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ABSIRACT.  Our work depends essentially on the notion of a one-particle seven-—
ainensicnal state-space. In constructing a general relativistic theory we assume
that all reas.rable quantities arise from invariant differential forms. In this
carer, we st.ay only the case when instantaneous, binary, elastic collisions occur
vetween the particles of the gas. With a simple model for colliding particles and
their collisions, we derive the kinetic equation, which gives the change of the

«istribation Cuncticn along Tlows in state-space.
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WOTATION: ihe Latin a , b , ¢ , d take the values 0 , 1 , 2 , 3 and the Greek

indices « , A , p the values 1 , 2, 3. The symbols are the

€abed T eKAu

totally antisymmetric ones. The symbols F:b are the Christoffel symbols of the

space-time metric.

1. THE STATE-SPACL OF A PARTICLE

The statc of a particle is represented by the pair (x,p) , where

R 2 . s 0 .
x = (x ,Xl,x ,Xj) is the position and p = (p ,pl,pe,p3) 1s the momentum of the
particle. The oriented space-time manifold is dencted by X and its metric tensor
Sap 6ub(X) has signature + --—- . The momentum-space at a space-time point x ,

Jenoted by P(x) , is the local :linkowskian tangent plane to X at x [1,2,3,4,5].

We defire the real non-negative map m on P(x) by

_ ab_ , 0,2 0_k K_A
=(p) = /gabp P = Ygoo(p )+28 P D *5,,P P . (1.1)
A rarticle having rroper mass “j is callea a j-particle. The physical momentum-

space of a j-particle at x is denoted by Pj(x) and is defined by
_ . - - a_ (0] K
Pj(x) = {peP(x).m(p)ﬁnj, Py=€paP “BooP *€p P > 0} . (1.2)

dow, from (1.1) ana (1.2), we obtain the relations [4]

= 2 - K
Po = /goomj+(gngoA 8008cx )P P (1.3)

K 4 K_X
- + Vg -
o _ 8P Eo0™5* (80, 80x "Eo0Bc )P P

be) (1.4)

€00
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The element of the volume in X and in P(x) is given respectively by n and

p , where
_ /-g(x) a b .c ..d_ ~ .0 .1 .2 .3
N =TT €l pdx ,dxdxt = V-g(x) dx pdxpdx ", dx (1.5)
_ /g (x) a.b.c.d_ ;7 5,06.1.2.3
p = ——ﬁT—— €peadP pdP pdP 4dp = /-g(x) dp 2dp~,dp”,dp . (1.6)

The element of the volume in Pj(x) must be an invariant differential three-
form, independent of dm and non-vanishing when m = 0 . Differentiating (1.1) we
obtain de = (mdm - pdeK)/po , and substituting in (1.6) we have p = mdmApj s

where pj is obviously the required element of the volume [3] and it is given by

o, = LEED g5t 4p? ap3 = ELK)
J PO A A 3.p0

)‘Adpu . (1.7)

K
ekkudp Adp
The state-space of the j-particle, denoted by Mj , is a fibre bundle over X ,

i.e. M. =P.(X)= U P.(x). So, its element of the volume is given by
J J xex 9

Wj = nApj . (1.8)

Before studying a gas, we consider a single j-particle, which moves in a given
gravitational field. Its world-line, x(sj) , must be a geodesic in X [2,3,4,5].

So it moves according to the laws

dx” _ a dp_ _ _ Kk ab
ds P ? dsj rabp P (1.9)

The affine parameter sj is the proper-time of the j-particle. The equations
(1.9) define the vector field <4 in Mj and the differential operator d

ds.
completely ~J
d _ . a 3 _ .k _ab 3 = .8 9 _ x ab 9
ds, P a ra.bp P Kk ? P dsj a I‘abp P dsj K . (1.10)
~J 9x 9p 9x 9p

The integral curves (xa(sj),pK(sj)) in Mj form the flow of the states in Mj
generated by the vector field d/dsj . Physically the flow of the states represents
the set of all possible trajectories of the j-particle in Mj [3,4].

