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1. INTRODUCTION
The past twenty years has seen a explosion of interest in the special equations

such as the Korteweg-deVries and sine-Gordon equations that can be solved by techniques

associated with INVERSE SPECTRAL TRANSFORM method [1]. One reason for that continued

interest has been the regular appearance of those special equations in the analysis

of a wide range of different physical phenomena. Very frequently complicated systems
of equations modelling such complex behaviour as wave propagation in a plasma or
stratified fluids have been reduced, by a special limiting process, to one of the basic

equations mentioned previously. The limiting process used is known as REDUCTIVE
PERTURBATION THEORY.

Until recently most of the work on this technique was carried out by Japanese
physicists and mathematicians and consequently has appeared in Japanese journals. A
good recent review of the earlier work can be found in the paper by Taniuti (2] and

the book [3]. This later reference contains a very complete bibliography on the

existing theory and application of this method.

In spite of its fundamental importance in solitorn physics the procedures and
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techniques of reductive perturbation theory are badly defined. It is the purpose of
this paper to address some of the outstanding problems that are associated with the
method as currently formulated.

We propose, in the following sections, to expound a particular view of what is
being constructed when the reductive perturbation method is applied. We start in
section two with some alternative approaches to quasi-linear hyperbolic systems of a
fairly general form. The ideas of far-field solutions and simple waves are developed
and interrelated. In the following section the results of section two are extended
to a dissipative generalisation of systems previously considered. The form of
reductive perturbation theory that we develop is equivalent to the higher order
renormalised reductive perturbation theory of Kodama [4]. In our final section four
we propose a more general formulation of the method as a whole in which the standard
method is looked upon as an 'outer expansion' solution to a singular perturbation
problem. As an alternative to power series solutions to this problem we propose an
iterative scheme. In developing this approach we have drawn upon ideas in the papers
by Foy [5] , Koppel and Howard [6] and Sattinger [7] . This alternative is still
in an exploratory stage and so we present only the germ of the ideas involved and refer

the interested reader to a forthcoming paper by the authors [8] .

2. THE REDUCTIVE PERTURBATION METHOD

In this section we present the motivational concepts that underlie the

method of reductive perturbation theory. As the name suggests there are two
essential features involved with this technique. Most standard perturbation
techniques involve a basic linearisation about some known solution followed

by the solution of the resulting linear equations to calculate correction

terms. Such asymptotic methods are usually based upon the existence, within
the system equations, of a small parameter. This can occur either in the
dynamical equations or possibly in the boundary conditions which define the

full eystem. The exact way in which the parameter occurs, whether in a regular
or singular way, determines the appropriate form of asymptotic expansion used

to represent the solution function. The method of reductive perturbation theory
{4 not a perturbation method in quite the same way. Rather, it involves a
limiting process based on the existence of classes of one parameter solutlions.
Whilset that parameter may be thought of as small, and the expansions in terms

of it as perturbation expansions, it does not appear in the dynamical equations.
It can be thought of as intrinsically involved in the initial conditions but in
the reductive perturbation method the initial conditions are usually given less
prominance. In general the conditions imposed are of a spatially asymptotic
character. One requires the solutions to be bounded or to tend to some given
asymptotic form. The method 18 not concerned with the initial value problem
but with the construction of special solutions which represent the solutions

to the equations concerned in some asymptotic, 'far field', regions. The method
seeks to excract the effect of dominant nonlinearities. In that sense it is an
improvement over normal perturbation procedures as the simplified 'reduced’

eéquations are nonlinear. The area of principal application is hyperbolic systems
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of nonlinear partial differential equations. For such systems the reductive
perturbation technique reduces very complicated systems to simple canonical forms.
For dissipative systems we have canonical forms such as the Burgers equat lon.

For dispersive systems it 1s the celebrated Korteweg-de Vries (K.dV) equation
which most frequently appears as the canonical form. When such 'reductions' are
made there is clearly a considerable loss of information about the system. What
is actually shown is that certain projections of the solution function to a
system of nonlinear hyperbolic partial differential equations satisfy the canoni-
cal equations mentioned above. In fact it is possible to determine different
canonical equations for different projections and to obtain information ahout the
whole solution function. However, it is the structure of the nonlinear terms
which determines the specific limiting process used for each projection. This

means that we cannot assemble these results together to obtain an asymptotic
picture of the complete solution. We have here a further reflection of the fact

that this method is not concerned with the general initial value problem. Rather,
it 18 concerned with the construction of some type of invariant manifold for the
systems involved. Can we determine a one parameter family of functions which are
invariant under the flow induced on the function space of initial functions by
such a system? We shall make some further comments upon this view of reductive
perturbation theory as we develop the method. We are then, concerned with the
idea that there exist regions of space in which special types of solution to
svystems of hyperbolic partial differential equations behave in a simpler, canoni-
cal, fashion. Some elementary examples will demonstrate the physical origins of
these ideas.

Consider the wave equation
utt - “xx =0 . (2.1)
1f we introduce the new variables u and v defined by
u=dw ) vedw-u) (2.2)
2V x 't 2V x 't :

equation (2.1) can be recast into the form of a hyperbolic system of linear par-
tial differential equations. The vector U = (u.v)T. vhere 'T' is the operation
of matrix transposition, satisfies the equation

Ut + Abux =-0 (2.3)
with Ao « 9 -1
o -1 ol This real symmetric matrix has two real eigenvalues 1

and -1 with eigenvectors Rl - [_i] * and R2 = li] respectively. If we con-

sider the initial value problem defined by (2.3) together with the initial con-
dition

U(x,t=0) = Uo(x) (2.4)

we can obtain the general solution in the following way. Expand both the initial

vector valued function Uo(x) and the solution vector U(x,t) in terms of the

basis defined by the eigenvectors R, and R

1 2’
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Uo(x) - wlo(x)R1 + v2°(x)a2 (2.5)
U(x,t) = vl(x,t)Rl + wz(x.t)kz . (2.6)

When (2.6) is substituted into (2.3) we find that the coordinate functions
L satisfy the decoupled initial value problems

Yie + eV " 0 wi(x.t-O) - ULO(X) 2.7)

vhere e = _i i:; . These linear partial differential equations can be solved

in the following classical way. Define the family of curves C(i) to be the

trajectories of the system of ordinary differential equations.

dx

dt -~ ¢t . (2.8)
From (2.7) we see that v, is constant along the family of curves C(i). The
curves C(i) are called characteristic curves and the characteristic which

originatas from the point (£,0) on the initial data curve t=0 18 the straight
line

x-et=¢ . (2.9)

As the function v, is constant along this curve we have the result
w(xet) = w, (£) = w, (x-e,t) (2.10)
and the complete solution is given by
U(x,t) = wlo(x-t)k1 + 92°(x+t)R2 . (2.11)

Let us first of all observe the mathematical structure of the result. The
coupled system of equations (2.3) was decoupled by introducing two new vari-

ables v, which were the projections of the solution vector onto the eigen-

vectors l‘. Each of these new projections satisfied a simple, canonical, equa-

tion (2.7). The solutions to these equations are travelling waves of the form

(2.10) in which the initial wave profile W o Propagates along the x-axis at a
speed @,.

‘ For general initial data we will have both leftward and rightward

travelling waves. This is most easily envisaged if we consider initial data on
compact support,

X
X

d

. [Feo .
UO(X) {0 d (2.12)

tv 1A

The projected initial data Yio will also have compact support and for ¢t > d

the solution consists of two nonoverlapping progressive waves. To generate a
single wave it 1e necessary to choose an initial function which is an elgenvector
of the matrix Ao.
condition

If the function Uo was required to satisfy the subsidiary

(Ao-ell)uo =0 (2.13)

it could only generate uni-directional waves. This can also be stated by saying
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that the space of functions U(x,t) with the property

(Ao-eil)u(x,t) =0 (2.14)

is invariant under the flow induced by the partial differential equation (2.3).
This follows from the simple fact that the operator (Ao-eil) commutes with the
time evolution operator -Aoax.

The extension of the simple 2 dimensional case above to the general nxn
system

Ut + AUx =0 (2.15)

where A 1is an nxn matrix with n distinct real eigenvalues e‘(ill,...,n)
i straightforward and automatic. Expanding the solution function in terms of
the eigenvectors Rl (i=1,...,n) of A we can reduce system (2.15) to the
system of decoupled l-dimensional equations

Yie + ew = 0 (2.16)

where vy i8 the projection of U onto the ith eigenvector Rl' A convenient

way to express v, is by means of the left eigenvectors l.1 of A defined by

LI(A-eil) -0 . (2.17)

1t i easily shown that the bases {Rt} and (Lll are dual to each other with
the orthogonality relations

T -
LR, =0 for 123 . (2.18)

Consequently we can write

o T T
v, (Liu)/(Liki) (2.19)
for the ith projection.

