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ABSTRACT. The Lagrange manifold (WKB) formalism enables the determination of the
asymptotic series solution of second-order "wave type" differential equations at
turning points. The formalism also applies to higher order linear differential
equations, as we make explicit here illustrating with some 4th order equations of

physical significance.
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1. INTRODUCTION.

While the classical WKB technique was developed for second order differential
equations, it has long been applied to higher, especially 4th, order differential
equations as well [1]. As might be expected, problems analogous to those encountered
at turning points of second order differential equations occur in the higher order
equations. The Lagrange manifold technique of Maslov [2] and Arnold [3] determines
the first term in the asymptotic series solution of linear partial differential equa-
tions near turning points. Through a slight modification of their technique, the
full asymptotic series solution for second order "wave-type" equations can be ob-
tained [4]. The Lagrange manifold formalism also applies to higher order linear dif-
ferential equations, as we make explicit here illustrating with some 4th order equa-
tions of general interest.

2. BASIC FORMALISM.

We consider the differential equation
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where, for definiteness, x is a spatial variable, t is the time and the ai(x)'s are
analytic. With appropriate choice of coefficients and a harmonic time dependence,

Equation (2.1) can be seen to include some physically significant equations as spe-
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cial cases. We assume Equation (2.1) has an asymptotic solution - near turning points

of the highest order - of the form
P(x) - exp{ith} I A(x,p,T) exp{it(xp-S(p))}dp = O(wa) , (2.2)

where A(x,p,T) and its derivatives are bounded, p may be regarded as a momentum, T is
a large parameter and the stationary phase condition [é%(xp-s(p))=0] determines the
Lagrange manifold of Maslov near the turning point [5].

Following the procedure developed for second-order equations, the differentia-

tion in Equation (2.1) is carried across the integral in Equation (2.2), obtaining

dp exp{iT(xp-S(P))}{(iT)afao(x)pa-as(X)]A + (iT)3[4ao(x)P3 %% + al(X)P3A]

2 3 2
+ (iT)2[6a (x)p2 A + 3a (x)p2 3A + a (x)pZA] + (it)[4a_(xX)p A + 3a, (x)p A
o 1 3 2 (o) 3 1

sz X x3 8x2

4 3 2
2A a%a a2A 32a 2A
+ Zaz(x)p o T 33(x)pA] + [ao(x) ;;Z + al(x) ;;3 + az(x) ;;5 + a3(x) % + aa(x)A]}

=0(t ) . (2.3)

Maslov's Hamiltonian is the coefficient of the highest order (it) term, here (11)4,
4
H(x,p) = ao(X)p - aS(X)- (2.4)

Then by invoking the stationary phase condition Maslov's Hamiltonian becomes an

eikonal equation on the Lagrange manifold,

a @54 -

ds, _
olap ag (dp) =0.

To obtain a transport equation, the Hamiltonian is expanded near the Lagrange mani-
fold

4 -, (45, 4 _  ds _ 95,0 _ (x- 48
ao(x)p - as(x) = ao(dp)p as(dp) + (x dp)D (% dp)D (2.5)
where
1
- | 2 _ds, ,ds
D = I e H(t(x dp) + dp,p) dt,

0

ds
i.e, the remainder of the Taylor series less a factor of (x- E;)' By substituting
Equation (2.5) into Equation (2.3), noting

S A aD
Jdpi;[exp{ it (xp-S(p))}AD] = Jdp exp{it (xp-S(p))HitA(x - %:-)w Dy * Ag} (2.6)

and taking the surface integral over a sufficiently large radius that it vanishes,

Equation (2.3) becomes
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3 3 %A 3 3D 3A
Jdp exp{it (xp-S(p))} (it) [(4a_p e t 3 PA - Aap - DS +
-1 2 32A 2 %A 2 -2 B3A 32A 3A
(it) “(6a p” —5 + 3a,p" 5o+ aptA) + (i) (4a p == + 3a;p 5 + 2a,p 32+ agpA)
Ix ax 9x
4 3 2
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where, for clarity, the arguments of the ai(x)’s have been deleted. Then requiring

2
JA 3 3D J9A -1 2 3°A 2 3A 2
=4 - = - == Z= =2
43°p3 ax T3 PA- A 5p D 3p + (it) (6aop axz + 3a1p ax T 2P A) +
3 2 4 3 2
. =2 3°A 37A JA . =3 3 A 3°A 3°A
(it) “(4a p—3 + 3ap—5 + 2a,p 0 + agpA) + (i) (a, =4 +a, —3+a,
3x 9x ax 9x 9x
9A _
taga taM =0 (2.8)

in a neighborhood of the Lagrange manifold leads to a transport equation if we intro-

duce the non-Hamiltonian flow
x = 4a_(0)p> 28 b = -D(x,p) (2.9)
x o (¥R 3T P X,P .
where the dots indicate time derivatives. That is, Equation (2.8) holds in a neigh-

borhood of the Lagrange manifold if we allow the asymptotic series

o

A(x,p,T) = & 1-‘xk(x,p)(ir)-k
k=0

to evolve along the transport equation

dAk

2
— 4 [al(x)p3 - %%]Ak + [6a°(x)p2 JLE + 3al(X)P2 é% + az(X)PZ]Ak_l

dt 3%
83 32 9
b lha, Gops + 3a Gop 2 + 2a, (x)p 3% T a3(pla
Ix 9x
84 33 32 £
+ [ao(x) ;~Z + al(x) -3 + az(x) — aB(x) 5;'+ al‘(x)]Ak_3 = 0. (2.10)
X 9x Ix

