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ABSTRACT. Two coincidence theorems in a metric space are proved for a multi-valued
mapping that commutes with a single-valued mapping and satisfies a general multi-

valued contraction type condition.
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1. INTRODUCTION.
Following the Banach contraction mapping, Nadler [1] introduced the concept
of multi-valued contraction mappings and established that a multi-valued contraction
mapping possesses a fixed point in a complete metric space. Subsequently a number
of fixed point theorems in metric spaces have been proved for multi-valued mappings
satisfying contractive type conditions; e.g. see [2]-[10], [11-17] and [18-20].
Jungck [21] generalized the Banach contraction principle by introducing a contrac-
tion condition for a pair of commuting mappings in a metric space. He also pointed
out the potential of commuting mappings for generalizing fixed point theorems in
[22] and [23]. One of the most general fixed point theorems for a generalized multi-
valued contraction mapping appears in Ciric [4]. In this paper we combine the ideas
of Ciric and Jungck to obtain two coincidence theorems for a multi-valued mapping.
Let (X,d) be a metric space. We shall follow the following notations and

definitions.

CL(X) {A : A 1is a nonempty closed subset of X} ,

CB(X) {A : A is a nonempty closed and bounded subset of X} ,
N(e,A) = {x € X : d(x,a) <e¢ for some ae¢ A, e >0}, Ae CL(X) ,

and
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inf{e >0 : A ¢ N(¢c,B) and B c N(e,A)} , if the
H(A,B) = inf imum exists
& otherwise

for each A , B € CL(X)

H 1is called the generalized Hausdorff distance function for CL(X) induced by d .
1f H(A,B) is defined for A , B ¢ CB(X) then the pair (X,H) 1is a metric space
and H 1is called the Hausdorff metric induced by d . D(x,A) will denote the
ordinary distance between x € X and A , a nonempty subset of X . Let f be a
single-valued mapping from X to X and T a multi-valued mapping from X to the

nonempty subsets of X .

Definition 1. ([10]). T and f are said to commute if for each x e¢ X ,

£(T(x)) = fTx < Tfx = T(f(x)) .

Definition 2. ([21), [4]). An orbit for T at a point X is a sequence

{x +x eTx_ ,}.
n n n-1

Definition 3. ([4]). A space X 1is said to be T-orbitally complete iff

every Cauchy sequence of the form {(x_ : x € Tx )} converges in X .
n, n, n. -1

Definition 4. If for a point x_ € X there exists a sequence (xn} such

0

that fxn+l € Txn ,n=20,1,2,....., then Of(xo) = (fxn :n=1,2,.....} 1is the

orbit for (T,f) at x. . We shall use Of(xo) as a set and as a sequence as the

0
situation demands. Further Of(xo) is called a regular orbit for (T,f) if for

each n ,

d(fx fxn+2) < H(Txn , Tx )

n+l’ n+l

Definition 5. A space X is called (T,f)-orbitally complete iff every Cauchy
sequence of the form {fx : fx e Tx } converges in X .
i i i-1
An immediate consequence of this definition is that if the space X 1is complete
then it is (T,f)-orbitally complete for any T and f . However, simple examples
can be constructed to show that, if for some T and f , X is (T,f)-orbitally com-
plete then X need not be complete. It is also obvious from the fact that Defini-

tions 2 and 3 are obtained from Definitions 4 and 5 when f is an identity mapping,

and it is known that T-orbital completeness need not imply the completeness of X .

Definition 6. If for a point X, € X there exists a sequence {xn} such that

the sequence Of(xo) converges in X then X 1is called (T,f)-orbitally complete

with respect to Xg or simply (T,f,xo)-orbitally complete.

Definition 7. A multivalued mapping T : X - CL(X) 1is said to be asymptoti-

cally regular at x if, for each sequence {x_} , x ¢ Tx , lim d(xn , X ) =0

0 n n n-1 nt+l
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Let ¢ = {¢ : R+ > R+ I ¢ 1is upper semicontinuous and nondecreasing} .

2. MAIN THEOREMS.
THEOREM 1. Let T be a multi-valued mapping from a metric space X to

CL(X) . If there exist a mapping f : X > X such that TX < fX , for each

X ,ye€eX,
H(Tx,Ty) < ¢(max{D(fx,Tx),D(fy,Ty),D(fx,Ty),D(fy,Tx),d(fx,fy)}), (2.1)
¢(t) < qt for each t > 0 , for some fixed (2.2)
0<gq<1l,¢evy,
there exists an XO e X such that T 1is asymptotically (2.3)
regular at Xg »
and

X is (T,f,xo)-orbitally complete, (2.4)

then T and F have a coincidence point.

PROOF. Pick Xy € X satisfying (2.3). We shall construct two sequences (xn}

and (yn} as follows. Since TX < fX , choose vy = fx1 € Tx0 . If Tx0 = Tx1 ,

choose ¥y = fx2 3 Txl such that Yy =Yy - If Tx0 z Txl , from the definition

of H one can choose y2 = fx2 e Tx such that d(yl,yz) < q-IH(Txo,Txl) . In

1

= h = i =
general, choose yn+2 fxn+2 c Txn+l such that Yot yn+2 if Txn Txn+1 s

-1 .
and d(yn+1,yn+2) < q H(Txn,Tx ) otherwise.