The complete solution 18 now given by

n
U(x,t) = § w (x-e t)R . (2.20)
1=1 io i i
As the problem 18 linear we are able to obtain the complete solution from the re-
duced equations (2.16). This will cease to be possible when we transfer our
attention to nonlinear ayatenﬁ. After a certain time t=t* the initial data
with compact support in the interval |x| ¢d will have been transported along

the straight line characteristics to n distinct regions Sl,....Sn. The figure
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below {llustrates this situation for the case n=4.

t

Fig 2.1: An 1llustration of far field regions for the case n=4. The regions
s1 are the far field regions. The region G is the region of complete

determinacy and the regions 10 are regions of constant state.

Within any single region only a eingle wave wk(x.t) will be observed. Thus,
after the critical time t=t* the solution (2.20) represents n progressive
waves which do not overlap in space or time. These wave solutions are some-
times called the far field solutions of the hyperbolic system (2.15) and the
regions of space-time sk. where they are to be found, are called the far field
regiona.

Many of the systems of nonlinear partial differential equations that occur
in physics can be recast, like the basic wave equation (2.1), as systems of par-
tial differential equations of the form

Ut + A(U)Ux =0 (2.21)

where A(U) 18 an nxn matrix depending upon the system state vector U. A
typical example 1s provided by the equations for an isentropic gas. In that
case the state variable is the vector U = (p,u)T where p 1is the gas density
and u 1is its velocity. The matrix A(U) takes, in that case, the form

u P

-1

A(U) = 2
ap u

(2.22)

and for simplicity we consider the case of constant a. For a system of the type
(2.21) we can ask if the notions of far field solution and region retain any
validity. The analysis of the case of constant A depended largely upon the
construction of the families of characteristic curves c(i). Even for the
quasi-linear case (2.21) we can still introduce the idea of characteristic

curves given certain assumptions about A(U). Before we consider the general
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case let us investigate a simple one dimensional example. The equation

u +uu =0 (2.23)
t X

will prove adequate to show the problems involved. The characteristic curves

in thie case are defined to be the trajectories of the single ordinary differ-
ential equation

Leuw (2.24)
Along such curves the solution vector u(x,t) 1s a constant and so, as in the
simple comstant case, the trajectories of (2.24) are a family of straight lines.
The problem that exists in this case 18 that each characteristic originating
from a point (£,0) has a different slope determined by the initial function
uo(c). The solution to the equation (2.23) is given implicitly by the following
nonlinear apalogue of (2.10),

ulx,t) = u (£(x,t)) (2.25)

where £(x,t) 1s determined implicitly by the algebraic equation
x=E+ tuo(C) . (2.26)

The existence of the function £(x,t) 1is guaranteed by the inverse function
theorea provided

1+ tu;(i) #0 . (2.27)

The critical time on the trajectory originating from x=f{ we denote by

¢, (6) = et (2.28)

When t'tc(c) the equation (2.26) is noninvertible because two characteristics
cross at the point (uo(c)tc(£)+£.tc(£)) and so a unique point (£,0) on the
initial data axis t=0 cannot be ascribed to it. The locus of such points
determines a critical curve rc beyond which the solution is 111 defined. 1n
fact it becomes necessary to gemeralise the whole notion of what is meant by a
solution to proceed outside of the region bounded by Pc. This i8 the important
subject of shock solutions but as we shall bypass the problem by introducing

higher order derivative terms into the basic equations we shall not pursue it at
this juncture.

Already it is clear that there are going to be problems. The solution may
not exist in the classical sense long enough for any far-field solutions to
separate and that means no far field regions. However, let us place these
thoughte at the back of our mind confident that we will think of some way of cir-
cumventing the problem. How can we handle the general system (2.21)? Start with
the n=2 case and assume that the matrix A(U) has two real distinct eigenvalues
E‘(u)(i-l.z). with right and left eigenvectors ni(u) and L‘(U) both of which
define a basis for Rz. If we premultiply (2.21) by the left eigenvector Li(u)
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we obtain the equations
T
Li(u)(ut+E1(U)ux) =0 . (2.29)

This suggests that the appropriate analogue of characteristic curves in this non-
linear situation is provided by the trajectories of the ordinary differential

equations

), dx _
¢’ dac Ei(U) (2.30)

as in (2.24). Equations (2.29) then tells us that if s is a path parameter

i
along a member of the family C(i) we have
du
L, da, 0 . (2.31)

By means of an appropriate 1ntegtatin3ffactor ui(U) this equation can be con-
verted into a complete differential —;1 which defines the quantity fi(U).

d
i
Along the characteristic curve C(i) we have the result

fi(U) = ri(sj) j#1 (2.32)

where ri(sj) is a function of the other characteristic variable sj (321
determined by the initial data Uo(x). By means of illustration consider the
isentropic gas equations defined by (2.22). The eigenvalues and right and left
eigenvectors are easily calculated to be

r [ -1]
1 ap

E,(U) = (uta) R, (V) = A_lil L,(v) - (2.33)
2 LU
1 ap”}

E,(U) = (u-a) RW=| L,(u) = L (2.34)
[-ap =1 ]

and we observe that the orthogonality properties (2.18) are fulfilled. If we
suppose initial data of the form

g(x) for x| =d and p, for |x| =d .
U(x,t=0) =

(2.35)
0 for all x

then the constants Fis which are known as the Riemann invariants, are given
by

tl = y + alog(p) = ri(sz) along C(l): %% = (uta) (2.36)
fz = u - alog(p) = rz(al) along C(Z): %f = (u-a) . (2.37)

In the x-t plane the characteristic curves determine special regions. These
are indicated sechematically inm the figure below.
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Fig 2.2 : The regions I
The regions Sa (a=t) are the simple

(a=i,o) are coastant state regions.
wave regions.

In the region S1 equations (2.1.36-37) become

u + alog(p) = alog(g(f)) on c(l)

(2.38)
u - 1 . - (2)
alog(p) = -alog(p ) on ¢ (2.39)
which can be solved to give
u = )5 alog(g(£)/n ) (2.40)
- % (2.41)
p (DOB(E))

Now that we know the state vector in S { vwe can integrate the equations for

the characteristic curves in that region. The result is the family of strafght

lines

eV, e gr@ue)+a)e (2.42)

where u(f) 18 the function given in (2.40). The time t* indicated on
figure (2.2) 1s the time after which the solution has divided into two dis-
tinct components existing in the regions Si. The family of characteristics
(2.42) has a breaking time tye defined as the minimum positive value of

tc((). given by
- 4})}2(
Y |2T2d ( ag' (£) (2.43)

The distinguishing feature of the regiouns S¢ 1is that within them one of the

Riemann invariants rj(jﬁi) is a constant. Such regions are known as simple

633
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wave regions and the solutions within them as simple waves. The equations
(2.40-2) define a eimple wave solution to the gas dynamics equatlons for

th <t < tb provided that ordering of times 1s valid. The subregions of

S1 corresponding to that time slice clearly represent a generalisatlion of the
‘far fields' of the comstant matrix system (2.15). We also sce that the sim-
ple wave solutions are the most natural generalisation of the 'far field
solutions' of the linear case.

Unfortunately, the theory of Riemann invariant does not generally extend
to the nxn situation. This means that if we wish to use the idea of simple
wave solutions to generalise the notion of 'far field' solutions to the non-
linear case we must find some alternative definition, equivalently defining
them in the n=2 case, which can be extended to the general system. One

way in which 1t can be done 18 to seek special solutions to the system (2.21)
of the form

Us (upauyug),eeeu ()T (2.44)

with each of the component functions u, (i=2,...,n) a function of one

eingle independent component taken, without loss of generality, to be up-
For example, in the case n=2 the substitution of the ansatz (2.44) into

the 2-dimensional version of (2.21) yields the equation

1
(ult+A(U)ulx) o =0 . (2.45)
2

From this we see that

1

-ult/ulx is an eigenvalue of A(U) with efgenvector
R(U) = [;. .

This gives us two types of simple wave corresponding to the
two distinct eigenvalues Ei(U),

i i
ult + Ei(u)ulx =0 (1=1,2) (2.46)
1
[.] = CRI(U) with C a constant (2.47)
u
2

For the gas dynamics example this gives for 1=1

U, + (ul+a)u1x -0

(2.48)
[ - -1
u, a(ul) (2.49)
The second of these can be immediately integrated to glve
u, = alog(ul) + K where K 18 a constant (2.50)

Eliminating the function 8(£) between (2.1.40) and (2.1.41) we sece that

U7 g alog) - alog(p,) = alog(u;) - alog(s,) (2.51)

The solution for (2.48) 1is determined by the same
family of characteristic curves (2.42) as before.

and we have agreement.

