COINCIDENCE THEOREMS FOR SOME MULTIVALUED MAPPINGS

B.E. RHOADES

Department of Mathematics Indiana University

S.L. SINGH and CHITRA KULSHRESTHA

Department of Mathematics L.M.S. Government Postgraduate College Rishikesh, Dehra Dun 249201 INDIA

(Received September 2, 1983)

ABSTRACT. Two coincidence theorems in a metric space are proved for a multi-valued mapping that commutes with a single-valued mapping and satisfies a general multi-valued contraction type condition.

KEY WORDS AND PHRASES. Coincidence point, commuting mappings, multi-valued contraction.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 54H25

1. INTRODUCTION.

Following the Banach contraction mapping, Nadler [1] introduced the concept of multi-valued contraction mappings and established that a multi-valued contraction mapping possesses a fixed point in a complete metric space. Subsequently a number of fixed point theorems in metric spaces have been proved for multi-valued mappings satisfying contractive type conditions; e.g. see [2]-[10], [11-17] and [18-20]. Jungck [21] generalized the Banach contraction principle by introducing a contraction condition for a pair of commuting mappings in a metric space. He also pointed out the potential of commuting mappings for generalizing fixed point theorems in [22] and [23]. One of the most general fixed point theorems for a generalized multi-valued contraction mapping appears in Ciric [4]. In this paper we combine the ideas of Ciric and Jungck to obtain two coincidence theorems for a multi-valued mapping.

Let (X,d) be a metric space. We shall follow the following notations and definitions.

 $CL(X) = \{A : A \text{ is a nonempty closed subset of } X\}$,

 $CB(X) = \{A : A \text{ is a nonempty closed and bounded subset of } X\}$,

 $N(\varepsilon,A) = \{x \in X : d(x,a) < \varepsilon \text{ for some } a \in A, \varepsilon > 0\}, A \in CL(X),$

and

$$H(A,B) = \begin{cases} \inf\{\epsilon > 0 : A \subseteq N(\epsilon,B) \text{ and } B \subseteq N(\epsilon,A)\} \text{, if the} \\ & \text{infimum exists} \end{cases}$$

for each A, $B \in CL(X)$.

H is called the generalized Hausdorff distance function for CL(X) induced by d. If H(A,B) is defined for A, B ϵ CB(X) then the pair (X,H) is a metric space and H is called the Hausdorff metric induced by d. D(x,A) will denote the ordinary distance between x ϵ X and A, a nonempty subset of X. Let f be a single-valued mapping from X to X and T a multi-valued mapping from X to the nonempty subsets of X.

Definition 1. ([10]). T and f are said to commute if for each $x \in X$, $f(T(x)) = fTx \subset Tfx = T(f(x))$.

Definition 2. ([21], [4]). An orbit for T at a point x_0 is a sequence $\{x_n:x_n\in Tx_{n-1}\}$.

Definition 3. ([4]). A space X is said to be T-orbitally complete iff every Cauchy sequence of the form $\{(x_{n_i}:x_{n_i}\in Tx_{n_i}-1)\}$ converges in X.

Definition 4. If for a point $x_0 \in X$ there exists a sequence $\{x_n\}$ such that $fx_{n+1} \in Tx_n$, $n=0,1,2,\ldots$, then $0_f(x_0)=\{fx_n:n=1,2,\ldots\}$ is the orbit for (T,f) at x_0 . We shall use $0_f(x_0)$ as a set and as a sequence as the situation demands. Further $0_f(x_0)$ is called a regular orbit for (T,f) if for each n.

$$d(fx_{n+1}, fx_{n+2}) \le H(Tx_n, Tx_{n+1})$$
.

Definition 5. A space X is called (T,f)-orbitally complete iff every Cauchy sequence of the form $\{fx \atop n_i \ n_{i-1}$ converges in X .

An immediate consequence of this definition is that if the space X is complete then it is (T,f)-orbitally complete for any T and f. However, simple examples can be constructed to show that, if for some T and f, X is (T,f)-orbitally complete then X need not be complete. It is also obvious from the fact that Definitions 2 and 3 are obtained from Definitions 4 and 5 when f is an identity mapping, and it is known that T-orbital completeness need not imply the completeness of X.

Definition 6. If for a point $x_0 \in X$ there exists a sequence $\{x_n\}$ such that the sequence $0_f(x_0)$ converges in X then X is called (T,f)-orbitally complete with respect to x_0 or simply (T,f,x_0) -orbitally complete.