3. ODE APPLICATION
As a specific illustration, we consider the reference equations studied by
Langer, Wasow and Lin and Rabenstein [6] respectively, in the transition from lam-

inar to turbulent flow

4 dZW day

dVy 2
4t (x T_i + q E;)= 0 (3.1)
dx dx
4 2
é—% + Tz(x g—%~+ a¥) =0 (3.2)

dx dx
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4 2,

dy +T2(x d r'+ad‘l‘ +RY) = 0 (3.3)
4 2 dx

dx dx

with a,B constants. Applying the above technique to these equations leads to the

same Hamiltonian and flow (Equations (2.4) and (2.9)), explicitly
4
H(xp) =p - x
2
x = 2[(t+Po) -1] p=tt_ ,

but different transport equations

3 4
Thea S Ay
4

2
3D 2 d d
& - [P +ap] A+ [(6p"-x) ol -a At ep o3 . 0 (3.4)
dA ap 2 & P, A
qe T ap A TP T mala ) Hap R+ —= = 0 (3.5
P dx dx dx
3 4
dA, 2 a’A d'A
aD 2 d d _ k-2 k-3 _
¢ - [+ ap] A+ [(6p"-x) 2 - 3o BlA _; + 4p S + il 0. (3.6)

Although these transport equations may have many different solutions depending on
the Lagrange manifold at t=0, one interesting set of solutions is given by Ak =

constant for all k leading to an asymptotic solution of the form
. 1 5.,°
¥(x) = |exp{it(xp + 3P YIA(p) dp

where A(p) is any smooth function with compact support.
As a second example we consider the dynamical equation for the inhomogeneous

Euler-Bernoulli beam

2 2 2
emat) 2L+ 2o (r30) L‘%} =0, (3.7)
ot 9x 9x

whose WKB solution, away from turning points, has been detailed by Pierce [7]. In
Equation (3.7), Yy represents the transverse deflection of the beam, p(x) is the

density, a(x) is the cross-sectional area and EJ(x) the bending modulus. Assuming
a solution of the form given in Equation (2.2) leads to the Hamiltonian, flow and

transport equations respectively

H = EJ0p" - p(x)alx) (3.8)
X = 4p3EI() p = -D(x,p) (3.9)
dA
e by a gy ol
T Fp iy (B3} - o Akt

2 2 2
2 d
[Gp EJ(x) 5 + 6p2[dix {EJ}] d—2 + 2p° d—z (e5}|-L A+
dx dx dx dx -
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3 2 2
d d d 2| d d
[4pEJ(x) 3+ 6p[dx {EJ}] St |5 B} - oA, (3.10)
dx dx dx
4 3 2 2
d d d d d -
EJ(x) — + z[dx {EJ}] 3+t |7 B 5| A_5=0
dx dx dx dx

For completeness, assuming the analyticity near the turning point of the deriv-

ative coefficients in Equation (3.7), the phase may be determined by noting

= g1, 4y _ds
x=f ()= ap

P _
S(p) = I £ 1(u4)du

Po

$(x,p) = xp - S(p)

where f(x) = p(x)a(x) - EJ(x) [8]. With the phase above and the Ak from Equation
(3.10) the integrals

J A, (x,p)exp{iT¢ (x,p) }dp

can now be evaluated asymptotically using standard techniques [9].
4. PDE APPLICATION

The application of the classical WKB technique to some physically significant
4th order partial differential equations in two spatial variables and one time var-
iable (in which case the approach is often referred to as the geometrical optics
formalism) has been considered by Krasil”nikov [ !0] and Germogenova [11] as well as
Pierce. To apply the Lagrange manifold technique to the most general such 4th order
equation is quite cumbersome. So we restrict our attention to the dynamical equa-
tion for the transverse motion of an inhomogeneous thin Euler-Bernoulli plate,

specifically considered by both Pierce and Germogenova

_ a4 4 4 3 3 3 3
2O+ 2l v AL By 4y @AY Y,
3x 9x 9y

A
Jy 3x3 ayzax y 9x dy
~ 2 2 N 2 2 2 2
— 3 3 — — — -
2O+ 3D+ aoemid - 2,0 - 2,62 Y + o 2L - 0. .1)
ax? oy ay % 57 5t
In Equation (4.1), T = (x,y), Z(;) is the stiffness of the plate, 21 = Z%Z,
x
~ ~ 2 2 2
= 592 _ 3°z 3 3°z —.
22 Zay, Z2=A2, 7= 525;, Z3 = ;;3, 24 = g;i, 0 is the Poisson ratio and ps(r)

is the surface density of the plate. Analogous to the solution assumed in Equation

