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ABSTRACT: The time development free convection flow near a three-dimensional stagna-
tion point of attachment on an isothermal surface is studied at large Grashof numbers.
A small time solution and an accurate numerical method is described for determining
the solution of the time-dependent boundary-layer equations. For a range of values

of parameter c, which describes the local geometry, the development of the various
physical properties of the flow are calculated and compared with their values at

small and large values of time. In another range of values of c the numerical results
suggest the development of a singularity in the boundary-layer equations at a finite
value of time. An anlysis is presented which is consistent with the numerical results

and confirms the presence of this singularity.

KEY WORDS AND PHRASES: free connection, boundary layer flows
1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 76R10, 76N0S.

1. INTRODUCTION

Recent studies on the unsteady free and mixed convection heat transfer over two-
dimensional or axi-symmetric bodies with various initial and boundary conditions have
been reported by a number of workers; Elliott (1), Gupta and Pop (2), Ingham (3),
Kikkawa and Ohnishi (4), Katagiri and Pop (5, 6), Jain and Lohar (7), Arunachalam
and Rajappa (8) and Ingham and Merkin (9).

The purpose of the present paper is to furnish some information on the time
dependent free convection flow near a three-dimensional stagnation point of attachment
on an isothermal surface. The boundary-layers are of both nodal and saddle-point type
(for details see Banks (10, 11)). We assume that the surface is initially at the same

temperature T_ as the surrounding fluid which is at rest.
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Then, at time t = O , the temperature of the body is suddenly changed to Tw , a
constant, and then maintained at this value throughout. The governing equations
for this situation comprise an eighth-order system of partial differential
equations involving the Prandtl number Pr and, in addition, a parameter ¢ which
describes the local geometry of the surface. The equations are integrated
numerically and the results of these integrations are presented for various
positive values nf ¢ , which correspond to nodal points of attachment and for
negative values of ¢ , corresponding to saddle-points of attachment. In order to
reduce the number of computations the Prandtl number has been taken to be unity
throughout this paper.

Series valid for small times are also derived for the stream functions and the
temperature. These are used to determine the skin friction and heat transfer
parameters for small times, and these are compared with the numerical solution.

Por values of ¢ greater than some value, say c*, (where c* = -0.1637 for
unit Prandtl number) the numerical calculations could be continued until the steady
state has been reached. These solutions agree with the solutions obtained when
sulving the steady state equations. For c 1less than c* it was found that a
steady state solution did not appear to be approached., A theory is presented
which is consistent with the numerical results and which leads to the presence of a
singularity at a finite time.

2. EQUATIONS OF MOTION

Consider the unsteady three—dimensional free convection flow of an
incompressible viscous fluid near a regular surface. Dissipation effects are
assumed to be negligble and all physical properties of the fluid are taken as
constant except the density variations in the buoyancy terms. Under these
assumptions the boundary-layer equations in the vicinity of the stagnation point

may be written as

%%*%*%‘0' (2.1)
%%*“%‘2’*"%‘,‘*“’% = gB(T—Tw)ax+v:—:"z’- , (2.2)
%% + u g¥ +t v g% + w gg = gB(T-T_)by + v gz% , (2.3)
%EN%%”S—,T,WS—Z-'«f:—f. (2.4)
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where (x,v,z) are Cartesian coordinates with origin O at the stagnation point.
and such that 2z measures distance normal to the surface at O , (u,v,w) are the
respective velocity components, t 1s the time, T 1is the temperature with TQ
the temper-ture of the ambient flnid, g 1s the acceleration due to gravity, @
is the coefficient of thermal expansion, kK 1S the thermal diffusivity and v 1s
the kinemat :c viscosity. The parameters a and b are the principal curvatures
at o
we lok for a solution of equations (2.1)-(2.4) subject to the initial and

boundary ¢ nditicns that

for + S0, u=v=w=0. T=T everywhere ,
for + 20, u=v=w=0. T-= '1'w on z =0, (2.5)
m=0,v=-0. T=T, 6 as z =

where T' 18 the constant body temperature.