Definition 7. A multivalued mapping $T: X \to CL(X)$ is said to be asymptotically regular at x_0 if, for each sequence $\{x_n\}$, $x_n \in Tx_{n-1}$, $\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$

Let ψ = { ϕ : R_+ \rightarrow R_+ | ϕ is upper semicontinuous and nondecreasing} . 2. MAIN THEOREMS.

THEOREM 1. Let T be a multi-valued mapping from a metric space X to CL(X) . If there exist a mapping $f:X\to X$ such that $TX\subseteq fX$, for each x, y \in X,

$$H(Tx,Ty) \leq \phi(\max\{D(fx,Tx),D(fy,Ty),D(fx,Ty),D(fy,Tx),d(fx,fy)\}), \qquad (2.1)$$

$$\phi(t) < qt$$
 for each $t > 0$, for some fixed (2.2)

$$0 < q < 1$$
 , $\phi \in \psi$,

there exists an
$$\ x_0^{} \in X$$
 such that $\ T$ is asymptotically
$$\mbox{regular at } \ x_0^{} \ ,$$

and

X is
$$(T,f,x_0)$$
-orbitally complete, (2.4)

then T and F have a coincidence point.

PROOF. Pick $\mathbf{x}_0 \in \mathbf{x}$ satisfying (2.3). We shall construct two sequences $\{\mathbf{x}_n\}$ and $\{\mathbf{y}_n\}$ as follows. Since $\mathsf{TX} \subset \mathsf{fX}$, choose $\mathsf{y}_1 = \mathsf{fx}_1 \in \mathsf{Tx}_0$. If $\mathsf{Tx}_0 = \mathsf{Tx}_1$, choose $\mathsf{y}_2 = \mathsf{fx}_2 \in \mathsf{Tx}_1$ such that $\mathsf{y}_1 = \mathsf{y}_2$. If $\mathsf{Tx}_0 \neq \mathsf{Tx}_1$, from the definition of H one can choose $\mathsf{y}_2 = \mathsf{fx}_2 \in \mathsf{Tx}_1$ such that $\mathsf{d}(\mathsf{y}_1,\mathsf{y}_2) \leq \mathsf{q}^{-1}\mathsf{H}(\mathsf{Tx}_0,\mathsf{Tx}_1)$. In general, choose $\mathsf{y}_{n+2} = \mathsf{fx}_{n+2} \in \mathsf{Tx}_{n+1}$ such that $\mathsf{y}_{n+1} = \mathsf{y}_{n+2}$ if $\mathsf{Tx}_n = \mathsf{Tx}_{n+1}$, and $\mathsf{d}(\mathsf{y}_{n+1},\mathsf{y}_{n+2}) \leq \mathsf{q}^{-1}\mathsf{H}(\mathsf{Tx}_n,\mathsf{Tx}_{n+1})$ otherwise.

From (2.3), $1 \text{ im } d(y_n, y_{n+1}) = 0$. We wish to show that $\{y_n\}$ is Cauchy. It is sufficient to show that $\{y_{2n}\}$ is Cauchy. Suppose $\{y_{2n}\}$ is not Cauchy. Then there exists a positive ϵ such that, for each integer 2k, there exist integers 2n(k), 2m(k) satisfying $2k \le 2n(k) < 2m(k)$, such that

$$d(y_{2n(k)}, y_{2m(k)}) > \varepsilon$$
 (2.5)

For each integer 2k, let 2m(k) denote the smallest integer exceeding 2n(k) for which (2.5) is satisfied. Thus

$$d(y_{2n(k)}, y_{2m(k)-2}) \le \varepsilon$$
 (2.6)

For each integer 2k , with $d_i = d(y_i, y_{i+1})$,

$$\varepsilon < d(y_{2n(k)}, y_{2m(k)}) \le d(y_{2n(k)}, y_{2m(k)-2}) + d_{2m(k)-2} + d_{2m(k)-1}$$
.

Using (2.3) and (2.6) it follows that

$$\lim_{k} d(y_{2n(k)}, y_{2m(k)}) = \varepsilon$$
 (2.7)

Using the triangular inequality,

$$|d(y_{2n(k)}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})| \le d_{2m(k)-1}$$

and

$$|d(y_{2n(k)+1}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})| \le d_{2n(k)} + d_{2m(k)-1}$$
.