The element of the volume in an hypersurface in Mj ,» S , non-tangential to

glgf. must be an invariant differential six-form independent of dsj . Using
(1.8) and (1.9) and putting
_ 7-g(x) b.c .d _ V-g(x) Ao u

Ga 3 eabcddx Adx Adx N tK 21 eKAudp Adp (1.11)

we obtain
W. = w,, ds. (1.12)
1 a 1 by 9 A ’
=1 K _a . .

where wj =3P oaApj - §-Fabp ho) tKAn 1s obviously the required element of the
volume.

Inserting (1.5) and (1.7) into (1.12) and applying the differential operator

E}, we have ﬂﬂj =0 . But, from (1.12) we have de = dijds. , and since
dsj # 0 we can immediately see that ,ng =0 ~ ’

.
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Applying the differential operator d on On and using the known formula

1, 3(/g(x)) _ b
/-g(x)

we obtain the relation do_ =T

a ba ’ pog -1 ba"

ox
2. THE DESCRIPTIOI OF THE RELATIVISTIC GAS

A gas in this paper consists of a large number of particles interacting through
gravitational forces. We can obtain a relativistic description of such a system by
the use of tue state-space of one particle. Our description depends essentially on
only two phenomena: (a) the collision of two particles, and (b) the motion of one
particle in the intervals between collisions inthe smoothed-out mean gravitational
field, generated by all particles together.

A simple j-gas is the gas consisting of only j-particles. Here we are to study
a gas which is the mixture of N + 1 simple gases and in which only instantaneous,
binary, elastic collisions occur between the particles. A binary elastic
Jjk-collision is a collision by which a j-particle collides with a k-particle and the
result is also a j-particle and a k-particle. The only collisions we can-observe
in MJ are all the jk-collisions for k = 0,1,...,N . Due to elastic jk-collisions,
J-particles are reuoved from their states in M. to other states in Mj . Ve say
that the j-particle is annihilated at the state from which it is removed by the
collision and a new j-particle created at the state to which it is removed by the
collision. The newly created particle moves in Mj on a trajectory defined by
(1.9).  This new moving particle may also be annihilated. The parts of a trajec-
tory between creation and annihilation are called excited parts.

Let S be an hypersurface in Mj » independent of dsj . We say that a
trajectory is an occupied trajectory with respect to S if S is crossed by an
excited part of this trajectory once and only once.

The distribution function [U] of the j-gas component of this mixture is denoted
by fj(x,p) , where fj(x,p) is a scalar function on the state-space of the
Jj-particle Mj . If we denote by Nj(S) the number of the occupied trajectories

with respect to S , this number is obviously equal to the number of the J-particles

crossing S orce and only once. So, we can define Nj(S) by
N.(S) = f.(x w. . 2.1
S js RER (2.1)
Now, consider the volume D in Mj . We denote the boundary of D by 9D and
obviously 3D is an hypersurface in Mj . So, by (2.1), we have
N.(3D) =J f.(x,p)w. . (2.2)
J ap 9 J
In the case when 9D = allvaeD , with BanaeD =@ , and with 32D lying in the
future of alD (we say that 32D lies in the future of BlD if the vector field
d/ds. 1is directed from 3,D to 3,.D) we have
~/ 1 2
N.(8D) = N.(3.D) - N.(3 D . 2.3
5(30) = H;(3,D) - 1,(3,D) (2.3)

Let us define:
ajk(D) = the number of j-particles annihilated in D due to jk-collisions,
cjk(D)

the number of j-particles created in D due to jk-collisions,
: :

a.(D) = a., (D) c.(D) =
3t kgo @) e5P) k=0

cjk(D) . We obviously have
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N
v

aj(D) - Cj(D) = Lo

. - c. . 4
aJk(D) ch(D)) (2.4)

We will try to shed some light on the foundations upon which the whole theory is
constructed by establishing the following theorem [5].

THEOREM 1. Nj(aD) = Nj(alD) - Nj(a2D) = aj(D) - cj(D) . (2.5)

PROOF. Nj(BlD) = (the number of j-particles crossing alD) = (the number of
j-particles crossing 3,D and not crossing 32D) + (the number of j-particles cross-
ing both alD and 82D) .