To find the solution of (2.1)-(2.5) it is convenient to introduce the stream

functions f and g , where, for the present problem, in terms of the Grashof

number Gy = gB(T,T_)/alv2 we write

u = vaZG;’2 A vaJG;’zy 2 |y o= —vaGi *(E + q)
Az dz r
P o _ . .2.172

h = IP-Tm)/Tw-lm) , T o= vatsy t . (2.6)
zZ = a G;/' z
Equations (2.1)-(2.4) then become

2 z 2 _ 2z 1z
T L. TRNIN T -t S e S (2.7)
0z37 daz 3z~ az?

2= - 2 2z a=
a3 -] = -
L () - Fep &L - cne 2 (2.8)
dzar az 3z
3h f+g) 20 1 a’n
= - (fF+qg) %2 = =22 | (2.9)
ar az Pr 3z2

where ¢ = b/a 1s a parameter describing the local geometry of the body. When
¢ =1, clearly f =g and we recover the solution for the stagnation point flow
on a body of revolution. If ¢ =b=o0, then g = 0 and the problem reduces to

the two dimensional stagnation point flow.
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Equation: (2.7)-(2.9) are not in a form appropriate for solving for small 71
and, to dJdo this, we must first make the further substitution
o= 2t a = 2% . n = z.21Y% . (2.10)
Equations (2.7)-(2.9) then become
3 2 2, 2 2.
f .9 af 't 2 af - 3°f
==+ zn = -4 3= +dh = 4 7 < + 47 [(——) - (L£+g) ———] '
an3 an? an danadr an anz
(2.11)
a’g a’a 3g a’g 2 [ 3g,°? a?
24 2n =2 - a2 v den = ar GrEp v e [‘a ) - (f+g) ——g] (2.12)
an an*® ‘ K an
1_a’h , ,, 3n _ 3h _ ,.2 3h
Pr a2 Zn an 4T 3T 417 f+ay an - (2.13)
n
The initial and boundary conditions corresponding to (2.5) are
T Y0 f =g =hn =0 everywhere.
_ af da - -
T 0 f an g an U, h 1 on 1 o . (2.14)
234 da N
an -0 ., an { as 7 ©
3. SMALL TIME SOLUTION
We can obtain a solution to equations (2.11)-(2.13) valad for small 7T by
expanding f£(7,7), g(mn.T) and h(7,7T) in powers of T which have the forms
fin.7)y = fo(") + 72 flfn) + ...
gin. 7y = goln) + 7t glin) t ... (3.1)
hip.71 = hogn) + 72 hlan) r ...
Upon substituting (3.1) into equations (2.11)-(2.13) we find that
l L) L]
Pr ho + 27 hu = 0.
(3.2)
hu(O) = 1, ho(w) = 0 .
LN ] L) L]
fu + ano - 4 fo + 4 ho = 0,
(3.3)
1 L]
£f (0)Y = fo(D) = 0, fo4w) = 0 .
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"
a, + 27 dg = 490 + 4 c hU = 0,
. , (3.4,
g (Gr = a (0) = @ gnxcn; = 0 .
l L) . ?
—— yi - 1 = - + R
BT h1 + 27 h1 bhx 411+c) foh0
(3.5
hlihz = nl(w) = U
~‘I —Il - -l I- . . L ]
tl + 27 £ - 1z £, + 4n = 4 fc - 4(1l+c £.0,
13.61
. L]
Lt = £ (0) = fltmx = 0
LI LI ] - 1 . -)’.02 . LNy
g, 2n a, - 1z a, v 4.‘h1 =4 c £, - 4c(l+c [ufo
(3.7
L] L]
gl(Or - 91(0) = 0, gl(ml = 0 .
(Here dashes denote differentiatinn with respect to 7 ). The linear differential
equations (3.2)-(3.7) are solved successively. However, the solutions of the

higher order equations rapidly become complicated and much laborious work is needed

to obtain solutions 1in an analytic form and so we give here only the first two

terms 1n €xch expansion and limit attention to the case of Pr = 1 . We find
that
n 2
h : 2 -n
g = erftcm = = e dn ., (3.8)
vr 0
-1 2 . 2 -2 1
fo = g.,c = - Fericn — (2 n°-1) e + —== (3.9)
3V 3vm
2
h, = (i+c) {-(% + 7% + £ g% ertc?n + & (AL nen?ie " erfc 1
1 4 3 v 6
S 2 (1ept e A vt 1, 14, [(1+4n?
- (1 I at 15y [(1tdm
3vm
2
+ 5 9Y) exfcn - & (spe29%) e ), (3.10)

