ON CERTAIN REGULAR GRAPHS OF GIRTH 5

M. O'KEEFE AND P.K. WONG

Department of Mathematics Seton Hall University South Orange, New Jersey 07079 U.S.A.

(Received May 23, 1984)

ABSTRACT. Let f(v,5) be the number of vertices of a (v,5)-case $(v \ge 3)$. We give an upper bound for f(v,5) which is considerably better than the previously known upper bounds. In particular, when v = 7, it coincides with the well-known Hoffman-Singleton graph.

KF? WORDS AND PHRASES. Regular graph, cage, latin square. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 05C35

A graph is said to be <u>regular</u> of valency v if each of its vertices has valency v. A regular graph of valency v and girth g with the least possible number of vertices is called a (v,g)-cage. The number of vertices of a (v,g)-cage is denoted by f(v,g). The existence of (v,g)-cages was proved by Erdős and Sachs [4]. In this paper, we consider only regular graphs of girth 5. It is easy to see that $f(v,5) \geq v^2 + 1$. Also, it is known that f(3,5) = 10 [1], f(4,5) = 19 [8], f(5,5) = 30 [10], f(6,5) = 40 [6], and f(7,5) = 50 [5]. For v > 5, Brown [2] has shown that $f(v,5) \leq 2(2v-1)(v-2)$. In [10], Wegner has shown that $f(v,5) \leq 2v(v-1)$ for primes $v \geq 3$. In Theorem 1b of [7], Parsons implicitly proved that $f(v,5) \leq 2v^3-3v+1$ when v is odd.

Notation. If two vertices x and y in a graph are adjacent, we write $x \sim y$.

We now give a better bound for f(v,5).

Theorem 1. Let $v \ge 7$ be an integer such that v-2 is a prime power. Then the following statements hold:

- (a) $f(v,5) \le 2(v-2)^2$.
- (b) If n is an integer such that $3 \le n \le v$, then $f(n,5) \le 2(v-2)(n-2)$.

We use the same notations as in [3, p. 169]. If $R = p^r$ is a prime power, then a set of R-1 mutually orthogonal latin squares of order R can be constructed. In fact, let the elements of the Galois field GF[R] be denoted by $u_0 = 0$, $u_1 = 1$, $u_2 = x$, $u_3 = x^2$, ..., $u_{R-1} = x^{R-2}$, where x is a generating element of the multiplicative group of GF[R] and $x^{R-1} = 1$. Then a complete set of mutually orthogonal latin squares L_1 , L_2 , ..., L_{R-1} can be obtained as follows. $u_1 + u_1$ is the entry in the i^{th} row and j^{th} column of square L_1 . As in [3], we use the symbol $u_1 + u_1$ within a square to stand for the integer k, where $u_1 + u_1 = u_1$ (i, j, k = 0, 1, ..., R-1). The elements of the 0^{th} row of each L_1 (i = 1, 2, ..., R-1) are identical and the remaining rows of L_1 (i = 2, 3, ..., R-1) are obtained by permuting cyclically the remaining rows of L_1 . We let

$$L_{0} = \begin{bmatrix} 0 & 1 & \dots & R-1 \\ 0 & 1 & \dots & R-1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

to obtain R mutually orthogonal squares.

Proof of Theorem 1. (a), Let R = v-2 (a prime power). We give an explicit contruction of a regular graph G of girth 5 and valency v, having $2R^2$ vertices. In fact, let the vertices of G be arranged as in Figure 1.

Figure 1

We say that the vertices $\left\{x_0^k, x_1^k, \ldots, x_{k-1}^k\right\}$ are in set X_k . Similarly we define set Y_i (i, $k=0,1,\ldots,R-1$). We join the set of vertices Y_i to the set X_k (for all i, k) according to the following rule. If n is an integer in the ith row and jth column of L_k , then the vertex y_n^i is adjacent to vertex x_j^k (i, j, $k=0,1,\ldots,R-1$). Since the squares $\left\{L_0,L_1,\ldots,L_{R-1}\right\}$ are mutually orthogonal, it is readily seen that the graph has girth 5 and valency R (= v-2). To increase this valency to v, it suffices to join each vertex x_j^k (resp. y_j^i) to two other vertices in the same set X_k (resp. Y_j) (i, $k=0,1,\ldots,R-1$) in such a way that the girth of the graph G remains unchanged.

