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ABSTRACT. We consider functions f analytic in the unit disc and assume the power
series representation of the form

n+1 n+2
2 = & + ...
f(z) z + Jn+l z + an+2 z

where ag is fixed throughout. We provide a unified approvach to radius (onvexity

+1
problems for different subclasses of univalent analytic functions. HNumerous earlier

estimates concerning the radius of convexity such as those involving fixed second co-
efficient, n initial gaps, n+l symmetric gaps, etc. are discussed. [t is shown that

several konown results follow as special cases of these presented in rhis paper.
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ohoerder a and type B, (no+ 1) -fotd sgmme trice Junctoons, functaons weth posctave

neal pant.
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1. INTRODUCT TON.
This paper is directed to mathematical specialists familiar with confermal map-

ping and univalent function thecry. Let P denote the class of functions of the form

PO = 1t b byt (1.1

which are analytic and satisfy Re p(z) 0 tor / =iz T2 I . Let P(:,v)

denote the «lass of functions of the form (1.1) which are analytic in / and satisfv
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the inequality

p(z) -1
Bo@ -0 - G -D | b (1.2

for some a,B(0 < @ < 1, 0 < B < 1) and for all z € A, It is easily seen that P(0,1)=R
In fact, for different values of a,3, the class P(a,B) yields a number of other sub-
classes of P that have been studied by various workers. The advantage of studying
different aspects of P and its subclasses is that the results obtained for these sub-
classes can be successfully applied to obtain estimates for various subclasses of
starlike functions and for functions whose derivatives have a positive real part in A.
For example, Tepper [1] considered starlike functions of the form

f(z) = z + a222 + a3z3 + ., (1.3)

with fixed second coefficient and used the above approach with p ¢ P to obtain a
sharpened radius of convexity result for this class. This also led him to an improve-
ment of an old estimate in support of Schild's conjecture. Later, these results were
generalized by McCarty [2] to starlike functions of order & by considering p ¢ P(1,1).
The authors in [3] considered the problem in a very general setting by considering
P+ P(x,8).

Recently, the authors [4 ] considered starlike functions of the form

+
a2, (1.4)

f(z) =z + a 042

n+1Z

with the coefficient a 41 as fixed and obtained results that led to further improve-

+1
ment of Tepper's results, Here it may be pointed out that it was, perhaps, for the
first time, that this problem was solved by taking the general (n + 1)th coefficient
fixed. Although the results of this paper did lead to sharpening of earlier known re-
sults for the whole class of starlike functions, because of taking p + P, they could
not be applied to a number of various interesting subclasses of starlike functions
that have been studied by numerous workers from time to time,

The aim of the present paper is to provide a unified approach for studying radius

of convexity problems for different subclasses of univalent analytic functions. This

is done by considering functions of the form (1.4) having fixed coefficient a vl

throughout and by considering the corresponding p - P(4,8). This yields not only sec-
ond fixed coefficient results for n = 1 obtained earlier in [2-3] etc., but also leads
to refinement of these results for m > 1., Whereas the substitution of the correspond-

ing coefficient estimate for |a | leads to radius of convexity results for functions

n+1
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with n initial gaps, putting a " 0 gives results for functions with (n+l)-symmetric
gaps. Thus, our approach solves radius of convexity problems for all the different
situations that the workers in this field have been considering. Since we are attack-
ing the problem in a general setting by involving the parameters a,B, the different
subclasses are also being covered.

We introduce the following subclasses: Let, for 0 < a <1, 0 < B8 <1, n 21,

n+l

12 + ... and p(z) satisfies (1.2) for all z € A}

0y = . = n
P (1,8) = {p:p(z) = 1 +b 2" +b
P (bju,B) = {p « Pn(u,B) ib = 28(1 - a)b, 0 < b < 1},

2. PRELIMINARY LEMMAS.

L[}
o

Let B denote the class of functions w analytic in A which satisfy (i) w(0)
and (ii) |w(z)| < 1 for z ¢ A. We need the following lemmas.
LEMMA 1 [5]. 1If w ¢ B, then for all z ¢ A

2 2
[zw'(2) =~ w(z)| < LI LI A . 2.