Naturally, when we deter-
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mine solutions by means of an ansatz such as (2.44) we are no longer solving

an initial value problem such as that determined by the initial data (2.35).

Just a8 in that case we were able to show that there were simple wave regions
but were not able to exactly locate them €0, in the ansatz case, we arc able

to find the solutions but know not where they exist nor the initial data from
which they derive.

We are now in a position to introduce the reductive perturbation approach
to the determination of simple wave type solutions for nonlincar systems such
aa (2.21). The systems (2.21) have one very simple class of solutions. These
are the solutions given by constant state vectors U(x,t) = Uo. 0f course
this will not satisfy the initial conditions unless Uo(x) = Uo a constant.
Let us consider an initial value problem in which the initial condition is
some deformation of the constant state Uo. Let us take

Ug(x) = U+ € 0(x,€) (2.52)
where U(x,€) = 0(1) as € - 0. In fact we will assume that ﬁ(x,é) is
analytic in € with a Taylor series of the form

n-1
U(x,€) = Ulo(x) + €U2°(x) + c0- + € Uno(x) + °c0 (2.53)

The physical idea is that the system is started off in a 'near equilibrium'
configuration. The parameter € 1 tiiought of as 'small'. However, in
practice it acts as a formal expansion parameter and need not be small.

We concentrate first upon the oinple wave solutions of the general sys-
tem (2.21). These are determined by the 'reduced equations'

v, + E(u)ux =0 (2.54)

where u 1is the independent coordinate of U and E(u) 1is one of the
eigenvalues of A(U) expressed as a function of the single function u as
demanded by the simple wave hypothesis. The initial data that will give rise
to a simple wave 18 not known to us. Let us suppose that it is possible to
find a one parameter family of initial functions of the form

u (,€) = U+ €3(x,€) (2.55)
corresponding in the simple wave case to the general initial data (2.52) of
the full equations. The function U(x,€) 1is assumed to be analytic in €.

The initial value problem defined by (2.54-55) can be solved by the method
of characteristice and is given in the implicit form by the equations

ulx,t,€) = u (£(x,t,€),€) (2.56)

where the new coordinate £(x,t,€) 1s given implicitly by the algebraic
equation

x = &+ E(u (£,€)¢ (2.57)

As uo(x.é) is analytic in €, equation (2.57) has a solution £(x,t,€) which
1s also analytic in €. We easily find that the structure of this analytic
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function 1s given by

EOGE6) = €+ a, (6 ) €n) + ay(e ) (€0)” + a (£ ) (%e) + 0(¢?)

(2.58)
where the variable Co is defined by

Eo = (X'E(Uol) t) (2.59)
The constant E(uol) is readily seen to be any one of the eigenvalues of
the constant matrix Ao defined by

AO - A(Uo) (2.60)

The functions al(co) are determined by the initial data function uo(x,t)
and, of course, the matrix A(U). The structure of the simple wave solution
(2.56-57) in the parameter € suggests an alternative way in which simple
wave solutions, and possibly generalisations, might be extracted from the
general equations (2.21) with initial conditions (2:52). The function

€(x,t,€) can be regarded as a function of the infinite set of 'scaled vari-
ables'

£ 3 - (x-BJ(Uo)t) (i=1,...,n) (2.61)

o

T, = €'t (i=1,...,%) (2.62)

where EJ(UO) is an eigenvalue of A(Uo). The variables on and T are
known as the Gardner-Morikawa variables (Gardner,Morikawa, [ 9]). Simple
wave solutions are now seen as part of the class of solutions to (2.21&52)

which have formal asymptotic expansions of the form
UG, €,€) = TCE L TyseeeaT oo s€) (2.63)

where U(';€) 1is an analytic function of €. Each of the variables (2.61-62)
is regarded as independent. We see from (2.58) thaé in order to obtain the
simple wave solution we need to retain all of the higher order 'slow times'
T, We refer to them as 'slow times' because if the parameter € 1s small
the variable T“ will be small also for periods of time t for which
t < €®.  For such periods of time it may be possible to neglect the eftect
of times T1 for which 1 > n.

If we assume the existence of a solution to the nxn initial value

problem of the form (2.63) we obtain the following set of variational equa-
tions

I o, e |[T vdwu saw + T ued[T v &) -0
[1-1 Ty ¢ 121 J ° e 121 Jj) JZI i

(2.64)
where { 18 the Gardner-Morikawa variable (x-et) corresponding to the

eigenvalue e of Ao. We have expanded ﬁ(-;() in its Taylor series

UL, =u + § oA

Wh J(Ul,...,U

3
J)f (2.65)
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and we can write
AU, + ] Uje) = A, + ) Aj(U,...,00)€ (2.66)

3=1 =1 .

where the coefficient functions A (Ul""'uj) depend upon the coefficient
functions U1 for 1 < jJ. They also depend on Uo’ but as this is fixed we
suppress its appearance in the notation. Equating the coefficient of "

in (2.64) to zero we obtain the equation

n n
I anU _ -ev +[] A (,,u)u _ =0 (2.67)
1=1 'l‘1 n-1 né 1=0 i1 1" "n-1¢

The lowest order equation corresponding to n=l1 is given by

(a4, = DU L (2.68)
which is reminiscent of the subsidiary condition (2.14) required in the
constant linear case to ensure the generation of asymptotic far field

solutions. This constraint implies that U, must be representable in the

1
form

Up = w(EaT e aT) R+ €T}, T,) (2.69)

1 1"'

where w(.) ia a scalar function and R is the right eigenvector of Ao
corresponding to the eigenvalue e.

As in the simple wave anstatz we have brought about a reductlon in the
nature of the state variable. The vector quantity U1 has been reduced to

a single function w. Whether w will prove sufficient to parameterise the
rest of the state vector remains to be seen. Whilst it would be possible

to continue the analysis and retain the integration constant C (.) it does
lead to the introduction of a large number of additional terms that obscure
the underlying process. For that reason it is convenient to introduce an
extra boundary condition at spatial infinity which implies that they are all
zero. If we impose the additional requirement upon our basic fnitial value

problem that we are only concerned with initial functions and solutlons
with the property

U(x,t,€) + 0 |x|+= (2.70)

then all such integration constants, depending upon time variables alone,

will be zero. In order to determine the dependence of w(.) upon £ and the

'slow times' T{ we must look at higher order terms n :z 2.

The equation (2.1.67) becomes, for n=2, the equation,

9., U, < @u
T1 T g T AU 0 (2.71)
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The content of this equation is best analysed by recasting it into the

form

(A

- - - 2.72
0 eI)u2£ (aTlu1 + Al(ul)ulc) ( )

- - 2.73
(3T1w + Al(uk)wg)k . (2.73)

The functional AI(U) is linear. Let us write
n

b .
A(U) =] AU (2.74)
1 LT

where U
Bl by

1s the i-th component of the vector U. If we define the matrix

(1)

E 1

B = R (2.795)
1 1=1 17 (1)

we can finally express (2.1.73) in the form

- - - .7
(Ao eI)UZC (m,l,1 + uugBl)R (2.76)

Premultiplving each side of this equation by the left eigeunvector L

corresponding to the eigenvalue e we obtain the following equatlion for the
projection w

- > 77
lu,rl + aluwg 0 ( .71)

where a is the constant defined by

a; = ' R/ TR (2.78)
Equation (2.76) yields, upon the use of (2.77), the result

(Ay - DU, = s(a-B Mk’ (2.79)

In (2.79) we have set the integration constant to zero by virtue of our
asymptotic hypothesis (2.70). The solution to (2.79) is ambiguous to the
extent that we can add to any solution U2 an element of the kernel of

(A0 - el). If ER is the eigenspace of R" spanned bv the eigenvector R then

A defines a vector space decomposition of Rn,

n::
R Ep @ Ny (2.80)

If we denote the projection operators onto these complementary subspaces
by PR and QR

Pa® Q=1 (2.81)

the Pkand QR can be expressed in terms of the left and right efgenvectors L

and R. The appropriate formulae, which define N , are
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- § - R . 2.82
(PR)11 L j (QR)ij 13 :lg) ) ( )
%
(L ) (L R)
Let Q2 be the unique solution to the equations
(A, = eI)?, = 4(a,-B))R, PO, 0 - (2.83)
We can then express the solution (2.76) in the form
U, = wl0 + 8k (2.84)

2 2 2

where s-» is a function of all of the system variables. The essential fdea

behind the construction of slmple wave solutions would suggest that all of

components of the vector should be expressed in terms of a single function.