w
<
Bl
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1 74 1 44 . coo2 3 8 6
fl - - [E + 57 + (4 + i cli(l + 607 + 4n°) + 15 " ) erfc n
- 2
e B S 7 e 3B e R 24 Ly g2
= 4 4 2
15vm
+ % (5 + 2¢) n‘ + % (2-c) nS] erfczn
.2
+ - =2 13 13+e) m o+ (23+11ci 2+ 42-0) ®) €77
9Vm
+ (% + %%; (l+c) (1 + 4n2 + % n‘l - -8 — (l+c) n} erfc n
15Vm
2
+ - [202-0) + (84501 27+ 202-¢) %] &7
-2 A1y 1he)sn + 200 e "2+ 2 (1+0) e_.”z
3vr 4 157 157 ’ '
vym
L]
g, = cf- [% + 2%; + (% + %%;)cl[(l + 6nt + %g n°) erfc q
.2
- —§—: (% + 10° + %3 n) e K 1+ [% c + (2c + %) n?
15vm
+ % (245¢c) nt + % (2¢c-1) nS] erfc2y
2
+ (- =2 (3 (1+13c) 7 + (23c+1l) 07 + 4(2c-1) n°] &7
9vm
+ (l+c)(% + igﬂ)(l + 477 + % 2ty - 8 — (1+c)n) erfc 7
1Svm
02
+ & [202c-1) + (5+8¢c) 7% + 2(2c-1) 7*] 727
o2 1 -n?, 4 -7’
— (l+c)(4 + 15")(5n+2n ) e t 157 (1l+c) e ],
3vm
where

fo (0)y = - hu(O) =

Sl

h () = -0.04766(1+c), £

LI

(0) = -0.03824 - 0.01461c ,

g, (0) = -0.0146lc - 0.03824c” .
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The skin friction and heat transfer parameters Cx,Cy and Ch , defined by

Cx i} ;:;ﬁj; [%giz=0' Cy ) ;:2:3y %glzso and Ch T ETT;%T;T gg]2-0
are then, for small 7 ,

¢, - i/ 6" (0.56419 - 0.01912 + 0.00741 c) 2 o0 (3.13)
c, = e cr"‘ (0.56419 - (0.00741lc + 0.01912¢c?) 72 +« ... 13.14)
¢, = 1 Y6t (0.56419 + ©.02383(l+c) TP + ... . (3.15)

4. NUMERICAL SOLUTION

Equations (2.11), (2.12) and (2.13) were solved numerically using essentially
the same method as that described in (9). The method involves first replacing the
T-derivatives by forward differences and averaging all the other terms over the
step length from 7 to T + AT . This leads to three non-linear ordinary
differential equations which are then differenced using central differences and the
resulting non-linear algebraic equations solved iteratively by the Newton-Raphson
process. Equations (2.11), (2.12) and (2.13) are in a form suitable only for
solving for small values of 7T and consequently it is more appropriate for large
7 to solve equations (2.7), (2.8) and (2.9). The change over from one set of
equations to the other was done at 7 = 1 . To keep a check on the errors
introduced by differencing in the T-direction , the step from 7 to T + AT was
covered in one and then two steps and then insisting that the difference between

the two solutions thus obtained was less than some small pre-assigned quantity

(5.1075 in the present context). Also this check could be used for i1ncreasing the

step length as required. All the 1ntegrations were carried out with a transverse
step length of A7 = 0.025 (for 7 < 1) and Az = 0.05 (for T > 1) wath the
outer boundary condition applied at 7 =5 and z = 10 (except for the case of
¢ = -0.5 which is described below). Initially AT = 0.1 but this could be
increased considerably as the steady state was approached.

