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ABSTRACT. Orzech [1] has shown that every surjective endomorphism of a
noetherian module is an isomorphism. Here we prove analogous results for
injective endomorphisms of noetherian injective modules, and the duals of
these results., We prove that every injective endomorphism, with large image,
of a module with the descending chain condition on large submodules 1s an
isomorphism, which dualizes a result of Varadarajan [2]. Finally we prove
the following result and its dual: if p 1s any radical then every surjective
endomorphism of a module M, with kernel contained in pM, is an isomorphism,

provided that every surjective endomorphism of pM is an isomorphism.
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1. INTRODUCTION.

Orzech [1] has shown that every surjective endomorphism of a noetherian
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module is an isomorphism. Here we prove analogous results for injective
endomorphisms of noetherian injective modules, and the duals of these
results. We prove that every injective endomorphism, with large image, of a
module with the descending chain condition on large submodules is an
isomorphism, which dualizes a result of Varadarajan [2]. Finally we prove
the following result and its dual: if p is any radical then every surjective
endomorphism of a module M, with kernel contained in pM, is an isomorphism,
provided that every surjective endomorphism of pM is an isomorphism.

2.  CONVENTIONS, NOTATION, AND TERMINOLOGY.

Unless otherwise stated, we use the following coaventions, notation,

and terminology.

All rings are assoclative, but not necessarily commutative. Every ring
has a multiplicative identity element, denoted by 1, which is preserved by
ring homomorphisms, inherited by subrings, and acts as the identity operator
on modules.

We use the word map for module homomorphism. Maps are written on the
side opposite to that of the scalars. Thus the order of writing map
compositions depends on the side of the module.

If M and N are R-modules we usually write Hom(M,N) for Homg(M,N) when
no confusion can arise.

The symbols < and > will be used to denote proper set theoretical
inclusion and containment, respectively, as well as the usual order
relationships. The symbols € and », respectively, are used for the
preceeding if equality can occur.

We recall that a module is noetherian iff it satisfies the ascending
chain condition (ACC) for submodules, and artinian iff it satisfies the
descending chain condition (DCC) for submodules.

A submodule L of a module M is defined to be large (or essential) iff
it has a non-zero intersection with every non-zero submodule of M. A map is
large iff its image is a large submodule. It 1s easy to verify that the
product of large injective maps is large and that under a surjective map
preimages of large submodules are large.

Dually, a submodule S of a module M is defined to be small (or
superfluous) iff whenever S + M~ = M for a submodule M~ of M then we must
have M” = M. A map is small 1ff its kernel is a small submodule. It is easy
to verify that the product of small surjective maps is small and that small
submodules are small in overmodules.

In the following we shall state a number of results and their duals,

but usually only give the proof of one.
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3. MAIN RESULTS.

Let us fix a right R-module M and a submodule M”, and denote the factor
module M/M”~ by M".

THEOREM 1.

(1) If M" is artinian then every injective map in Hom(M,M") is an
isomorphism.

(2) If M” is noetherian then every surjective map in Hom(M~”,M) is an
isomorphism.

PROOF. Part (2) 1s basically a Theorem of Orzech [l1]}. For the sake of
completeness we shall prove its dual, part (1).

Let f be an injective map in Hom(M,M"). We define the following
descending chain of submodules of M: let Mg = M, and for n 2 0, M4 18
defined by Mn+1/M’ = M.

One verifies readily that the M, form a descending chain of submodules
of M, which gives rise to the descending chain Mn/H’ of submodules of M/M~,
which must terminate since M" is artinian. Let n be the least integer such
that M ,,/M" = Mn/M'. If n = 0 then the map f is surjective, and hence an
isomorphism. Otherwise, if n > O then an = fM_,, which is impossible since
M, <M, and the map f is injective.

We now turn to the dual problems.

THEOREM 2.

(1) If M" is an artinian module and M is a projective module then every
surjective map in Hom(M",M) is an isomorphism.

(2) If M” is a noetherian module and M is an injective module then every
injective map in Hom(M”,M) is an isomorphism.

PROOF. We shall prove only part (1) and leave the proof of this and all
subsequent dual proofs to the reader.

Let f be a surjective map in Hom(M",M). Since M is projective this map
splits, so that fg = ly, the identity map on M, with g an injective map in
Hom(M,M"). The preceeding Theorem implies that g is an isomorphism, and
hence f is too.

COROLLARY.

(1) If M is an artinian projective module then every surjective map in
Hom(M",M) is an isomorphism.

(2) If M is a noetherian injective module then every injective map in
Hom(M,M”) is an isomorphism.

THEOREM 3.

(1) If M has an artinian projective cover then every surjective map in
Hom(M,M) is an isomorphism.

(2) If M has a noetherian injective hull then every injective map in
Hom(M,M) 1s an isomorphism.
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PROOF .
(1) Let P be an artinian projective cover of M, with corresponding kernel K.
Any surjective map f in Hom(M,M) lifts to a map g in Hom(P,P) which must be
surjective since P is a cover. Since P is artinian and projective g must be
an isomorphism, which means that its restriction to K is injective. But K is
artinian since P is, and therefore the restriction must be an isomorphism.
Hence the map f i1s an isomorphism.
(2) has a dual proof.