1- 2)?
LEMMA 2. Let w ¢ B. Then we have
n n-1
Re { 7 w'(z) + (n - 1)z "w(z) } < - —0 — Re {sp(z) + _t g ¢}
(+ 2" ) (1 + 2" ) (s - t) p(2)

2
L F “lsp(z) - c1® - |1 - p)|? , (2.2)

s - 05"t - ) p) |

where p(z) = (1 + tzn_lw(z))/(l + szn_lw(z)), |z]| =r, -1 <t <s<landn=>11is a

fixed integer.
Using the estimate (2.1), the lemma follows easily. Hence we omit the proof.
LEMMA 3. If p(z) = (1 + tzn-lw(z))/(l + szn-lw(z)) and w € b, then for each
b € [0,1] and s,t satisfying -1< t < s < 1, p(z) lies in the disc

Mz) = {¢g: g - A n[ < D, n},

where
2 2n n
Ab _ (@ +br)” - str” (b + 1) D _ (s -t)r (b +r)(1 + br)
= s =
M+ br)? - $2 0+ 1) Ban 1 4 be)? - $22 b + )2
and r = iz’ 1.

PROOF. Since p(z) = (1 + tzn_lw(z))/(l + szn_lw(z)), we have

w(z) = —E:%~:—R££l———— = =[bz + ...] = -zy(2z)
z " (sp(z) - t)
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where § is analytic and ]w(z)| <1 for z € A with Y(0) = b. Now, since (Y(z)-b) =

(1-by(z)) is subordinate to z, it follows that Y(z) is subordinate to (z + b)/(1 + bz)

and so
1 - z n (|z] +b)
p(2) - ¢ ’ s 21" D (2.3)
Taking p(z) = & + in, (2.3) gives
(460 - st m + 1) (s - )r"(b + 1) (1 + br)
g+ in - 7 2 20 7| 2 2 2n 2
(1 +br)" -sr (b + 1) (L +br)" -sr" (b + r)

Hence the lemma follows.

LEMMA 4. 1If p(z) = (1 + tzn_lw(z))/(l + szn_lw(z)) and w ¢ B, then for lzI =r,

we have
2 2
Re {qp(z) + "t) } -5 nLSP(f; = R - pe)”
Pz A - )] )]
2 5 W( +qrn-1(1—r2)—52r2n)(l+ntr (1-r ) t2r2n) (l-strzn)] if Rb < R%
(l-r ) n
> (2.4)

W
W : > R*
L wr if Rb,n B Rn

where
2 n 2 2
W = (qg+nt)(l +br)” +2bt(q +ns)r (1 +r) + (-(1 -b7)(s - t)
+ 2t(q + ns)(1 + bz))rn+1 + (t2q + sznt)rzn(b + r)z, (2.5)
W*x = (1 + br + bsr” + srn+l)(1 + br + ber” + trn+l), (2.6)
2 n-— 2 2n n-1 2 2 2n
*“= - - - - = -
(1 + ntr" (l r ) tr )/ + qr (1 -1 s“r") and Rb,n Ab,n Db,n

where Ab,n’ Db,n are defined as in Lemma 3 and q 2 ns, -1 £ t <s < 1,
PROOF. Let p(z) = Ayt £+ in = Rei¢, then -1/2 < ¢ < 7/2. Denoting the left

hand side of (2.4) by S n(ﬁ,n), we get

2 2n
a(fMmaAy ) dme(a +OR +'—— (Cay +0-a, )2+ 02 - 0% R, .7
%oon H.a T2y e n LalR. @D
and
JU 4
b,n =
o - MR Vb,n(i,ﬂ) (2.8)
where
2 2n 2 2n
V. (£,n) = -2 2 _l_- s'r 1 - 3
b,n " nt(Ab )+ (D nt24 l n(Ab n+€) Al,n>( - 2. IR+ ( n-ls - 57 R
(1 -r’) r (1-r%)
2 _ <2.2n 2.2
= -2ntR cos ¢ + (Dl,n - Ai .t 2A1 R cos ) ( ln_ls r 5 )R+( - s " )R3
’ ’ r T (1-r%) Ta-r?