Values of Cx’ Cy and C obtained from the numerical integration are given in

h

tables 1, 2 and 3 respectively, (note that for ¢ =0, C = 0
y '

Cx = Cy) for various values of T and c . From these we can see that the

and for c¢ =1,
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steady state 1s rapidly approached as 7 — e and that the rate at which thas

steady state 1s approached does not appear to depend significantly on the value of

¢ , with the upproach being slightly slower for ¢ < 0 . Also, for the case
c = 0.5 values of rx, cy and Ch as calculated from the series (3.13), (3.14)
and (3.15) and from the numerical integrations are shown in figure 1. From this

we can see that the series for small 7 give a good approximation even up to
values of T - 2.0.

In considering the steady state problem, Banks (11) showed that for each ¢
in the range ¢ 2 c‘ (where c‘ = -0.1637 for Pr = 1) there were two solutions,
and that there were no solutions for ¢ « Ct. The results presented here (for all
c > c') all tend to that steady state which has the greater heat transfer.

A numerical 1integration of the equations was also performed for ¢ = -0.5 as
representative of the cases where no steady state solution exists. Here 1t was
found that the boundary- layer thickness 1ncreased rapidly as the integration
proceedrd and 1n order to satisfy the outer bounder condition with sufficient
accuracy this was put at Z = 40 now using a step length Az = 0.1 . The
numerical results indicate strongly the existence of a singularity in the solution
at a finite time 1’s (say). The nature of this singularity 18 similar to those
found by Banks and Zaturska (12), Simpson and Stewartson (13,14) and Brown and
Simpson (15) in related problems. The solution near the singularity has the

characteristsic three region strucure, with inner and outer viscous regions and a

thack inviscid middle region. This is shown clearly in figure 2 where graphs of
- - - - —-—

df/3z, 3g/3z and h are plotted against z for T = 6.3, From this we can

infer that 65}85 and h both remain finite at 71 - Tg ¢ but that 5 becomes

infinite.

5. ANALYSIS OF SINGULARITY

The nature of the solution near the singularity is dictated by the inviscad

middle region, and to obtain a solution in this region we first put

E - Y rce) . 3 = 7% . n = h(E) .
(5.1)
€ = 7,-7 and ¢ = (Z - 4(¢)) £M7 .

The choice of ({ in (5.1) reflects the shift of origin of this middle region with

B(£¢) a function to be determined. Equations (2.7)-(2.9) become, for Pr =1 ,
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2 .
{ 9°G 3G =183 3,2 dB8 3°G
G+ 31 == = 37 tL + 3~ 13 37
2 act a¢ ar, d¢ 6(2
(5.2
3 2
2 397G - . g 8 _, 36
3 (dc; + ¢ hi t F ac " SFeC
a’F . dg 3°F 2 3°F
1G %) - o= 63/' af —-% - £ T3 T ¢ h
- 3 ¢
(5.3
2 o2 2
3°F AF 3
¢ (F = = (5=t ) = ¢ -
ac? g 3¢£d¢
2
¢, 8h _ ,3/2d8 3n _ ,2 3’h _ eh _ , 3h
(G + h) R 3 £ 3¢ 13 ac? ¢ F ac ¢ 3t - (5.4,

We can see from equations (5.2)-(%.4) that F and h play only a passive role in
this solution; the main problem 1S in determining G which we now expand as
172

G(C.61 = G () + ¢ 7o £ 6 (0) + et/2 6,00 + ... (5.5

There are -arresp..nding expatsion- for F and h . The reason for taking thas
expansion for G 1s discussed below, The equation for GD 1s
14 - - Y - .

G, r 31 G -G G+ 1y = 0 t5.61
(dashes now denote differentiation with respect to (). The general solution of
equation (5.6) is Go = - (/2 - 1/2a sin(al{+y) for constants a@ and ¥ . Now,
in the viscous inner region (next to the body surface) the governing equations are
equations (2.7)-(2.9) (with 7 replaced by ¢£). Consequently, the solution for
G for small ( must not generate any inverse powers of ¢ in § . This

requires Go to be O((J) for small { and so Y = 7 and

5 = - & .1 o0
bo  IT siniaf) . (5.7

The solutions for Po and ho are then, from equations (5.3) and (5.4),

Fo - Ao( v ho = Bo . (5.8)