Nj(aeD) = (the number of j-particles crossing 82D) = (the number of
j-particles crossing 98,.,D without crossing alD) + (the number of j-particles cross-

2
ing both BlD and 32D) .

So: Nj(alD) - Nj(32D) = (the number of j-particles crossing 9,0 and not
crossing 82D) - (the number of j-particles crossing 82D without crossing alu) =
(the number of j-particles crossing 39,0 and annihilated in D) - (the number of
j-particles created in D and crossing 32D) = {(the number of j-particles crossing
alD and annihilated in D) + (the number of j-particles which are both created and
annihilated in D)} - {(the number of j-particles created in D and crossing 32D)
+ (the number of j-particles which are both created and annihilated in D)} =

aj(D) - cj(D) .

3. THE CONSTRUCTION OF THE RELATIVISTIC KINETIC EQUATION

Now, we are in the position to construct the relativistic kinetic equation.
To achieve this we apply the theorem of Gauss to the relation (2.2), and analyse
the mechanism of instantaneous, binary elastic collisions in the relation (2.4).
The kinetic equation is: the equation which gives the change of fj(x,p) along the
flow of the states in Mj . This change is just the action of the vector field
d/dsj on fj(x,p) .

Applying the theorem of Gauss in (2.2) we have

N.(3D) = J f.(x,p)w. = J a(f. (x,plw.) = J (4f.(x,p)),w. =
J ap 9 J ap~ Y J ap 9 L
ar. (x,p)
. J —L sy, = J e ) LA (3.1)
o Ty D~ J
Our aim now is to express aj(D) - cj(D) as a volume-integral over D . We
achieve this by the construction of a simple model for colliding particles. In

doing this, we need to define the concepts of the j-range and the j-volume of the
collision.

Before proceeding, we want to note that a binary, elastic collision does not
occur at a space-time point, but it is an interaction between two particles located
at different space-time points. When we say that such a collision is elastic and
instantaneous we mean that (a) the interaction affects only the momenta of the
colliding particles and not their space-time positions, and (b) the proper-duration

of the interaction is zero. From these remarks, we can see that the collision
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occurs on an hypersurface U of X , defined by fgsj =0, i.e. both particles must
lie on an hypersurface upon which s‘j = constant , while interacting.

The element of the volume on such an U 1is given by

1l _a
= . .2
L L (3.2)
. V=g(x) b d _1 ..
This is obvious because we have n = hgx eabcddxaAdx Adchdx =7 ddica =

= dsjA(% paoa) .

The particles constituting the gas, will be thought of as interacting through
an inter-particle potential. Let us study the jk-collision by which the j-particle
at x with momentum p emerges with momentum p' , after colliding with the
k-particle at y with momentum q . To examine the phenomenon we restrict our
study to the approximation y = x . This restriction will be seen not to violate
the generality, in view of a very natural assumption(*) concerning momenta at the
same space-time point to be introduced later. The law of momentum-conservation is
then valid, and is given by: p - q =p' - q' . So, Q' =p-q-p', and we
can describe the collision by using only p , q , p' . The range of interaction
of the j-particle for this collision, called j-range of the collision, must (a) be
a neighbourhood of x in U , and (b) be independent of x and (c) depend on
P, q , p' continuously. So, the j-range must be given by means of a continuous,
positive function of p , q , p' . Let us denote this function by Ujk(p,q,p') .

Now, since we know the element of the volume of U , namely n we can put:
j-range of the collision = c:ij(p,q,p')n.j . (3.3)

We say that the jk-collision occurs, when the k-particle lies inside the j-range of
the collision and that the jk-collision occurs in propertime ds‘j when the k-particle
finds itself inside the j-range of the collision in proper-time dsj .
Since we know p and gq we can find the relative velocity between the two
particles. The relative velocity is given by the formula [4]
Vog = / (p,q)z—mgmi (p»q) ,

(3.4)
where (p,q) = gabpaqa .