(2.2), here we assume a solution of the form
— 2 _— —_ __
Y(r)- exp{it t) fA(r,p,T) exp{it(r*p-S(p))}dp = O(Td») 4.2)

where p = (px,py). Carrying the differentiation in Equation (4.1) across the inte-
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gral in Equation (4.2) - and temporarily, for clarity, retaining only the (iT)A and

(i‘r)3 terms - we have

— i b =, b, b, 22 =
Idp exp{it(r+p-S(p))} (i1) Z(x) (px+py+2pxpy) os(r)}A + s

3 — 2, 2,0A 2, 2 BA —. 2
i LY + + = .
07 {ez () (p (P +p )3+ (P <Py et (Zl(r)px(p ) Z (r)py(px py))A}] o(r"2)
As above the Hamiltonian is the coefficient of (ir)
— =y _ oy b 4 2 2, _ —.
H(r,p) = 2(r)(p, + Py + 2pxpy) pg(r) (4.4)
Then using the same device as in Equations (2.3) and (2.4), Equation (4.3) becomes

— = = 3~ 2,2 aA =
Jdp exp{it(r-p-S(p))}[(iT1) 4Z(1'){PX(P +p ) oo p ( y) ay VPA

+ Az (D 620 + 2,0 (2] - 70} = oG, 4.5)

where
1

D(r,p) = Lvr H(t(r - vpsG)) + vps(p‘),E) dt.

Then introducing the flow
_ — 2 2 s —. 2 2
= 4z(r)p (p, + py) y = 4Z(r)py(Px + py)

x = -Dx py = -Dy (4.6)

T

into Equation (4.5) - and including the higher order terms in it neglected earlier -
leads to the transport equation

dAk

+ {2z (r)p (p+p)+z(r)p (p+p)-V°D}A,k+

_ 2 2 2
2.2 93 2.2 3 3
{Z(r)[(6px+21>y) —axz + (6py+2px) a_ 8pxpy 3 ay] + 12, (r)(3p +p ) +
y

2z (r) PPy I3t (z, (r)(3p v Px )+ 22 (r)p L ] —+ [Z(r) - -0z, (r))p +

- _ _ - _ 3 3 3
(z(r)-(1-0)z_(r))p. + (1-0)z R 2 D
3 Py (1-0) (r)pxpy]}Ak_1 + {Az(r)(px 3 + Py ay3 +p, axzay +
33 52 52
Py ) + (3Z (r)p +Z (r)p ) —5 + (32 (r)p +z (r)p ) =5+
ay Ix x By

2
2(zy (r)P +z (r)P ) 355y + Q- c)[Z(r)p - 22,(0)p)) 3~ <t (Z(r)p

22,(p,) 3 ]} A, + (2@ )( 20, 20 ) 3 R
P D —) + 2. () (—5 + ) +
By4 axzay2 1 3x3 8y28x
_ 53 33 52
Zz(r)(-—3 + ) + (Z(r) - (l—c)Z () — + (Z(r) - (1-0)2 (1) —

3y Bx dy x By
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.2
(1-0)2() st Ay = 0 .7

In this case, the phase ¢(;,E) = ;;; - S(;) cannot be determined by direct inte-
gration as in the one-dimensional case above. The phase can be obtained paramet-
rically, however, from the eikonal equation, i.e., the Hamiltonian on the Lagrange

manifold

4

—., & 22 =\ _
Z(VPS(p))(px + Py + 2pxpy) - pS(VpS(p)) =0,

using the classical method of characteristics [7] in S;space to find S(;) and thus

¢(r,p). Explicitly, applying Hamilton's equations to Equation (4.4) leads to

x = 2 )|
x Py px ax
. . 9H

=2 = . o8
y Py Py dy

which obtains the map

x = x(t,8) P

x px(t.e)

y(t,6) py

where t is the time and 6 is a parametrized initial condition. Then inverting the

y py(t,e)

momentum (;) equations yields

t

t(px,py) 8 = e(px,py).

Substituting for t and 6 in the configuration space equations determines

X = x[t(px.py), e(px,py)] = X(Px’py) = _a_ps_
X
y =yt )y 85 )] = Tlp,p ) = g%i
y

where X(px,py) and i(px,py) are explicit functions of px and py. An integration then
obtains the phase, cf. Berry [12]. A simpler approach applies for Hamiltonians cylic
in either x or y [13].

It is interesting to note that once S(;) is determined, the caustic curve - the

higher dimensional analog of turning points - is determined as well. Setting

determines the caustic curve in p-space. Each ;c = (px,py) on this curve corresponds

to a point on the caustic in (x,y) space obtained from the Lagrange manifold

.- BS(pC) ) 3S(pc)
P y=73
P P

X y
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The locus of these points is the caustic curve. With the phase determined as above

and the Ak from Equation (4.6), the integrals

JAk (r,p) explité (r,p)}dp

can now be evaluated asymptotically using standard techniques [9]. While this
analysis has focused on a particular 4th order equation in two spatial variables and
one time variable, the procedure applies to more general such equations equally well.
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