(for some ~onstants Ao and Rc). Again the solution for Fo must be such that F

should not contribute any inverse powers of ¢ to f

There is a problem in determining the next term in the expansion for G
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/2

This 18 generared by the term involving ¢ dB8/d¢ 1n equation (5 2). If thas
)

term 18 h(£m> , say, then B8 will be ﬁ(ﬁm_l/‘) if m# 1,2 and 0(logé) f

m=1/2 , Th~ numerical solution i1ndicates that the thicknes: of the inner region

is growing as rhe singularity is approached (i.e. az £ - 0) which requires

m € 1/2 , but the solution of the equatinn thus generated gives rise to fractional
powers of Z 1n the inner region unless m = 1/2 . Consequently we take m = 1/2
and B8 = Bolog t (for some constant 50). However, we find it is not sufficient

1/2

just to i1nc-lud~ a term of O(¢ } 1n (5.5), but we also need a term of

0({1/2 log ¢) as will become apparent below

Substituting (5.5) 1nto equataon (5.2) and equating like powers gives rise to

the equations for G1 and Gz as

/
£, 6 - (&4 ~ S + G G _ A , (5.10
(Go + 36 ( 2G 1) G G, G, = Bo G G 10)
The general solution of equation (5.9) 1s

G = ¢ 1l - costali) + D cosz(gi) + 2 51n3($£) logtsina(
1 1 1! 2 2 b
(5.11)

where rl angd D1 are constants. To avoid the logarithmic singularity in Gx
at { =71/ we must have D1 = 0 and so

G1 = Clll - costaf ) . (5.12)
The complementary function for equation (5.10) is the same as (5.11) and so
avoiding the logarithmic singularity, we find that

- + 2C + - ' 5.

G2 (ﬂo 2L1) Czll cos(al)) (5.13)
for some constant Cz . Now (5.13) generates a term of 0(£_1) in E unless
C1 = - Bo/Z . Then G2 = Cz(l‘cos(a()) . We can seen that without the term of
0(51/2109 ¢) in (5.5) (i.e. C_ = 0) then equation (5.13) would give rise to a

1

1

term of 0(¢( ~) 1n g which could then not be matched onto the inner solution.

The solutions for P1 ' h1 B F2 and hz' again chosen so that F and h

can be matched onto the inner solution, are

- - - 14
F1 A1 , P2 A2 2(}\1 + Bo Au) log (sin 3 ) (5.14)

h, = 0 , h = 0 , (5.15)

for some constants A1 and A2'
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As noted above, the inner region is governed by equations (2.7)-(2.9) (with T
replaced by ¢). The leading order terms in an expansion of the solution in
powers of £ cannot be determined from the equations. We know only that they
must satisfy certain compatability conditions on z = 0 and match with the
solution in the middle region, which, from (5.7) and (5.8) gives EAV —a223/12 .
E'vhoz and h-—)Bu as z - o .

The solution in the middle region holds only upto ( = 2m/a ; beyond this
point the diffusion terms will again be important and a further outer (viscous)

region is needed in order that the outer boundary conditions be satisfied smoothly.
The equations for this outer region are again (2.7)-(2.9), now centred on

{ =2nm/a or z = (2”/0)6-1/2

- Bolog £ . As in the inner region, the leading
terms cannot be determined from the equations.
The theory outlined above shows that, from (5.7),

-3/2

E(Q,T)ﬁd - (TS-T) ‘m/@ as T -~ Ty - This is confirmed by the numerical

-2/3 is plotted against T for

results shown in figure 3 where (-g(,7])
¢ = -0.5 , resulting in the required straight line. Also from this graph we can
get an estimate for Ty as T, = 6.355 and, from the slope, estimate the value of
a as a = 0.950. Numerical calculations have been performed for several other
values of ¢ < ¢’ and all show similar characteristics to those presented for
¢ = -0.5, with the time at which the singularity appears decreasing as Icl
increases.