From (2.3), (2.6) and (2.7) it follows that

$$\lim_{k} d(y_{2n(k)}, y_{2m(k)-1}) = \lim_{k} d(y_{2n(k)+1}, y_{2m(k)-1}) = \varepsilon$$
.

For each integer 2k define $p(2k) = d(y_{2n(k)}, y_{2m(k)})$, $q(2k) = d(y_{2n(k)+1}, y_{2m(k)-1})$, and $r(2k) = d(y_{2n(k)}, y_{2m(k)-1})$. Then

$$\begin{split} p(2k) &\leq d_{2n(k)} + d(y_{2n(k)+1}, y_{2m(k)}) \\ &\leq d_{2n(k)} + q^{-1} H(Tx_{2n(k)}, Tx_{2m(k)-1}) \\ &\leq d_{2n(k)} + q^{-1} \phi(\max\{D(fx_{2n(k)}, Tx_{2n(k)}), D(fx_{2m(k)-1}, Tx_{2m(k)-1}), \\ & D(fx_{2n(k)}, Tx_{2m(k)-1}), D(fx_{2m(k)-1}, Tx_{2n(k)}), \\ & d(fx_{2n(k)}, fx_{2m(k)-1})\}) \end{split}$$

$$\leq d_{2n(k)} + q^{-1}\phi(\max\{d_{2n(k)}, d_{2m(k)-1}, p(2k), q(2k), q(2k)\})$$
.

Since ϕ is upper semicontinuous, taking the limit as $k \to \infty$ yields

$$\varepsilon \leq q^{-1}\phi(\max\{0,0,\varepsilon,\varepsilon,\varepsilon\}) = q^{-1}\phi(\varepsilon) < \varepsilon$$

a contradiction.

Thus $\{y_n^-\}$ is Cauchy, and since fX is (T,f,x_0^-) -orbitally complete, $\{y_n^-\}$ converges to a point u in X. Hence there exists a point z in fX such that u=fz. Then

$$\begin{split} & \mathsf{D}(\mathsf{fz},\mathsf{Tz}) \leq \mathsf{d}(\mathsf{fz},\mathsf{fx}_{n+1}) \, + \, \mathsf{D}(\mathsf{fx}_{n+1},\mathsf{Tz}) \\ & \leq \mathsf{d}(\mathsf{fz},\mathsf{fx}_{n+1}) \, + \, \mathsf{H}(\mathsf{Tx}_n,\mathsf{Tz}) \\ & \leq \mathsf{d}(\mathsf{fz},\mathsf{fx}_{n+1}) \, + \, \varphi(\mathsf{max}\{(\mathsf{D}(\mathsf{fx}_n,\mathsf{Tx}_n)\,, \mathsf{D}(\mathsf{fz},\mathsf{Tz})\,, \\ & \qquad \qquad \mathsf{D}(\mathsf{fx}_n,\mathsf{Tz})\,, \mathsf{D}(\mathsf{fz},\mathsf{Tx}_n)\,, \mathsf{d}(\mathsf{fx}_n,\mathsf{fz})\}) \\ & \leq \mathsf{d}(\mathsf{fz},\mathsf{fx}_{n+1}) \, + \, \varphi(\mathsf{max}\{(\mathsf{d}(\mathsf{fx}_n,\mathsf{fx}_{n+1})\,, \mathsf{D}(\mathsf{fz},\mathsf{Tz})\,, \mathsf{d}(\mathsf{fx}_n,\mathsf{fz})\}) \\ & \qquad \qquad + \, \mathsf{D}(\mathsf{fz},\mathsf{Tz})\,, \, \mathsf{d}(\mathsf{fz},\mathsf{fx}_{n+1})\,, \, \mathsf{d}(\mathsf{fx}_n,\mathsf{fz})\}) \;. \end{split}$$

Taking the limit as $n \rightarrow \infty$ yields

 $D(fz,Tz) \le \phi(\max\{0,D(fz,Tz),D(fz,Tz),0,0\}) < qD(fz,Tz)$,

which implies fz < Tz .

If, in (2.1) the terms D(fx,Ty), D(fy,Tx) are replaced by [D(fx,Ty) + D(fy,Tx)]/2, then $\{fx_n\}$ can be proved to be a Cauchy sequence without the assumption of the asymptotic regularity of T.

Replacing the condition $TX\subseteq fX$ by orbital regularity one obtains the following.