The natural choice for that function is w and that, in turn, suggests that
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the

we should choose the only unique solution (2.76) corresponding to the choice

Sy = 0 in (2.84). However, let us for the present retain the term 52R in
(2.1.84) to see what complications its retention would involve.
The equations for the n=3 level in (2.67) are given by
A -el)U,_ = - 5
(A,-eDu,, (A WU, + Ay(U UL e + 3T2uI + 3,0, . (2.89)
Ouce again, premultiplication by the left eigenvector L leads to an
evolution equation for the function w with respect to the 'slow time' T

2

(W, + s

1, + wa,s, )(LTR) + (LTBIQZ)w(wz)C +

2 T1 1° 25

+ LT Ay ua.uzoz 48R )Ru =0 . (2.86)

I1f we write out the Taylor expansion of A(U) in the form

T 3
AU) = A+ Ealu(i) + { Al ”(1) @m o(|ul™) (2.87)
it 18 easily shown that
A,y = At e DA @y (2.88)
247172 i1224) i3 2 1@ )

The final simplified form of (2.86) can be expressed as

2 -
(sz +aw ”E) + (32T1 + a)8,,0 + 3132“5) 0 (2.89)

where a, is defined to be the constant
T
2 (2L B¢

2 * LTBZR)/(LTR) (2.90)

in which 32 18 the matrix

14
B, = 21 7 Rk * ZA1 21) (2.91)
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1f we do make the choice 8, =0 which is both speclal and arbitrary we

obtain the following evolution equation for the projected variable w

2
W + a2w ue -0 . (2.92)
2
Note that had the dependence of w on T2 been omitted equation (2.92) would
be @ nonsensical equation in the sense that it would, in conjunction with
(2.77), allow only the solution w = 0.

Let us summarise our results to date. We have, by making various and
arbitrary assumptions, produced an asymptotic representation for the
solutions of the general initial value problem (2.21 & 52) supplemented with
the asymptotic constraint (2.70). The solution we have constructed is

given in terms of a single unknown scalar function w and is given by

UG, E,€) = Uy # cwl,TL TR + efue, 1), T %0, + 0(e?)  (2.99)

2)
where, as we have only collated terms up to 0(c3). we have only indicated

the dependence of the projected solution w on the principal higher order
'slow times' T1 and T2. The function w(&,Tl.TZ) is required to satisfy the

'reduced evolution equations'

NT + alwg = (0 (2.910)
1
w, +a uzm =0 (2.95)

T2 2 3

which must be solved subject to the projected initial data

w(§,0,0)R = P uw(;) (2.96)
for Ul and, in the case of U2.
2
w (£,0,000, = Qu, (§) . (2.97)

We see that the initial data for different components of the solution vector

must be related. The situation we have is exactly that which pertalns for

the simple wave solution.

The choice 8, = 0 would seem to correspond exactly
with the simple wave case.

The analysis we have just made requires the

dimension of the state 8pace to be at least two. Making the winor modifications

required we find that the related results for the one dimensional situation
are given by

2
O EE) = ug 4w, 1Ty + efa(e T LT + 0] (2.98)

where the functions w and s satisfy the equations

wo + A ww -0

(2.99
Tl 1 to )

2
w, + 8 tAsw+ (Auw +As =
Tz 'I'1 1 go 2 1 )“‘;o 0

. (2.100)

In this case it 1s possible to have solutions which depend only upon £
and T1 a8 that possibility only requires s to satisfy the equation
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2
- . .101
nTl + AI.C: + (A2u + (Azw + Ala)mgd 0 (2 )

If ¢ 18 zero we obtain the equation determing the T2-evolution of w to be

2
W, *AW w -0 . (2.102)
Tz 2 Co

We note that (2.99 & 102) are exactly the reduced equations (2.94 & 95)
of the general system. Our process has reduced the nXn system to an

equivalent one dimensional problem
2
“t + (ao + alw + azu )mx + 0 (2.103)

for times t<c .
To express the equations (2.67) for n2z 4 it is convenient to use a
multi-index notation. If I -(11.....1“) is8 an n-tuple of Integers belonging

to the alphabet (1,2,3,...,n} define the symbol U(l) to be the monomial

U ceeal

=-U ] . ;
(1) (11) (1) (1n) (2.104)

Also, given a sequence Uj (3~1,2,..,) of n-tuples, and a multi-index
J = (jl.....jn) drawn from the alphabet of positive, nonzero integers, we
define the symbol UJ(I) by

u = U R I} «

J(1) 3 1,4 (2.105)
In terms of these multi-index symbols the Taylor expansion of A(U) can be

written in the concise form

1
A) = JAlu |+ A (2.106)
%Ilzl(l) °

where for multi-indices drawn from either alphabet

1] = R PSSR L T (2.107)

‘he summation in (2.106) is over all such multi-indices obeying the constrdint

shown. In this case |I|31l. The Taylor coefficients A}(Ul.....u ) are
J

expressible in terms of the AI by

AJ(Ul...UJ) - % AUy (2.108)

and this allows us to express the general equation (2.67) in the form

n-1 n
(A -eI)U - —( 3 U + I .
o g-l T~ g-{ZIJ.II‘ PR L (2109
1g)1]¢]

It is not clear that it 1s possible to solve these equations In terms of

polynomials in w and its derivatives with respect to § as we can for n=l and
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2. The equation to be solved for U3 can be written in the form

~

(A - - 2 2, .
(Ao el)U35 (28102 + BZR)u wﬁ + (uTZ)R + (w )T} v2 (2.110)

where we have the requirements upon the higher 'slow time' evolutions of w

given by equations (2.94-95). Using those equations,(2.110) can be re-expressed
as

- - - 2
(Ag=e1)Uy = (2B)9, + B,R - a,R -2a)0 ) )uu, . (2.111)

Therefore if we denote by 03 the unique solution to the equations

- -l -
(Ao el)v3 3[(a2 BZ)R + 2(51-31)02].PR03 =0 (2.112)
we can write the general solution to (2.1.110) as

- 3
U3 w 03 + s3R (2.113)

where
e 83 1s arbitrary. One way of ensuring the absence of such terms is to

impose the constraint

PU =

Y3 0 for all j>1 , (2.114)
This requirement can be expressed as a condition upon the full state vector

U by means of the condition

PLU- P“(uo + €wR) (2.115)

defining w to be the unique projection of the state vector U onto the

eigenspace E, as defined by the projection operator PR.

The roductivz perturbation technique that we are developing for the general
system is a projection technique similar to that used in bifurcation theory
Joseph & Ioos [1d. If we do impose condition (2.115) we see that the
parameter € is defined as an 'amplitude parsmeter' for the ER projection

of the initial data function Uo(x)
PR(Uo(x)-UB) = €w(x) (2.116)

with w (x) = 0(1) as €+ O.

Let us suppose that for l<is n the coefficient U1 has the form

U1 - vi(w) with PRV1 =0 (2.117)

and that dependence of w upon the scaled time 'l‘1 is determined by an

evolution equation of the form

W + Pi(w)uC =0 (i=1l,...,n-1) . (2.118)
i

We have already shown that this is true for 1=2 and hope that that result
will serve as the foundation of an induction proof. The equation which

determines the dependence of w on Tn requires the function AJ(U ..UJ) for

1’
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1 $3 <n. Substituting (2.117) into (2.108) we obtain

Ay ..U - 2A VJSI) () AAG (2.119)

1s|1I<1

where this equation defines the function Fj(u) and we have extended the

notation expressed in equations (2.117-8) by defining

v,y ® Rw . (2.120)
From equation (2.109Y) we are now able to determine the T“-evulutlon equat fon
as
T n-1
LiGwp R+ ] 2, (Vppog @)+ { Fj(w)(vn+l J(”));) =0 (2.121)
n {=1 "1
which has the form
an + P“(m)m =0 (2.122)

with Pn(u) defined recursively by

P W) = ( fL rj<m)v wH/any (2.123)
=1 n+l-]
In order to determine Fj(w) we need vj(w) for j=1,..,n. That same
information 1s sufficient to determine Pn(w) also. Our basic assumption
(2.117) was that these were known. To complete the induction proof we
have only to show that Un+1 can be represented in the form (2.117). The
eéquation that must be solved to obtain Un+1 is given by

0
S(AgmeDy L - (ng (Fy()= P v, () Ya (2.124)

-]
The operator QR(Ao - eI)QR : NR -+ NR is, by the assumed hyperbolic nature
of Ao' a nonsingular invertible matrix. Denote the inverse by KO. As, by
construction, the right hand side of (2.124) belongs to NR it follows that
the unique solution of (2.124) in NR is simply the inverse image of the
righthand side of that equation under Ko. This produces the result

n
vn+1(w) -le(- [” K ((Fj(w) Pj(w))v +1- j(u))dw) (2.125)
o

and completes our induction proof. Each of the vectors vj(w) is a vector

valued polynomial in w of degree j and P, (w) is a polynomial function of w

A

of degree j. The final complete asymptotic expansion for the solution vector
U is given by

U(xats€) = U + €u(E,T,,. 0, TR + vj(w)GJ (2.126)
=2

where the function w, which 1s proportional to the projection of U-U ) onte
o

the eigenvector R, must satisfy the helerachy of evolution equat ions

“r_ PP W =0 (2.127)
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Our next important observation, that can be proved by induction, is that the

basic functions Fj(u),Pj(u) and vj

We are able to write

(w) are simple monomials.