Thus 1t is concluded that if c¢ > c* the steady state boundary-layer solution
can be approached from an unsteady situation whereas if c < c¢* the solution of

the unsteady boundary-layer equations develops a singularity at a finite value of

time.
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5
-0 05x |m

of

z

Figure 2: Graphs of h, af/az and -0.05 3g/az against x forc = -0.5at | = 6.3

o ~J ¢

104

Ch

02 4

08

c - -4
. [-8(w0,1)]
== T~ ~
~
06+ 0154
04
===_ _ _ o1 4
N
Cy

02+
005+

o T T T

o 1 2 3 T
Figure 1* Graphs of Cx, Cy and Cp, for ¢ = 0.5
[full hine is numerical solution, broken line series solutions (3.13), ° se

(3.14) and (3.15), respectively.]

Figure 3: Graph of [ —§ (99, | )] ~2/3 against | for c = 0.5
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TABLE 1
Cx for various
c -0.15 -0.1 o} 0.25 0.5 0.75 1.0 2.0

T

0.1 0.1783 0.1783 0.1783 0.1783 0.1783 0.1783 0.1783 0.1782
0.2 0.2519 0.2518 0.2520 0.2519 0.2519 0.2519 0.2518 0.2517
03 0.3081 0.3081 0.3081 0.3080 0.3079 0.3078 0.3077 0.3073
0.4 0.3549 0.3550 0.3549 0.3547 0.3545 0.3543 0.3542 0.3537
05 0.3957 0.3957 0.3956 0.3953 0.3950 0.3946 0.3943 0.3930
06 0.4320 0.4320 0.4318 0.4313 0.4308 0.4303 0.4298 0.4277
0.7 0.4647 0.4647 0.4644 0.4637 0.4629 0.4622 0.4615 0.4586
0.8 0.4946 0.4945 0.4941 0.4930 0.4920 0.4910 0.4900 0.4860
0.9 0.5219 0.5217 0.5212 0.5198 0.5185 0.5172 0.5158 0.5106
1.0 0.5470 0.5468 0.5461 0.5444 0.5426 0.5409 0.5392 0.5325
1.1 0.5702 0.5699 0.5690 0.5668 0.5647 0.5625 0.5604 0.5519
1.3 0.6114 0.6109 0.6096 0.6064 0.6033 0.6001 0.5970 0.5848
1.4 0.6468 0.6460 0.6443 0.6398 0.6354 0.6311 0.6268 0.6105
1.9 0.7032 0.7018 0.6988 0.6913 0.6840 0.6770 0.6701 0.6449
2.3 0.7444 0.7422 0.7377 0.7267 0.7019 0.6934 0.6852 0.6558
2.7 0.7742 0.7711 0.7650 0.7403 0.7278 0.7164 0.7057 0.6690
3.1 0.7955 0.7915 0.7837 0.7654 0.7436 0.7298 0.7170 0.6750
3.5 0.8107 0.8058 0.7963 0.7746 0.7528 0.7369 0.7226 0.6774
4.3 0.8292 0.8225 0.8099 0.7829 0.7602 0.7418 0.7259 0.6781
5.1 0.8387 0.8303 0.8152 0.7847 0.7612 0.7420 0.7253 0.6777
6.7 0.8468 0.8340 0.8175 0.7840 0.7560 0.7408 0.7246 0.6775
8.3 0.8504 0.8363 0.8174 0.7833 0.7592 0.7403 0.7244 0.6774
9.9 0.8525 0.8380 0.8172 0.7830 0.7591 0.7402 0.7244 0.6774
L 0.8589 0.8392 0.8170 0.7828 0.7591 0.7402 0.7244 0.6774
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TABLE 2
Cy for various c
[of -0.15 -0.1 0.25 0.5 0.75 2.0
T
.1 -0.0268 -0.0178 0.0446 0.0892 0.1338 0.3565
.2 -0.0378 -0.0252 0.0630 0.1260 0.1889 0.5029
-0.0463 -0.0309 0.0771 0.1541 0.2310 0.6135
-0.0534 -0.0356 0.0889 0.1776 0.2660 0.7045
-0.0597 -0.0398 0.0992 0.1980 0.2964 0.7821
-0.0654 -0.0436 0.1084 0.2162 0.3230 0.8495
. -0.0705 -0.0470 0.1168 0.2326 0.3475 0.9086
-0.0753 -0.0502 0.1244 0.2476 0.3694 0.0606
. -0.0798 -0.0531 0.1315 0.2613 0.3894 1.0064
1. -0.0839 -0.0559 0.1381 0.2739 0.4076 1.0467
1.1 -0.0879 -0.0585 0.1442 0.2855 0.4242 1.0819
1.3 -0.0952 -0.0633 0.1552 0.3062 0.4534 1.1397
1.5 -0.1018 -0.0676 0.1648 0.3238 0.4770 1.1832
1.9 -0.1133 -0.0751 0.1804 0.3514 0.5143 1.2381
2.3 -0.1231 -0.0814 0.1921 0.3620 0.5277 1.2541
2.7 -0.1314 -0.0865 0.2008 0.3780 0.5468 1.2719
3.1 -0.1384 -0.0908 0.2067 0.3885 0.5583 1.2787
3.5 -0.1444 -0.0944 0.2111 0.3951 0.5648 1.2803
4.3 -0.1539 -0.0998 0.2158 0.4013 0.5697 1.2793
.1 -0.1608 -0.1034 0.2177 0.4029 0.5703 1.2776
.7 -0.1705 -0.1075 0.2185 0.4030 0.5696 1.2773
.3 -0.1761 -0.1098 0.2186 0.4027 0.5693 1.2770
9.9 -0.1801 -0.1111 0.2186 0.4026 0.5692 1.2770
L -0.1928 -0.1129 0.2186 0.4026 0.5692 1.2770
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TABLE 3