= Mh’n(R.¢)(Say).
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Since, for fixed r with 0 < r < 1, Ab n " Db decreases as b increases over the in-
b ’

terval [0,1]}, it follows that R 2 R cos ¢ 2 Ab,n - Db,n > Al,n - Dl,n' Thus, for all
b, where 0 < b <1,
2 1 - 5%
M (R,4) = R cos ¢ [-2nt + (D1 . Al’n + 2A1’ R cos ¢ + r? ) ( —————————7;-)]
s (1 -r )
szr2n 2
—_— - - >
2 2R cos ¢ [( n-1 70 ) Ay Dy o) at] > 0,
r 1-rx")

for all s,t satisfying -1 < t < s < 1. Thus V (€ n) is positive for all points in

the disc 6(z). Now, (2.6) gives that, for every fixed &, (£,n) is an increasing

b n
function of n for positive n and is a decreasing function of n for negative n. Thus,
the minimum of U (E n) inside the disc A(z) is attained on the diameter forming part

of the real axis. Setting n =0 in (2.7), we obtain

1 - szr2n
min U (£,m) = N (R) = (q + —— )R
—l<n<l b,n b,n o0 1(1 _ r2)
1 + ntrn-l(l - r2) - t2r2n =1 1 - szr2n
+ n-1 2 R - 2A1 n n-1 2 > (2.9)
r (1 -1") >or (1 -1")

h _ : _ c .
where R Ab,n + ¢ e [Ab,n Db,n’ Ab,n + Db,n]' Thus, the absolute minimum of Nb,rﬁm

in (0,+) is attained at

R* =
n

{_1 + ntrn_l(l - r2) - t2r2n
l 1+ qrn—l(l - rz) - 52r2n

and the value of this minimum is equal to

(R¥)= —E— W+qr® L (1-r2)-s22™) (4 r® L (1-r?)-£ 220y - (1-ser 2D

)1, (2.10)
" la-r?)

. . * <
It is easily seen that Rn Ab,n + Db,n

but R: may not be always greater than
- * - i i
Ab,n Db,n‘ In case Rn ¢ [Ab,n Db,n’ Ab,n + Db,n]’ it can be verified that Nb,n(R)

increases with R in [Ab,n - Db,n’ A.b n + Db n]. Thus the minimum of Nb,n(R) on the

’

segment [Ab n b 0’ Ab n + D ] is attained at R.b = A - D The value of

b,n b,n*

this minimum equals

Nb,n(Rb,n) = Nb,n(Ab,n - Db,n) = wx

whe W and W* i . .6). *) =
iere an are given by (2.5) and (2.6) Moreover, Nb,n(Rn) Nb,n(Rb,n) for

those values of q,n,s and t for which Rb n s R:. Hence the lemma.
’
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3. THE CLASS Rn(a;a,B).

n+l
+ ..
n+lz

which are analytic and satisfy the inequality |(f'(z)-l)/{ZB(f'(z)-a)-(f'(z)—l)}l <1

Let Rn(a,B) be the class of functions f of the form f(z) = z + a

for some a,3(0 < o <1, 0 < B <1) and z ¢ A. It is shown in [6] that for f ¢ Rn(a,B),

20(1 - o)
Ia n+1

n+l’ : . Define

28(1 - a)a zn+1 +

Rn(a;u,B) = {f(z) = z + )

oot ' o€ Pn(a;a,B), 0 <a-= 1},

We determine a sharp estimate for the radii of convexity for functions in Rn(a;a,ﬂ).
THEOREM 1. Let f ¢ Rn(a;a,B), then f is convex in Iz[ < L where r, is the smal-

lest positive root of the equation

(1 +an)? +2a(( + a8 = 1) = 38(1 - W) (1 + r2) + (2208 - 1)

ML 208-1) (28-1)r2 (at+r)? = 0 if R >R

>

- 2B(1-w)n+a’ (4B-2-28 (1-a)n))t

and r, is the smallest positive root of the equation
~ +
21 - ©2) + (41 - 8 - aB)n - 28(1 - WA - a? N - @A - W0waA +0d)

+ 2(1-B-a®)n) " L) + 2(28-1) (1-208)r22(1-1%) = 0 if R _ < R*
a,n n

where
@ - Ltar+ (u8- Dar" + (28 - 1
a,n 1+ ar + (28 - ar® + (28 - 1)r*H
/2
o [ 1+ (208 - Dar™ 1@ - £%) - (208 - 1)2r2“]
n 1+ 28 - Dot - £2) - e - e
and r = |z| < 1. The bounds are sharp for all admissible values of a,B,a and n.