Py - wj;j Py = ajwj vy = w GJ (2.128)

and the Tn-evolution equations are given by

o + ejijc -0 . (2.129)

Note that all of these flows commute and 80 there is a solution for w.

The final representation for U(x,t,€) is a Taylor series in (£w)

U(x,t,€) = U_+ (€w))R + 1o (em)J . (2.130)
° gm2 3

From (2.128-29) we see that we can forget about the expansion methods we
have used. Equations (2.129) are the 'reductive perturbation' equations
for the scalar partial differential equation

w, + a(w)wﬂ -0 (2.131)

together with the initial condition
- - . 2.1
w(x,t=0) = u + €w (x) = PLU, (x,€) (2.132)

The function a(w) is defined by

a(w) = (¢ + I a

W) . (2.133)
=1 3

What we have shown is that any solution of the scalar equation (2.131) generates
a solution of the full system (2.21) given by,

UGx,€) = U_ + ] QJuj (2.134)
i=1

and consequently we refer to (2.131) as a CANONICAL FORM FOR THE SYSTEM
2.21). We would like to adopt the view that the reductive perturbation

method is simply a way of determining that canonical form.

From the structure of (2.131 & 134) it is clear that the solutlion we
have obtained is nothing more than the simple wave solution (2.44) basecd upon
the use of a coordinate system determined by Ao. The function a (w) is nothing
more than the eigenvalue of the matrix A(Uo+u) previously denoted by E(U) in

(2.54). Similarly the OJ are the Taylor coefficients of the eigenvectors of

that same matrix expanded as a power series in w.

DISPERSIVE AND DISSIPATIVE NONLINEAR SYSTEMS

We have considered in the last section systems modelled by equation (2.21). A

significant property of the solutions of such equations was the existence of a

breaking time tb after which solutions do not exist.

This property is associated

with the existence of discontinuous solutions corresponding to shock waves.
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In physical systems genuinely discontinous phenomena do not usually occur.
This is because such transitions are associated with rapidly changing functions and
high field gradients. In such regimes nonlinear effects, involving higher partial
derivatives, play an important role. There is a basic division of evolution equations
into those which are dissipative and those which are dispersive. In a dissipative
linear system individual Fourier modes decay exponentially in time and energy is
lost from the system. Physically, it is frictional types of force that are involved
and they are modelled by derivative terms of even order. A generalization of the
basic system (2.21) which incorporates dissipative effects 1is given by the (nxn)

nonlinear partial differential equation
Ut + A(U)Ux + Kl(U)(KZ(U)Ux)x =0 (3.1)

where A(U) and Ki(U)(i-1,2) are (nxn) matrix functionms.

In a dispersive linear system individual Fourier modes have phases which vary
with time without affecting their amplitude. This leads to interference effects and
a gradual spreading out of wave packets. Physically, dispersion is associated with
cooperative effects, with a sharing of the available energy between different Fourier
modes rather than a loss of energy from the system. Such mechanisms are associated
with derivative terms of odd order. A generalization which incorporates dispersive

effects 1s given by the (nxn) nonlinear partial differential equation
Ut + A(U)Ux + ‘1(”)1‘2(”)(K3(U)”x)x]x = 0 (3.2)

where A(U) and Ki(U) (i=1,2,3) are (nxn) matrix functionms.
Let us consider first equation (3.1) where for convenience we take KZ(U)-I

so that we will consider

Ut + A(U)Ux + K(U)Uxx =0 . (3.3)

what we are trying to do is to determine the analogue of simple waves for systems that
can be expressed in such a form. The substitution of an ansatz such as (2.44) produces
an inhomogeneous form of that equation and it is completely unclear how that equation
should be analysed. In the previous section we showed that by the introduction of the
formal parameter € it was possible to construct the simple wave solutions in a
manner independent of the ansatz (2.44). This suggests that our search for an
appropriate generalization of those solutions to the system (3.2) or (3.1) might be
based on a generalization of that technique. As a first guess we might think that the

second derivative terms should be small and that we could develop our theory as a
singular perturbation of the system (2.21). However, the outer expansion of such
a solution would be determined by the system (2.22) with its inherent shock solution
problems. To obtain a balance between the three terms in (3.3) we introduce a new
set of variables.

bt+i

L= €fxae) e =€t (3.4)

and assume that the solution vector can be expressed in the asymptotic form
U(x,t3€) = U + ) UJ(E'tl"z"")‘J (3.5)

i=1
with the associated initial function



646 H.C. MORRIS, D. SHEIL AND R. DODD

U(x,£=0,€) = Uy + | ujo(z)eJ . (3.6)
J=1

The real numbers a and b are to be determined so that the leading tl-evolution
equation involves a balance between all three types of term in (3.3). The substitution
of the variables (3.4) into (3.3) gives

7 u et aw - anu et s @y o (3.7)

1=1 %4
The matrix function A(U) is still assumed to have the Taylor expansion (2.106). We
still wish to have U defined as the same projection w as in the first order case
considered in section 2. This means that we must choose b > a. If both K (Uo)

and Al(Uz) are non zero, we will obtain a t,-evolution equation incorporating

1
shock eliminating higher order derivatives if we make the choice

l1+b=1+am=2a (3.8)
The scaled variables are therefore
£ = €(xman) £, ety | (39)

The representation (3.5), together with an assumed regularity of the matrix function
K(U),allows us to write
k@) = Fk (u,..,upet . (3.10)
1=0 i1 i
and the equation obtained by equating the coeffecient of €" to zero in equation

(3.7) has the appearance

n n

Tu + (A -AI)U +1 AU U

qu1 oog41 o otlL,E Lo 1,, 940 -i+1,¢
+7 x (U, u)U,, =0 (3.11)
1,1=0 i 17738¢
i+j=n

for n > o. There are also negative powers of € once the equation has been divided

through by 62 » these lead to

(Ao - AI)U16 =0 (3.12)
which gives
- .. (3.13)
Ul Ufc;tlntzo )R
where R 1s the eigenvector of Ao with eigenvalue A.
For n=1 we obtain
Ultl + (AO-XI)U2 + Al(Ul)U1£ oUIEC =0 . (3.14)

Premultiplying by the left eigenvector of AO,LT, we obtain the compatibility condition
for (3.14)

ulti+ Blullﬁz + uulEE =0 (3.15)

which is the familiar Burgers equation, with the coefficients defined by
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uTnln
s = — (3.16)
LTk
LTKOR
e . (3.17)
LTr

On the other hand, solving (3.14) gives
(3.18)

2
02 - “ZR +u1 \l2 + u1€ "2

where V, and W, are the unique solutions to

(AO-XI) V2 - B(QI-BI)R ’ PRVZ =0 (3.19)

(AO-XI) H = (U-K )R , P H2 0 .
The function u, 1s dependent on the variables {é,tl,...}. For n=2, equation (3.11)

u +U + (Ao - AI)U3€+ Al(Ul)U2£ + Az(Ul, UZ)UIC +

ltz 2t1
(3.20)

+ KOU2££ + KI(UI)UIEC =0 .

The compatibility condition of (3.20) is
2
u + 8 - . -
1 (uupde +u e, “1e,7 %M g t oo

2t1
+9u 4ou
21 3'1eee (3.21)
where a, is as in equation (2.90) and the constants 01.02,03 are
- -t BW, + 2t KV, +1L [K k)/ﬁrk
l 12 2 l (1)
0 & - T
2=~ ZAlwz(i)a + 2L KOVZ)/L R
(3.22)

T T
0, =-
3 L Kowz/L R
Defining the operator L(ul) by

+ °1(“1v)g + MV['E‘

L(u,)V=V
1 4

allows us to write (3.21)as

2u 2
LOupdvy = e, "% e * 91Y%% e 9% Y 9V1cee (3.23)

Indeed, to O(En) equation (3.11) may be solved to give
Un1™ Une1® * Vo

i8 a vector valued function belonging to NR

(3.24)

where Un+1 is arbitrary and Vn+1

the compatibility condition to the same order is
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nil ®) ) (3.25)
L(u)u = =u -l u + 87 " (u,,u . .
1" n 1tn 1=2 1t“_1+1 1 n-1
From (3.5) we see that the asymptotic form of U is now
u=U_+ € R+ Fedur+] vjej (3.26)
° ju2 3 gm2
and thus
-u ) = 1 (3.27)
P (U-U)) = €u; +j§26 Y

which means that € cannot be interpreted as an amplitude parameter. It might be
thought possible to set all of the ui's to zero as was done in section 2. Unfort-
unately, if this is allowed, the resulting flows do not commute.