THEOREM 2. Let $T: X \to CL(X)$. If there exists a selfmap f of X such that (2.1),

- (2') $\psi(t) < t$ for each t > 0, $\phi \in \psi$, and
- (3') there exists a sequence $\{x_n\}$ such that the orbit $0_f(x_0)$ is regular and asymptotically regular, and X is (T,f,x_0) -orbitally complete,

then T and f have a coincidence point.

PROOF. Examining the proof of Theorem 1, the only change is to note that the regularity of the orbit $0_f(x_0)$ allows one to replace the inequality $d(y_n,y_{n+1}) \le g^{-1}H(Tx_n,Tx_{n+1})$ with the stronger inequality $d(y_n,y_{n+1}) \le H(Tx_n,Tx_{n+1})$.

If f is not the identity mapping, then a commuting T and f need not have a common fixed point. An example illustrating this fact appears in [19], where the commutativity of T and f is defined by fTx = Tfx, X not necessarily a metric space.

The authors thank R.E. Smithson for making [19] available to them.

The theorems of this paper generalize the corresponding results in [21], and the open question of [21] still remains; namely, what additional conditions will guarantee the existence of a common fixed point for T and f?

REFERENCES

- 1. Nadler, S.B. Jr. Multi-valued contraction mappings. <u>Pacific J. Math.</u>, <u>30</u>(1969) 475-488.
- Assad, N.A., and Kirk, W.A. Fixed point theorems of set-valued mappings of contractive type. <u>Pacific J. Math.</u>, 43(1972) 453-462.
- Bose, R.K., and Mukherjee, R.N. Common fixed points of some multi-valued mappings. <u>Tamkang J. Math.</u>, 8(1977) 245-249.
- Ciric, L.B. Fixed points for generalized multivalued contractions. <u>Mat. Vesnik</u>, 9(24)(1972) 265-272.
- 5. Dube, L.S. A theorem on common fixed points of multi-valued mappings. Ann. Soc. Sci. Bruxelles Sir. I, 89(1975) 463-468.
- 6. _____, and Singh, S.P. On multivalued contraction mappings. Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.), 14(1970) 307-310.
- Hu, T. Fixed point theorems for multi-valued mappings. <u>Canad. Math. Bull.</u>, 23(1980) 193-197.

- 8. Iséki, K. Multi-valued contraction mappings in complete metric spaces. Rend. Sem. Mat. Univ. Padova, 53(1975) 15-19.
- 9. Itoh, S. Multivalued generalized contractions and fixed point theorems. Comment. Math. Univ. Carolina, 18(2)(1977) 247-258.
- 10. _____, and Takahashi, W. Single-valued mappings, multivalued mappings and fixed-point theorems. J. Math. Anal. Appl., 59(1977) 514-521.
- 11. Kaulgud, N.N., and Pai, D.V. Fixed point theorems for set-valued mappings. Nieuw Arch. Wisk, (3), 23(1975) 49-66.
- 12. Kuhfittig, P.K. Fixed points of locally contractive and non-expansive setvalued mappings. <u>Pacific J. Math.</u>, 65(1976) 399-403.
- 13. Ray, B.K. A note on Multi-valued contraction mappings. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 56(1974) 500-503.
- 14. Some fixed point theorems. Fund. Math., 92(1976) 79-90.
- 15. Reich, S. Kannan's fixed point theorem. Boll. Un. Mat. Ital., 4(1971) 1-11.
- 16. Fixed points of contractive functions. Bull. Un. Mat. Ital., 5(1972) 26-42.
- 17. Rus, I.A. Fixed point theorems for multi-valued mappings in complete metric spaces. Math. Japonica, 20(1975) 21-24.
- 18. Smithson, R.E. Fixed points for contractive multi-functions. Proc. Amer. Math. Soc., 27(1971) 192-194.
- 19. Common fixed points for multifunctions. (Preprint, 1979).
- 20. Yanagi, K. A common fixed point theorem for a sequence of multivalued mappings. Publ. Res. Inst. Math. Sci., 15(1979) 47-52.
- Singh, S.L. and Kulshrestha, Chitra, Coincidence theorems in metric spaces, <u>Ind. J. Phy. Nat. Sci.</u>, 2, <u>Sect. B</u> (1982) 19-22.
- 22. Jungck, G. Commuting mappings and fixed points. Amer. Math. Monthly, 83(1976) 261-263.
- 23. Periodic and fixed points, and commuting mappings. Proc. Amer. Math. Soc., 76(1979) 333-338.