rh for various C

< -0.15 -0.1 (o) 0.25 0.5 0.75 1.0 2.0
T

.1 1.7856 1.7850 1.7851 1.7852 1.7854 1.7856 1.7858 1.7871
1.2634 1.2636 1.2638 1.2644 1.2649 1.2654 1.2659 1.2685
.3 1.0339 1.0337 1.0341 1.0350 1.0360 1.0370 1.0379 1.0422
0.8976 0.8976 0.8982 0.8997 0.9011 0.9026 0.9041 0.0103
. 0.8054 0.8055 0.8063 0.8084 0.8105 0.8126 0.8147 0.8231
0.7380 0.7383 0.7394 0.7422 0.7449 0.7476 0.7503 0.7612
0.6863 0.6868 0.6882 0.6916 0.6951 0.6985 0.7019 0.7154
0. 0.6453 0.6459 0.6476 0.6518 0.6560 0.6602 0.6643 0.6805
0.9 0.6119 0.6127 0.6147 0.6197 0.6247 0.6296 0.6345 0.6535
1.0 0.5841 0.5852 0.5875 0.5934 0.5992 0.6049 0.6105 0.6323
1.1 0.5608 0.5620 0.5647 0.5714 0.5781 0.5846 0.5910 0.5923
1.3 0.5237 0.5253 0.5288 0.5373 0.5457 0.5539 0.5620 0.5781
1.5 0.4959 0.4980 0.5022 0.5127 0.5229 0.5328 0.5424 0.5698
1.9 0.4577 0.4608 0.4667 0.4813 0.4951 0.5082 0.5207 0.5654
2.3 0.4341 0.4381 0.4459 0.4643 0.4824 0.5016 0.5154 0.5635
2.7 0.4190 0.4240 0.4335 0.4556 0.4761 0.4949 0.5107 0.5635
3.1 0.4091 0.4151 0.4263 0.4517 0.4741 0.4933 0.5104 0.5657
3. 0.4026 0.4095 0.4223 0.4504 0.4750 0.4939 0.5118 0.5677
4. 0.3952 0.4038 0.4193 0.4512 0.4760 0.4969 0.5151 0.5704
. 0.391¢ 0.4017 0.4191 0.4531 0.4784 0.4993 0.5178 0.5716
6. 0.3882 0.4006 0.4202 0.4554 0.4810 0.5011 0.5186 0.5718
0.3862 0.4001 0.4210 0.4561 0.4812 0.5014 0.5187 0.5719
9. 0.3848 0.3998 0.4212 0.4563 0.4813 0.5015 0.5188 0.5719
oo 0.3798 0.3992 0.4214 0.4564 0.4813 0.5015 0.5188 0.5179
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