We require to solve equations (3.15) and (3.25). Consider first Burgers

equation (3.15). As it stands this is a non linear equation but by the Cole-Hopf
transformation

a,u
11 )
< " 5 (ne) (3.28)

it may be transformed into the heat equation

. -0 . (3.29)
‘tl WCE
The solution to (3.29) 1is then easily found to be

O(Catl) - [ P(C-)'-ll)@()!.o)d)' (3-30)

where the function F(é-y,tl) is given by
2
-(&~y) /4ht1
—e
F(E-y,tl) = 44ht1

0

s —®<E<m, tl>0

(3.31)

s —®<E<o, t.<0
where he-u (i<o,}>0),

Equation (3.30) may be further simplified by making a change of variable

y=£
n-= (3.32)
7 4hey

and with ¢(y,o) = f(y) we get

.2
o(e,6) = £ +y /4he ) oe Y o ay . (3.33)

1
S

b
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An interesting inicial function is

0(6,0) = £(E) =1+ E+ el 4+ it (3.34)
From (3.33) it can be seen that

n
o6, 8. ) = § 0 (6,t) (3.35)
17 1m0 1 1

where the ei(c.tl) (1=1,..n),called heat polynomials, may be generated by

" 9 {x, t)z
RIIns htz - 2 - (3.36)
n=o

or more conveniently, from
[n/2) he)® B2

8 (x,t) = n! Z x
n mso n. (n-2m) ! (3.37)

whers [n/2) = largest integer <n/2.

For example

=-x , 62 - xz + 2ht , 0, = x3 + 6nth

00'1,9 3

1

0, = x* + 12x7ne + 120°¢? ete. (3.38)
It must, of course, be remembered that we are not solving an initial solve problem
for the Burgers equation. Rather we are hoping to isolate solutions having the simple
wave property of the preceding chapter. The introduction of dissipative terms into
(2.21) was necessary in order to prevent discontinuous shock type solutions appearing
at some finite time tye It is then possible for travelling wave solutions to exist.
These have the functional form

u(x,t) = u(x=At) = u(f) (3.39)
the explicit form of which may be found on substituting (3.39) into the Burgers
equation. This leads to the equation

“~AU+ aum + yu =0 ., (3.40)
[ 4 44
Integration gives
1 2
-Au + i au + uug = A (3.41)

which may be rewritten as

-2uu
. 2A| . (ame) (e
,_.__S. [u £ . (u=-a) (u-B) (3.42)

where
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2
d_%,/x2+zA
v a P
A 2 (3.43)
B = — - .—L +& .
a 2
a

We require the roots to be real which implies that

2
:—2 + 250
a >8 . (3.44)
Integrating (3.42) gives
sAe) = ue) =2 - (3.4%)

where the constant of integration has been chosen subject to the conditioms

u(l) *pas g+ + o

u(f) raas g+ - = (3.46)
The function in (3.45) describes a wave that varies continuously from a value of
a at [ = - » to a value of B at ¢ = + », As such it represents a smoothed out
shock wave and 1s often called the Burgers shock wave. The velocity A is given

by the Rankine-Hugoniot relation

A=Z(@+B) . (3.47)

The effect of removing the dissipation is determined by letting u -0 in equation
(3.45). We obtain the discontinuous shock solution
a 4% < At

u, = : 3.48)
d B ,x > At (

Thus, as expected, when the dissipation is non zero (u$0) the discontinuous shock
solution (3.48) does not appear. This marks an improvement upon the results of
the previous section since in that case discontinuous shock solutions were shown

to appear after some finite time t From (3.45) it can be seen the u(z) 1is a

b*
rightward travelling wave which undergoes no change in shape as it travels. It seems
natural to consider this to be the far-field solution to the Burgers equation. These
considerations motivate the introduction of the shock wave boundary conditions which

we will take to be
H-’l.gg-'-m

+0a8 £+ + = (3.49)

and will be the conditions that solutions to (3.15) must satisfy. Corresponding to

(3.49), the function ¢ obeys the corresponding asymptotic boundary conditions
a K
0'\-0(0-“) as £+ - w (nc-!;—;\l-v())

~ 0(1) a8 £+ + w (3.50)
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Note that under such boundary conditions it is not permissible to choose an initial
function of the form (3.34). Such solutions, because they are unbounded in time, are
called secular solutions.

Now that we have imposed appropriate boundary conditions on the solution function
ul(é,tl) let us turn now to the question of solving equations (3.25). In order to

gain a clearer appreciation of the significance of the Uy, terms 1in (3.25) suppose
n

for the moment that there is no tn-dependence (n>2) in (3.25). The compatibility

conditions then become

Lapu, = s™ iy ) (3.51)

where for notational convenience we shall not distinguish between vy in (3.25) and

(3.51). If S(n)(“l""“n-l) contains a term g(n)’ say, that satisfies the linearized

Burgers equation, that is, the homogeneous equation associated with (3.51), then the
solution for u, will contain a part that increases without bound i?nfl' As we have

+ g(n) and

already seen this 1s called a secular term. In short, 1f S(n) -3
L(ul) §(n)=() then obviously L(ul) (t§(9) + f(n)) = g{n) +L (ul)f(n). If f(n) is
such that L (ul) f(n) - g(n) there the solution will be un - tlg(n) + f(n) and 1s
secular.

Such a result will be recognized as reminiscent of a forced oscillation type
problem. For example a mass attached to a spring, of spring constant k, undergoing
oscillation due to a forcing term F obeys the equation

mit + kx = F (3.52)

If the forcing term F contains a part FR that oscillates with the natural frequency
of the system then it is easily verified that the amplitude of the oscillations
will increase without bound. This is called resonance. By direct analogy we may

<(n)

refer to S as a resonant term.

Most techniques for eliminating secular behaviour are based on multiple scaling
(Nayfeh [11]). This involves the introduction of extra space and time scales into
the solution function resulting in a freedom to eliminate the secular causing resonant
terms. In our formulation of the reductive perturbation method the time scales (tz,..)
have been introduced a priori. Differentiating the Burgers equation with respect to

£ shows that U, is a solution to the linearized Burgers equation and therefore on
n

the right hand side of (3.25) is a secular producing term. However we anticipate the
occurence of resonant terms in S(n)(ul.u, u(n—l)) and by choosing an appropriate tn—
evolution of u, we may eliminate such resonances.

Recalling equation (2.127) of the previous section, we inquire whether it is

possible to find a corresponding set of commuting flows for the dependent variable uy
in this dissipative case. The Burgers equation, invariant under the scaling symmetry

2

“1 *Au, LE+ g » AT ¢ (3.53)

leads us to define the weighting function W, assigning to a monomial in the variables

3,1
Hi, where Wi+ls( 32) ul, an integer as follows. Each of the Wi is assigned the

following weight
U(Ui) =1 (3.54)
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Also if I and J are n-tuples we have
J
W (W) |1.J| . (3.55)
We also define
Wiy =3 ' (3.56)

We will now show that equations (2.127) may be extended to the dissipative case to
give the infinite set of commuting flows

- 3.57
H“’n + pn+2(w1,....un+2) 0 ( )

where Pn+2(w1""wn+2) is a differential polynemial in WI of weight n + 2. It is
convenient to rescale u as

u e 22V, (3.58)

Burgers equation then takes the form

v - - g
1t1 2“%,“5+ uvlcg 0 . (3.59)

Defining the operators M and N by

(3.60)

Mf = fC -vlf, Nf = ftl - Zu\ifgi- uf

113

allows equation (3.59) to be written in terms of the commutator of M and N

[M,N] =0 . (3.61)

The C-densities Cn are defined as polynomials in (vI} of weight n lying in the kernel

of N
NC =0 (3.62)
n .