The following theorem gives the dual of and a slight generalization of
a result of Varadarajan [2]. The proof we give, and its dual, differ from
his.

THEOREM 4.
(1) If M" has the descending chain condition on large submodules then every
injective map in Hom(M,M") with large image is an isomorphism.
(2) If M” has the ascending chain condition on small submodules then every
surjective map in Hom(M~,M) with small kernel is an isomorphism.

PROOF.
(1) Let f be an injective map in Hom(M,M"). As before we define a descending
chain of submodules: MO = M and for n > O, H“+1/M' = M.

In order to use the proof given above, we must verify that we now have
a descending chain of large submodules of M". We do this by induction. By
assumption, for n = 0 we have M;/M” = fM large in M". Assume now that M, /M”
is large in M/M”. Since under a surjection preimages of large submodules are
large, we have M, large in M. We need only show that Hn+1/M’ is large in
Mn/M’ and then use the transitivity of largeness. Let m" be a non-zero
element of Mn/M’ = an-l' Since f 18 injective there exists a unique (non-
zero) element m in M _, such that fm = m". Since M, is large in M there
exists an element r in R such that rm is a non-zero element of M. Since f
is injective the element f(rm) = rm" is a non-zero element of Mn+1’ which
concludes the proof.
(2) The preceeding proof can be dualized.

COROLLARY.
(1) If M has the descending chain condition on large submodules then every
injective map in Hom(M,M") with large image 1is an isomorphism.
(2) If M has the ascending chain condition on small submodules then every
surjective map in Hom(M”,M) with small kernel is an isomorphism.

PROOF .
(1) Under a surjective map preimages of large submodules are large.

(2) Small submodules are small in overmodules.
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4.  PRERADICALS.

For preradicals we generally use the notation and terminology of the
book of Stenstrom [3], with some minor modifications. We use the letter p to
denote a preradical, and 0 and 1 to denote the zero and identity functors,
respectively.

A preradical is defined to be a subfunctor of the identity functor.

Each preradical p defines an ascending chain of preradicals p, ,
indexed by the ordinals, as follows: for the ordinal a = 0: poM = 0; for
non-limit ordinals a > 0: p M/p, M = p(M/p,_1M); and for limit ordinals a:
P M = szH with the sum taken over all ordinals b < a.

If we let p” = Zpa then we have an ascending chain of preradicals:

0 =pyg<p=yp < Pp € oo S py € eua S p7 <,

Each preradical p also defines a descending chain of preradicals pb,
indexed by the ordinals, as follows: for the ordinal b = 0: pOM = M; for
non-limit ordinals b > 0: pr = p(pb_lH); and for limit ordinals b, pr is
the intersection of all p3M with the intersection taken over all a < b.

If we let p" denote the intersection of the pb then we have a
descending chain of preradicals:

1=p0>p=pl>p2> . ..>pb> . ..5p">o0.

A preradical p is radical iff p = p”, or equivalently, p(M/pM) = 0 for
all modules M. For any preradical p we have (p”)” = p~ and hence p~ is
radical.

A preradical p is idempotent iff p(pM) = pM for all modules M. It is
easy to verify that for any preradical p the preradical p" is idempotent.

For any module M and ordinals a and b let M, = p,M and Mb = pr. This
defines a corresponding ascending chain of submodules:

0= MO < Ml < M2 € eee € Ma € e €M
and a corresponding descending chain of submodules:
M=M M > . >u > ... 0.
LEMMA, Let M and N be right R-modules and p be any preradical.
(1) If Ma = Ma+l and f is a surjective map in Hom(M,N) with kernel contained
in M, then the naturally induced map f, in Hom(Ma.Na) is surjective.
(2) If MP = MP*! and £ 1s an injective map in Hom(N,M) with image containing
MP then the naturally induced map £ in Hom(N/Nb,M/Mb) is injective.

PROOF .

(1) Since p, is a preradical the image under f of M, is contained in N,.

Since the kernel of f 1s contained in M, there is a canonical map from N to
M/Ma
since M, = M_.,. This implies that N, equals the image of M, under f, i.e.

» under which the image of N, is contained in pa(M/Ha), which 18 zero

f, 1s surjective.
(2) The proof 1is dual.
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THEOREM 5, Let p be any preradical.
(1) 1f P, = Py4) and every surjective map from a submodule of M, to M,
itself is an isomorphism, then every surjective map in Hom(M~,M) with kernel
contained in M7, is an isomorphism.
(2) If pb = pb+1 and every injective map from MP itself to a factor module
of MP is an isomorphism, then every injective map in Hom(M,M") with image
containing M"D ig an isomorphism.

PROOF.
(1) If f 1s a surjective map in Hom(M”,M) then the induced map fa in
Hom(M’a,Ha) is surjective and hence an isomorphism since M, is a submodule
of M . Since the kernel of f is contained in M”_ it must be zero.
(2) The proof 1is dual.
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