PROOF. Since f ¢ Rn(a;ﬂ,B), an application of Schwarz's lemma gives

1+ @208 - )21 w(z)
1+ (28 - 12" Tu(2)

f'(z) = , (3.1)

where w ¢ B, Logarithmic differentiation of (3.1) gives

' (2) + (0 - D)2" T wiz)
A+ 28 - D" + a8 - 12" e(z))

f"(z)

1+ 2z 7 (2)

=1-2 @ -a) . (3.2)

Applying (2.2) with s = 28 -1 and t = 208 - 1 to (3.2), we obtain

(206 - 1)n

Re {1 + 2 £42) 3 »
p(z)

1
£'(2) 28(1 -

) [Re((2B = 1)np(z) + )

P8 - Dpe) - e - [ - (1 - p(2)[?

P - ) pa)]

(1 -8 - af)n
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where p(z) = (1 + (2aB - 1)zn-lw(z))/(l + (28 - l)zn-lw(z). An application of Lemma 4
with ¢ = (26 - 1)n, s = 28 - 1 and t = 2aB - 1 to (3.3) gives

- £"(z)

ne {1 +Z—f—.Tz—)}

-
1 (VH - (1 - (28 - 1) (208 - D)™

8a - ™A - £

+ (L -Bm+601-a-oanNr @ -] if R < R

) . , , (3.4)
[[(1 +ar)” +2a((B +aBf -1) - B(1 - )n)r (1 +r°) +2QaB -1 - B(L - a)n

2 2. . .
+ az(ZB-I-B(I—u)n))rn+l+(23'l)(2“8'1)r T(atr)71 s A, if Ra,n = R,

where
+1
A = (rare(26-1)ar™(28-1) ™) (1+ar+(2e8-1)ar+(2a8-1) "
and

M= (1+QuB-1)nar" L (1-r2) - (208-1)2r%) (14+(28-D)nr™ L (1-rD) - 28-1)2c™),  (3.5)

g o Lltar+ Qub- Dar + o8 - T
BN ) bar + (28 - 1)ar” + (28 - 1)
1
n-1 2

R < [ 14Gos - D"t - %) - a8 - AP
2 2n :

n 1_1 +28 - Dot - £ - (28 - 1)Pr

Now the theorem follows easily from (3.4).

The functions given by

n n+1
£1(z) = 1 + az + (Q2up - l)azn + (208 - 1):+l if Ra . > R:
1 +az + (28 - 1)az + (28 - 1)z 4
and
1+cz +cag - D2° + (208 - 1)2"
f'(z) = a il if R n < R*
1+cz+c(@B8-1)z2"+ (28 - 1)z s n
where ¢ is determined by the relation 2
1+ cr + c@aB-1)r" + Qo)™ M1+ oDt 0-r?) - (us-1) 2
1+ecr+c@e-1e" + @p-1)" ° L_ 1+ @28-Dnr" ta-r?) - @28-1)%%" _J

show that the results obtained in the theorem are sharp.
Putting 8 = 1 in Theorem 1, we get the following result
COROLLARY 1. Let f ¢ Rn(a;a,l) = Rn(a;a), then f is convex in |z]| < T where T

is the smallest positive root of the equation
(1+ar) P 42a (amn+mo) £ (14r2) 42 (20- L-nnarra® (L-nna) ) 4 (20-1) 2 (a4 = 0 1€ R > R

and r, is the smallest positive root of the equation
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2(1 - £y + (=bom - 201 - &)1 - 2N 2 (@ - 0@ + ) - 200 @+ Y

+2(1 - 20022™(1 - %) = 0 if R, <Rk

,n
where
R _ 1+ ar + (2u - l)arn + (2o - l)rn+l
- ’
an 1+ ar+ar" + 7
— 2
we o | 14 Qu- D" a - h - o - 4"
" 1+ nrn_l a1 - rz) - 2"
and |z| = r < 1. The bounds are sharp for all admissible values of a,a and n.

COROLLARY 2. Let f € Rn(a;l—u, 1/2) = R;(a;a), then f is convex in |zl <r

where r is the smallest positive root of the equation

1+ ar)2 - (n + l)aurn(l + r2) -0a(2 +n + naz)rn+1 =0 if R > R*

and r is the smallest positive root of the equation

4 -+ 2aw® +2m - D -+ PN Y s 0 iE RS R
s
where
Ra’n - 1 + ar I ia;: - arn+l , R: - [l _ unrn-l(l _ r2) _ ot2r2n]l/2
and r = |z| < 1. The bounds are sharp for all admissible values of a, a, and n.