It 18 easily seen that

)vlt -0 . (3.63)

Writing

we find from (3.63) that Fn satisfies

F -
""1 2"‘&1':\(4' "?ngg =0 . (3.64)

This is the adjoint equation to the linearized Burgers equation. Equation (3.64)

is just (3.62) with Cn replaced by Fn' Then the natural choice for the tn evolution

of 2 is obtained by choosing

Pasa(Mpoeeeop o) =a cn+1.€ (3.65)

where a 4o is a normalization constant to be determined by our problem.
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Using equation (3.61) we may determine a recurrence relation for the Cn-densities.
We have

N - - - - . - - (3.‘)())
[m,N] C, = 0=MC - NMC N(MC ) => N(MC ) = 0

Since the operator M increases the weight of a differential polynomial by one

we see that a polynomial of weight (n+l) is given by

Cn+1 - MCn . (3.67)

Observing that the function v of weight one satisfies (3.62) and is C1
allows us to generate, using (3.67), the hierarchy of C-densities. We find, for

C2 and C3

= v

2 3
C. =V -V - - =
2 2 1 2 Cymvy - v+ Vi Voe ("1)(ng) . (3.68)

We have thus determined the tn—evolution of W to be

+ -
“cn “av2 Ge1,g " O (3.69)

and it may be shown that the flows generated by (3.69) do indeed commute.

Equation (3.25) becomes on substituting for W t froam (3.69)

1

n-1 (n)

a C - + S
n+2 n+l,E 122 Uie

L (W)u =
17n n-1+1

M) eu), . (3.70)

1,

(n) W

The elimination of resonant terms in S 1’ 'un-l) is then seen to be accomplished

by an appropriate choice of a . The first two flows from (3.69) are

n+2
a a
1 1.2 .
— — - 3.71
"1:1 + 75 %3 U % ul)E 0 ( )
a.a 3a a 2
174 1 1 3 .
_ —3 + -— = .72
e, T [“155 + { Zn ) LT [ ) u] " Je 0 (3.72)
the constant a3in (3.71) is given by ay = -(2u2/a1) in order to convert (3.71)
into Burgers equation (3.15). The determination of a, is not quite so obvious. One

possibility is to choose a, by requiring that as u + 0 equation (3.72) reduces to
wlt + a2w12w15 = 0. At the moment it is not clear that such a condition is compatible
witﬁ the requirement that a, must be chosen in order to eliminate the resonant
part of S(n). That this is possible we now show. The operator L(ul) terms of 2
is simply
L (vl)u Sy, =-2p(Vvu)eg +pu_ = c™ (3.73)
n £ ln nEE

where G(n) is the right hand side of (3.25). The introduction of R(i) through the

change of variable

« k1 3.74
u = R0 (3.74)
transforms equation (3.72) into
£
R:n)_ hR(n) -4 G(n) dE€ (3.75)

L ek
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nil

- u, t
e L ! E )
inhomogeneous heat equation with source term J G d¢. For n=2 equation

(n)

where c(“) - =W + S , and h = - u, This is just the

(3.74) takes the form
2 14

2) _, (2 _ % 3
Rtl hR££ ¢{a,C ul

2
4% 3 + o0 u df + o u d

‘£ 3.76
1| Y1Yiee 2 [Y1g 4 B Y T3 o

where the 0 are constants which determine S(Z)in (3.22).

i
The C-densities can be expressed in terms of the associated heat potential
¢ by

Cu==Couey/ & . (3.77)

This allows us to immediately identify the secular nature of the first term on the
right hand side of (3.75). The problem is to identify the secular component of the
remainder of the right hand side that must cancel with the first term. To determine
that secular component we restrict ourselves to a special class of solutions. Consider

solutions that are related to heat potentials with the following asymptotic form,

0 (e-xe) for 6 +» -

¢ = . (3.78)
0 (1) for 8 + + =

Without loss of generality we can use the special choilce

®=(1+e"% where 6= (6<ht)) (3.79)

in order to determine the special choice of the coefficients ol that will give us the
best possible perturbation expansion for the full solution function.

From (3.78) we obtain the following asymptotic limiting forms,
K0 -
0 0D 8 (3.80)
u, = R u - -8 as g . .
1 0 (e Ke) 1n 0 (e )
4o

The asymptotic form of the right hand side of (3.75) is then easily calculated to be
- K3(0 -22 (3£)3)e-K0 as 6 + - ® . (3.81)
4 3 a
Thus the function R(z) will be asymptotically secular unless we choose o, to make this

4
term zero. A related procedure can be applied to (3.70) to arrive at the result

%a n+l
“n+2 - (K“_'i-) (2u/81) . (3°82)

Thus our commuting flows are given by
U‘n + “n+2cn+1.£ =0 (3.83)

with the LI determined as in (3.81). In terms of the associated heat potential ¢
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corresponding to wl we have the flows

0t
n

- (2u/al) o 42 ¢(n+1)£ -0 . (3.84)

These are the perturbation equations that result from applying the reductive perturbation

method to the linear equation

5_31_1_)(&
Bt + ABE (al '2

i=2

*i+1 B(ix)) "0 (3.85)

Consequently we can regard this equation as the canonical form for equation (3.3).
If we define

W= (2u/al)1n(B)6 (3.86)
the function w satisfies the equation
@
v, + v - H, °1
t € 121 @u/a))" e, -2uela ) h ) = 0 (3.87)
where the coefficients a, are those in (2.133) and (3.86) is the generalisation of

i
that canonical equation to the dissipative case. It is most natural to regard this

equation as THE CANONICAL FORM FOR THE SYSTEM (3.3).

There still remains a considerable problem. We have obtained the best behaviour

possible for the perturbation serles as £ +-o but § + + » yields only

un+1/"n =0 (£) as £ + = . (3.89)

This means that these expansions are only useful near to the shock front. In the
following section we will propose an alternative approach to the determination of

higher order corrections based, not on series, but on a process of iteration.
4. AN ITERATIVE APPROACH TO HIGHER ORDER CORRECTIONS:

In this section we attempt to place the reductive perturbation technique
on a more rigorous foundation. To do so we will prove the existence of invariant
manifolds by means of fixed point methods. Not only will this establish the
existence of guch manifolds but it will provide an iterative procedure for

constructing a convergent sequence of approximants, We regard these higher approximants
as the most appropriate higher order corrections.

Consider the model set of equations of section three,
+ -
Ut A(U)Ux + K(U)Uxx 0 (4.1)
where A and K are matrix functions of an n-dimensional vector U. The simplest
solutions of (4.1) are the constant solutioms

U= U, a constant . (4.2)

Let us consider solutions which are in some sense 'close' to Uo by writing U in the
form

U= U° +W . (4.3)
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Intuitively we are thinking of W as being 'small' but we make no approximationms.
We assume, as in earlier sections, that the matrix A(Uo) has n distinct eigenvalues

a with associated eigenvectors R’Rl""Rn-l’

.esa
0’ " *“n-1

A(UO)R = eR A(uo)k1 =eR | (4.4)

A single eigenvalue e is selected from those available and a new variable ¢ defined

by
£ = (x-et) 4.5)

is introduced in place of x. If the function W defined in (4.3) is regarded as a

function of £ and t it must satisfy the equation

Ht + (A(Uo + W) - el) "C + I((Uo + W) wEE =0 . (4.6)

We now suppose that the functions A (U) and K(U) are differentiable at Uo and that

they have representations of the form

A(U) = A(U) = A (W) + B(W) 4.7)

K(U) = K(Uo) + Kl(W) = C(W) (4.8)

where the remainder terms B (W) and C(W) are both o (|W|) for |W|+0. Our next
step is to project equation (4.6) down onto the subspaces ER and NR defined in

section one. We write for W the decomposition
W= w(E,t)R + q(g,t) 4.9)

where PRq = 0. Equation (4.6) can then be recast into the form

Rw +q + (AU)) - el) a + A (R)Rww, + Flw,q] + x(uo)uwu =0 (4.10)

3
where the functional F[w,q] is defined by

Flw,q] = (A(Uo+wR+q) -el) (ng +qg) - (A() -eI)qg —Al(R)waE +

K(U0+RW+Q) (Rw )—K(UO)RWEE . (4.11)

ge

If we now apply the projection operators P_ and QR to equation (4.10) we obtain

R
w o+ - -
A AT £plv.q] (4.12)
R A AT
t o ¢ Ql¥ed) - bww, - CWee (4.13)
where the constants a, b, ¢ and k are defined by
T
LA (R)R LTK(UO)R (4.14)
a=——— b = QA (R)K ¢ = QK(U)R k = ——— '
LTr R ko LTr

and the functionals fP and fQ are defined by the decomposition of F[w, d]onto the
subspaces ER and NR given by

Pluia] = R(fplw,q)) + fa w.aJ (4.15)
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We want to think of the contribution of F to the equations (4.12-13) as 'small'
without explicity neglecting any particular terms. To help us maintain that picture
clearly in our mind we introduce the scaled variables n, 1, O, and Y defined by

ne=eE, T=¢clt, w=eo, q=clv (4.16)

where € is an arbitrary real parameter introduced into the problem for the first time

at this juncture. In terms of these new scaled variables the equations (4.12-13)
take the form,

o+ aeon + kOrm = -ehp[@?,e] (4.17)

