j)*IS(A,j), (5.4)

where the quantities Ii(A,j) stand for the i-th term, i=1,2,3 on the
right hand side of relation (3.4). Since for all values of k for which

Ty s integer rk-1(rk<r,

(ro-1)/r Ty
2 Lk k1 . I . ko s
T Eq | [(pj(0,0+}\h,rk) 1] h (pj(e,r}\)l o, (3.%)

L (A, §) 7 c +

uniformly in j21, by induction hypothecsis.
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Next,

1=

o

‘6(rk-1)/r I]

2 . 1 ._r_ _ ] _ ‘6. e.r
L )\[(Dj(e,9+)\h, 5) 1 h (DJ( "g)l

g ¢ +0, (3.0)
L (A3 2 e g be

uniformly in jz1, by hypothesis (A2).
Finally to the tcrm Is(A,j) apply the Holder inequality with

in order to get

. k 1 . (r-1)/1}r/K)
SRR o, (0, 0eh; -1 }Lr/w),

(ry-1) - r/(r-k)
%’!"/rlmj(e,e#\h;—%)q[ k

r
k/r 1 L kK r-Wr LTy 11T/8 (3.7
= CTk-1 he |7\*[(0j(9,9+)\.h,rk) ]][ RSN I(Dj(9,9+}\h,—6—) | ( )

By thc induction hypothesis and Lemma 3.1,

1 Tk Tk

gl wj(9,9+Ah;rk)-1 | © > Eglh wj(e;rkl , (3.8)
uniformly in j>1.

Also, by assumptions (A2), (A3) and Lemma 3.1,

r/d

Eele(e,e+kh;%;)-1| 0, uniformly in j21. (3.9

Relations (3.7)-(3.9) imply that Is(k,j)»O, uniformly in j21.

llence, from (3.5), (3.6) and (3.9), relation (3.4) gives

T, -1
k A\

1 e 1) - - hea -
F,el—)\—[(pj(e,eﬂxh,rk 1) 1] h (Dj(e,rk 1] ’
uniformly in j21, which completes the proof of the thcorcm.
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