The above result is obtained by replacing a by 1 - o and B by 1/2 in Theorem 1.
It may be noted that, for n = 1, our Corollary 1 gives the corresponding result

due to McCarty [2] while Corollary 2 gives the result which was obtained by Goel [7]

A

- L. 1
under the additional restriction 2 < a 1.

REMARK 1. Replacing («,B) by (0,1) or by (0,1-8) with 0 < § < 1 or by
(0,(26-1)/26) with 3 < § < 1, or by ((1=Y)/(1+y), (147)/2) with 0 <y < 1, or by
((1=8+2y8)/ (1+8), (1+68)/2) with 0 < y < 1 and 0 < § < 1, we get the estimates for the

n+l

z + a 12 + ... with fixed

radii of convexity for functions of the form f(z)
(n + 1)th coefficient of the classes introduced and studied by MacGregor (8],
Shaffer [9], Goel [10], Caplinger and Causey [l11] and the authors [12] respectively.

4. THE CLASS sg(a;u,B)-

n+1

Let S:(a,B) be the class of functions g of the form g(z) = z + a 412 + ...

which are analytic and satisfy the inequality |(zg'(z)/g(z)-1)/{28(zg'(z)/g(z)-u)-

(zg'(2)/g(z)-1)}| < 1, for some u,B(0 <o <1, 0 <B < 1) and z ¢ A. The authors [13]
<

<280 - @)

* o
have shown that for g ¢ Sn(u,B), Ian+ll a
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Define

S;(a;a,ﬁ) = {g(z) = z + 2804 - wa zn+l

- + ...t zg'lg e Pn(a;a,B), 0<a=<«ll

Now, we determine a sharp estimate for the radii of convexity for the functions in
S:(a;a,ﬁ).
THEOREM 2. Let g ¢ S:(a;a,ﬁ), then g is convex in |z| < r where r is the

smallest positive root of the equation

a+ ar)2 +2a(2a8 - 1 - B(1 - W) (1 + r?) +2((208 - A + 32)

B0 - W@l - -0 - 1™+ @8 - D+l =0 if R _ >Rt

and T, is the smallest positive root of the equation

2(1 - 208)%22%(1 - £?) + (B - Wn + 2 - sap)r™ 1 + Y

+ 280 - @ -0y = 20(1 - 208" + 202 -2 =0 if R < R*
where
n n+
1 +ar + (208 - 1)ar + (208 - 1)r
1+ar+ (28 - Dar® + (28 - 1)t

R =
a,n

e [ 1+ a8 - D" @ - %) - g - AP 1/2
Bl 1+ @80 -+ @8- DR - ) - @8 - 1220

and r = ]zl < 1. The bounds are sharp for all admissible values of a,B,a and n.

PROOF. Since g € S:(a;G,B), an application of Schwarz lemma gives

g'(2) _ 1+ (208 - 12" Nu(z)
z ) = =) . (4.1)
1+ (28 =-1)z “w(z)

where w ¢ B and for all z ¢ A.

Differentiating (4.1) logarithmically, we have

g'(z) _ 1+ (208 - l)zn-1 w(z)
8'(2) 4 (28 - 12" Ne(2)

1+ 2z

znw'(z) + (n - l)zn-lw(z) .

A+ 28 - D22 @) A + @B - 12" T (z)

- 281 - ) (4.2)

Applying (2.2) with s = 26 - 1 and t = 208 - 1 to (4.2), we obtain

1
28(1 -

(208 = Dn

Re(l + z g"(2) ) =
p(z)

g'(2)

) [Re(((28 = 1)n + 2B8(1 - a))p(z) + )

@8- p) - @a - DI® - |1 -p@ % (B+aB-Dn
AL - ) o) | B(L - w

1, (4.3)

where p(z) = (1 + (2aB - l)zn—lw(z))/(l + (28 - 1)zn—lw(z)). Now, an application of
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Lemma 4 with q = 2B8(1 - a) + (28 - 1)n, s = 28 -1 and t = 208 - 1 to (4.3) gives the
required results easily.