-1, _
eY + Ko Wn = —bOOri - cOnn - shQ[O,W,E] . (4.18)

If we think of € as a small parameter,equations (4.17-18) define a singular
perturbation problem. The leading term in an outer expansion must satisfy the
equations

0, +a00 +ko =0 (4.19)

k by =-beo - co
o n n

.

nn (4.20)
These equations are simply the lowest order reductive perturbation solution. If
00 is any solution of the Burgers equation (4.19) the second equation has the
solution ?o given by )

v, = -K (b0 + Co°n) (4.21)
where we have set a possible constant of integration to zero. We do not attempt
to solve equations (4.17-18) by series methods because that is essentially the
path of the regular reductive perturbation scheme. Instead we recast these
general equations as a fixed point problem and define an iterative sequence of
approximate solutions. The function pair (Oo. Wo) defines the initial point of
a, hopefully convergent, sequence of iterates. Our first step in establishing our
iterative scheme is to recast our basic equations (4.17-18) in an integral equation

form. We begin by introducing the new variable 6 defined by

0 = @0 + €8 . (4.22)

Introducing this representation into (4.17) yields the equation
L(8 )6 = -hp[Oo, ¥, 01 - e(cle, ¥, el + a8o ) (4.23)
where the functional G is defined by
h (0 +ed,%] =h(0,¥,0]+ceGlo,v,cl . (4.24)
p o p o’ o
The operator L (Oo) is the linearisation of the Burgers operator introduced in the

previous section and has the form

L(d )8 =8_+ a(60 ) + ko . (4.25)
o T o'n mn
The second basic equation (4.18) can be expressed in terms of the new variable
6 as
-1 -1
= - + .
eV + K \yn K won e(hQ[eC + e0,¥,e] + b(eeo)n beeen) . (4.26)
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In order to represent these equations in an integral equation format we must be
able to solve the two basic equations
L(eo)e = m(n,1) (4.27)

and

A] - 1 - .
eVT + KO Wn = n(n,t) . (4.28)

The second of these has a unique solution if we specify the asymptotic condition
¥(n,t) > 0 as |t| »= . (4.29)
Without loss of generality let us suppose that we have chosen our basis in K so

that A(Uo) is diagonal. This means that the subspace N, is spanned by the vectors

R
Rl""’Rm—l' In that basis we have

-1

Ko Vg5 = (g = &)8;5 = xy 64y (4.30)
and the solution to the initial value problem defined by equations (4.28 & 29) is
n-1 ® 1
v(n,t|n) = - izl I » ni(xi(u-re )+n, eu) du Ri . (4.31)
Te

The functions ni(n, 1) are the components of n relative to the basis Ri(i=1"’

(n-1). We denote by T. the mapping n -+ ¥ (*,*ln). That is we write

Q

Tonl(m,0) = ¥(nycln) (4.32)

In the previous section we showed that the operator L(Go) can be linearised by
means of an extension of the Cole-Hopf transformation. Each solution 00 of the
Burgers equation (4.19) can be expressed in the form

0, = 2(k/a) ln(so)n (4.33)
where So is a solution of the heat equation

S+ kSon =0 .

ot n (4.34)
If we introduce a new variable H by means of the formula
g = (H/so)n (4.35)
we find that the function H is a solution of the heat equation
HT + ann = M(n,T)So(n,T) (4.36)

where M(n, 1) is a primative of m(n, 1) with respect to the variable n. It is easily
shown that the function 6 given by (4.135) is independent of any particular choice
of primative. Without loss of generality we make the choice

n
M(n,T) =j m(v,t)dv (4.37)
If we require the initial condition
H(n,t=0) = 0 (4.38)

equation (4.36) has the unique solution

T (-]
H(n,1) = [ du j dv g(n,rlv,u)M(v,u)So(V,u) (4.39)
0 —c0
where g(n, © | v, u) 1s the usual Greens function for the heat equation, This

function provides a unique solution 6 for a given function m. We denote that
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solution by 6 (n, Tlm). The mapping which associates this function with m is
denoted by Tp. That is we write

Tp[m](n,’l’) = e(n,'r'm) . (4.40)

Both TP and TQ are linear functionals and we can express the equation (4.23) and
(4.26) in the integral equation forms

8 = -T [h [0 ,¥ ,0]] - eT_[G[6,¥,e] + ad6_] (4.41)
p p o o P n

v =1k !
o

- . (4.42)
Q won] eTQ[hQ[OO+eG,W,e] + b(e@o)n+beeen]

These equations provide the starting point for an iterative scheme for solving the
equations (4.17-18).
Consider the iterative scheme defined by the equations

n.n
pnt! -1 th [0,¥ ;011 - eT [GL6",¥",e] + 070 ] (4.43)

gt oo TQ[xo'lvonj - eTQ[t;Q[OOﬂ:Gn,Wn,e] + b))+ c0”0]] (4-44)
and the initial values 6 =0 and ¥ = Wo. If we can establish the convergence of
such an iterative scheme we will have a means of constructing a sequence of
approximants that are known to converge and also some measure of the accuracy for
a given value of n. Our principal weapon is the contraction mapping theorem. In
order to use that theorem we must define an appropriate Banach space to which our
solutions belong and which is mapped into itself by the mapping T defined by
T(Bn,Wn) - (6n+1,Wn+l) (4.45)

where this is an abstract representation of the explicit relationship expressed by
equations (4.43-44).

To help us decide on an appropriate function space let us examine some

simple solutions of the equations (4.19-20). Consider the single soliton solution

o, = (ka/a)(1 + tanh(s(an-ka’1))) . (4.46)

This corresponds to the heat equation solution

s, =1+ exp(an-kuzr) . (4.47)
The function Wo is then found to be given by a vector combination of the two functions
2
eo and eon given by

Oon = %(azk/a)sechz(%(an-kazT)) . (4.48)

The most obvious source of possible trouble is the fact that 60 does not go to
zero for extreme values of its arguments. It is a shock-wave solution. However,
it is bounded and its derivative (4.48) does go to zero at infinity. These special
properties of our initial function suggest a possible choice of function space.
Consider the space of functions KZ defined by
K: = {¢eC”(R,R™) : [1e]1, exp(alnl)llif%[[, are bounded (4.49)
and continuous for all m>1}

where || || 1is any norm in R®. This function space can be equipped with any of
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the norms

II¢||p =sup { |]8]],exp(a|n])|]3.¢]]seeeenerexpaln])]|oPe]] } (4.50)
Rn n n

As we will need to bound derivatives of all orders in our iterative scheme we

adopt the norm,

Holl o = sup Cloll[loll sl lellpmeeeeeesllol]peeed o (4.51)
K

a

The functions that we are dealing with contain two independent variables and
so we must consider the variable 1 also. If we suppose that k < O the heat

equation (4.33) defines a semi-flow for 1 3 0. We define { 2 by

R : = {y eCm(Rz,Rn) : W(r,r)eK: for all t > 0} (4.52)

and equip it with the norm

[lel] = sup [[¥(, o] | (4.53)

n .
Qa 20 Ky

We can now define our space of initial function pairs for (4.42-43).

Al

-1
Define the Banach space Ba to be the completion of the space K, X ﬁn

a
with respect to the norm,

||(e,\v)llB =max { [[o]]  [l¥]] (4.54)

n-1 }
¢ Ka’ Qu

If we make this choice of initial function space it can be shown that T is a
contraction mapping of B provided K and A are C~ functions. [8]. Once we have
established that there is a solution of the type sought we can adopt an alternative
route. We can fix O € ﬁu in (4.18) and define the sequence of functions

Yy € K(n-l) by

¥ RACI [-600 - co_ - € hq [0 \yn €]] (4.55)
Q n nn rhoe : :
Again we can show that this is a contraction for sufficiently small € and so
(4.55) defines a functional ¥ [0] by the 1limit of the above sequence,
n
v [0 = limyY (4.56)
nr*e
If we substitute this into (4.17) we obtain the NONLOCAL CANONICAL FORM OF (4.1),

€c + a00n + kénn + €h, [o,¥(0),€] = 0 . (4.57)

Let us now summarise the results of this final section. What we have shown
is that for the general equation (4.1) there exists a l-parameter solution
determined by each sufficiently well behaved solution of the Burgers equation (4.19).
The general system (4.1) contains an invariant manifold upon which it is reduced to
the single equation (4.57). We regard the normal reductive perturbation procedure

developed in sections two and three as a way of expressing (4.57) as a local partial
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differential equation of infinite order. This is usually done in the special case
relating to the single soliton solution of the Burgers equation. A similar analysis
is possible for the general dispersive system (3.2) [8] .
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