The relative velocity multiplied by dsj gives the proper—distance between the two

particles, and since dsj is perpendicular to the j-range of the collision we have:

proper-distance of k-particle from j-range = quds. . (3.5)
J

Multiplying (3.3) with (3.5), we obtain a volume which we call j-volume of the
collision. In fact qudeA(Ujk(p’q’p')nj) = quojk(p,q,p')n . Now, using the
concept of the j-volume of the collision we can say that the jk-collision occurs
in proper-time ds'j when the k-particle lies inside the j-volume of the collision.
For convenience we make the following assumption: For every y 1lying inside
the j-volume of the collision, we have fk(y,q) = fk(x,q) (%)
The collision-number assumption or Boltzmann's "Stosszahlensatz”, in our case
can be expressed by means of the following propositions: (a) The gas is sufficiently

dilute so that each j-volume contains at most one k-particle with momentum qep,
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The existence of such k-particles leads to jk-collisions. (b) The nwaber of

k-particles, with momentum Qepy » lying inside the total volume of the j-volumes is

assumed to be equal to the number obtained by multiplying the total volume of the

j-volumes with the number of k-particles with aepy > lying in P * Now
number of j-particles with PEPy lying in the j-range of the
isi =1, . . 'I)n. 3.6
collision 1J(x,p)pJA(OJk(p,q,p )nJ) (3.6)
and

number of k-particles with qepy » of which the proper-distance from

the j-range is smaller than v_ds. = r (x,q)p, A(v ds.) . (3.
J g an v, ds; K (Xoa)e Ay ds, 7)

THEOREM 2. The number of the jk-collisions occuring in proper-time ds. , with
PEPS 5 Qepy resulting in p'sp"j is given by multiplying (3.6) with (3.7) and with
)

pj , i.e. this number is given by

L}
fj(x,p)fk(x,q)qucjk(p,q,p')pkAijwj . (3.8)

(In arriving at (3.8) we have used (1.8) and (3.2)).

PROOF. The number of j-particles with pep.j is fj(x,p)pj . Imagine that to
each of these particles there is attached one j-volume. The number of such j-volumes
is obviously f.(x,p)p. . So the total volume occupied by the j-volumes is

4 . [] = Y . . ..
Ij(x,p)DJA(quojk(p,q,q n) fj(x,p)v ojk(p,q,p )dj . Using this result,'comblnlng
the assumptions (a) and (b) of the "Stosszahlansatz" and multiplying with Py we

obtain the required number which is the one given by (3.8).

Integrating (3.8) over D , we obtain the number of collisions annihilating

Jj-particles inside D . But this number is just the number of annihilations inside
D due to jk-colljsions, i.e. ajk(D) . So,
r
a. (D) = [ ’ J £.(x,p)f, (x,q)v_o. ! AW, . 3.
3k bl o\ e (0 I (x,a)vp o, (pa,p Doy Yo\ Wy (3.9)
J k

By the same method we find that the number of creations inside D due to

jk-collisions, i.e. c. (D) , is given by the relation

cjk(D) i} J :Pfht)(jPi(x)fj(x’p')fk(x’q')vp'Q'cjk(p"q"p)pi o5\ (3.10)
J

Now, from (2.4) we have

N
85(0) = ¢;0) = ] (s, (0)-c ), 0)) = JDIj(x,P)Wj , (3.11)

where Ij(x,p) » the collision-integral is defined by the relation

N
Ljlep) = j i ' -
50op) o Pf(x)fJ(x p) ij(x)fk(xaq)quOjk(p’q’p oy o

- f.(x,p') Jp;(x)fk(x’q')VP'Q'OJk(p"q"')pi pj . (3.12)

JPJT(X) J
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Now, from (2.5), (3.1) and (3.11) we have that J (r (x,p)).wl =J Ij(x,p)vlj
D D

l%|a
[

for every D in “J . So

J;— (f (x,p)) = Ij(x,p) . (3.13)

This is the kinetic equation [L].
When a.(D) = c.(D) = 0 (case of the free—equilibrium) and when aj(D) #£0,

cj(D) # 0 with aJ(D) - cj(D) = 0 (case of the balanced-equilibrium) we obviously

have IJ(x,p) =0 and so

P (fj(x,p)) =0 . (3.14)
~i
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