From (2.3), lim d(yn,y

n+l

n+l) =0 . We wish to show that {yn} is Cauchy. It is

sufficient to show that {yzn} is Cauchy. Suppose {yzn} is not Cauchy. Then
there exists a positive € such that, for each integer 2k , there exist integers

2n(k) , 2m(k) satisfying 2k < 2n(k) < 2m(k) , such that

d(y2n(k) ,yzm(k)) > € (2.5)

For each integer 2k , let 2m(k) denote the smallest integer exceeding 2n(k)

for which (2.5) is satisfied. Thus

400 ) * Yomk)-2) < € - (2.6)

For each integer 2k , with di = d(yi’yi+l) R

€ <4000 *Yonk)) < Y2nw) Vom0 -2 * Y2mc)-2 * Yom@i)-1 -
Using (2.3) and (2.6) it follows that

limkd(y2n(k) ’y2m(k)) =€ . (2.7)

Using the triangular inequality,



432 B.E. RHOADES, S.L. SINGH AND C. KULSHRESTHA

140 ) * Yama-10 ~ 420 a0) * Yam(k)

and

14650 1 * Y2may -1 = 42000 * Yam(i)?

M= dpnigy-r

I om0 * damai-1

From (2.3), (2.6) and (2.7) it follows that

Hm d(y, 0 Yoma -1 = P Oon )+ » Yomk) -1

=€ .

For each integer 2k define p(2k) = d(y2n(k) ’y2m(k)) , q(2k) = d(y2n(k)+l’

Y om(k)-1’

, and r(2k)

= 400k * Yom(k)-1

) . Then

P(2k) = dy iy F 4G5 (41 0 Yom(k)y?

< don(k)

S don(k)

= Dnw)

+ q_lH(Tx

+ q—1¢(max(D(fx

D(fx

d(fx

+ q_l¢(max{d

2n(k)

20 (k) * om(k)-1

s Tx )

2m(k)-1

D(fx

20(k) * 2n(k)) 2m@k)-1° omk)-1 *

» DUExon (-1 o0 (i)

20 (k) * Fomao -1’

20 (k) * dam(k)-1 ° p(2k) , q(2K) , q(2Kk)}) .

Since ¢ is upper semicontinuous, taking the limit as k -+ « yields

a contradiction.

€ < q Lo(max{0,0,c,6,e)) = q Lo(e) <€ ,

Thus {yn} is Cauchy, aud since fX is (T,f,xo)—orbically complete, {yn]

converges to a point

u = fz . Then

D(fz,Tz) <

IA

IA

IA

Taking the limit as

u in X . Hence there exists a point 2z in fX such that

d(fz,fxn+l) +
d(fz,fxn+l) +
d(fz,fxn+

1)

d(fz,fxn+ +

1

+

n > o yields

D(fx_,,»Tz)

H(Tx ,Tz)

¢(max{ (D(fx _,Tx ) , D(fz,Tz) ,

D(fx_,Tz) , D(fz,Tx ) , d(fx ,f2z)})
o(max{(d(fx_,fx ,,),D(fz,Tz) , d(fx_,fz)

D(fz,Tz) ,d(fz,fxn+l) ,d(fxn,fz)}) .
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D(fz,Tz) < ¢(max{0,D(fz,Tz),D(fz,Tz),0,0}) < qD(fz,Tz) ,

which implies fz ¢ Tz .

1f, in (2.1) the terms D(fx,Ty) , D(fy,Tx) are replaced by [D(fx,Ty) +
D(fy,Tx)]}/2 , then {fxn} can be proved to be a Cauchy sequence without the assump-
tion of the asymptotic regularity of T .

Replacing the condition TX < fX by orbital regularity one obtains the follow-
ing.

THEOREM 2. Let T : X » CL(X) . If there exists a selfmap f of X such that
(2.1),

(2') 4(t) <t foreach t >0, ¢ ¢ ¥ , and

(3') there exists a sequence {xn} such that the orbit Of(xo) is regular and

asymptotically regular, and X is (T,f,xo)-orbitally complete,

then T and f have a coincidence point.

PROOF. Examining the proof of Theorem 1, the only change is to note that the
regularity of the orbit Of(xo) allows one to replace the inequality d(yn ) <

1 ’yu+1) < H(Txn'Txn+l) -

If f 1is not the identity mapping, then a commuting T and f need not have a

-1 Yo+l
g H(Txn,Txn+

) with the stronger inequality d(yn
common fixed point. An example illustrating this fact appears in [19], where the
commutativity of T and f is defined by fTx = Tfx , X uot necessarily a metric
space.

The authors thank R.E. Smithson for making [19] available to them.

The theorems of this paper generalize the corresponding results in [21], and

the open question of [21] still remains; namely, what additional conditions will

guarantee the existence of a common fixed point for T and f ?
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