The functions given by

+1
g'(z) _ 1 +az+ (208 - 1)az" + (208 - 1)z"
2 -
&(z) 1 +az + (28 - az" + (28 - 1)
and
+
g'(z) 1 + cz + (208 - l)czn + (208 - l)zn 1
z (z) = n n+l
g 1+cz+ (28 - 1)z + (28 - 1)z

where ¢ is determined by the relation

Dy (208 - 1)L

+ @8 - o 2 ntl 1/2
- n
1+ Qup - Dl = £ - 08 - 1)3r
= RY = n-1 2 2 o+l
" L+ (28(1 - a) + (28 - Dn)r" "L - r°) - (28 - 1)°r
show that the results obtained in the theorem are sharp.

1+ cr + (208 = 1)cr
1 +cr+ (28 - 1)cr

n

Taking B = 1 in Theorem 2, we get the following result:
COROLLARY 3. Let g ¢ S:(a;a,B) = S:(a,a), then g is convex in Iz] < r where r
is the smallest positive root of the equation
2 n 2 2
(1 +ar)” +2a(2a-1- (1 - ®)n)r"@ + r ) +2(Q2a - 1)(1 + a“)

2

+
n+l 22040220 if R > R

+@-@E* A -0 -n- 1"+ 20- 1)
and r is the smallest positive root of the equation
21 - 20027 = x?) 4 (@ - 0 + 2 - 4™t 4 ) +2((1 - )@ - ad)

n+l1 + 2

- 2n(1 - 20))r 2r" -2 =0 if R < R*
a,n n
where
N 1 +ar + 2o - Dar® + (20 - 1)
bl
a,n 1+ ar + ar® + rn+l
re < | L+ Qo - a1t - ) g - 1220 ]1/2
- ’
n 1+ (2 - 20+ )e™ L1 - £?) - 20
and lzl = r < 1. The bounds are sharp for all admissible values of o, a and n.

For n = 1, Corollary 3 gives the corresponding result due to McCarty [8] which
includes the result obtained by Tepper [1].
COROLLARY 4. Let g € S;(a;l - a,l/2) = S:*(a,a), then g is convex in ]z[ < ro

where r is the smallest positive root of the equation

(1+ar)2—a(n+2)arn(l+r2)—2u(2+(l+n)(l+32))rn+l+u2r2n(a+r)2 =0 if R, > Re

N
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and r is the smallest positive root of the equation

42 (1) + @) et + 20@ebn-a®) ™+ 4r® < 4 -0 iR <Rk
’
where
R _ 1+ ar - aarn - arn+1 and R¥ = r1 - narn_l(l - r2) - a2r2n 1/2
a,n 1 + ar n [ 1+ (“_n—l(1 _ r2)
and sz = r < 1. The bounds are sharp for all admissible values of «, a and n.

The above result is obtained by replacing & by 1 - & and 8 by 1/2 in Theorem 2.

REMARK 2. Replacing (®,B8) by (0,1/2), or by (0,(26-1)/26) with % <§ <1, or by
((1-Y)/ (1+Y), (1+Y)/2) with 0 < Yy < 1, we obtain the estimates for the radii of con-
vexity for functions of the form f(z) = z + an+12n+1 + ... with fixed (n+l)th coeffi-~
cient of the classes introduced and studied by Singh [14,15] and Padmanabhan [16]
respectively.

REMARK 3. The result obtained by the authors [11] regarding sharp radii
of convexity estimates for starlike functions with (n+l)th fixed coefficient can be
obtained from Theorem 2 by putting (o,B) = (0,1).

REMARK 4. Setting n = 1 in Theorem 1 and Theorem 2, we get the corresponding
sharp estimates for the radii of convexity for functions in
Rl(a;u,B) B Ra(a,B), Si(a;a,B) = Sg(u,B) determined in [3].

REMARK 5. The sharp estimates for the radii of convexity for functions in the
classes Rn(u,B) and S:(Q,B) can respectively be determined from Theorem 1 and Theorem
2 by fixing a = 1, which in turn give the results obtained in [6] and [17] for n = 1.

REMARK 6. By setting a = 0 in Theorems 1 and 2, we may obtain sharp radius of
convexity results for functions with symmetric gaps in the classes Rn(a,B) and

S:(cx,B).
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