For any integer n (n= 0, 1, ..., R-1), we let \overline{A}_n be the set of pairs of integers $\left\{ \begin{bmatrix} u_0 + u_0 \\ 0 \end{bmatrix}, \begin{bmatrix} u_1 + u_0 \\ 1 \end{bmatrix}, \begin{bmatrix} u_1 + u_0 \\ 1 \end{bmatrix}, \begin{bmatrix} u_1 + u_0 \\ 1 \end{bmatrix}, \ldots, \begin{bmatrix} u_{R-1} + u_0 \\ 1 \end{bmatrix}, \underbrace{u_{R-1} + u_0}, \underbrace{u_{R-1} + u_0} \right\}$ in L_1 . The first (resp. second) terms of the pairs are integers ranging from 0 to R-1. Suppose a pair [s.t] in \overline{A}_n appears in the i^{th} row and the s_1 and t_1 columns of L_k . Then we associate s and t with the two vertices x_1^k and x_1^k in set x_k and also with the two vertices y_1^i and y_1^i in set y_1^i (i, k = 0, 1, ..., R-1). We define A_n to be the set of all pairs of vertices so associated with the lost \overline{A}_n . The joining of a pair of vertices belong to A_n , we call an A_n -foin.

We know from the construction of squares L_k ($k=2,3,\ldots,P-1$) from L_1 , that a pair of integers [s,t] appears in some row and in columns s_1 and t_1 of L_k if and only if the same pair appears in some row and in columns s_1 and t_1 of L_1 . Thus in what follows, we need only look at squares L_1 .

Lemma 2. Let $[s,t] \in \overline{A}_n$ and $[v,w] \in \overline{A}_m$. Then $[v,w] \in \overline{A}_n$ if and only if v=s and w=t or v=t and w=s. Equivalently, $\overline{A}_n \cap \overline{A}_n = \{\emptyset\}$ if and only if $n \neq m$ ($m, n=1, 2, \ldots, R-1$).

Proof. Suppose a pair of integers [s.t] appears in row i and columns s and t and also in row I and column S and T of square L_1 . Then another pair, say [v,w], of integers appears in some row i' and columns s_1 and t_1 if and only if [v,w] also appears in some row, say I' and columns S and T. In fact, let z be the integer in column T and in the same row I' as the v which appears in column S (see Figure 2).

Figure 2

Then

It follows that if a pair of integers [s,t] is in set \overline{A}_n , then it does not belong to set \overline{A}_m for $m \neq n$. This completes the proof of the lemma.

Remark 1. If we use a collection of sets $\left\{ \begin{array}{l} A \\ n \end{array} : n \in \mathbb{N} \right\}$ to join together the vertices of each set X_k $(k=0,1,\ldots,R-1)$ and a different collection of sets $\left\{ \begin{array}{l} A_m : m \in \mathbb{N} \right\}$, where $M \cap \mathbb{N} = \left\{ \emptyset \right\}$ to join together the vertices of each set Y_i $(i=0,1,\ldots,R-1)$, then the girth of the graph G remains five. In fact, suppose $x_{s_1}^k \sim x_{t_1}^k$, where $\left[x_{s_1}^k , x_{t_1}^k \right] \in A_n$, then by construction of G, $y_s^i \sim x_{s_1}^k$ and $y_t^i \sim x_{t_1}^k$. But by the above lemma, $\left[y_s^i , y_t^i \right] \in A_n$ and $y_s^i \not\sim y_t^i$ under an A_m -join $m \neq n$. That is $\left[y_s^i , y_t^i \right] \notin A_m$, $m \neq n$.

We divide the remaining proof of Theorem 1(a) into three saces.

Case 1. Assume $R = 2^r$ ($r \ge 3$). The vertices of x_k (k = 0, 1, ..., R-1) are joined together to form 2^{r-3} mutually disjoint 8-gons by using the pattern $\mathbf{A}_1 \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_3 \mathbf{A}_1 \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_3$. Explicitly,

$$\begin{aligned} & x_{u_0}^k \sim x_{u_0+u_1}^k \sim x_{u_0+u_1+u_2}^k \sim x_{u_0+u_2}^k \sim \\ & x_{u_0}^k + u_2 + u_3}^k \sim x_{u_0+u_1+u_2+u_3}^k \sim x_{u_0+u_1+u_3}^k \sim x_{u_0+u_3}^k \quad (\sim x_{u_0}^k). \end{aligned}$$

It is easy to see that these eight vertices are distinct and they form an 8-gon and, use the same pattern, $A_1A_2A_1A_3A_1A_2A_1A_3$, starting with $x_{u_5}^k$ to get a second 8-gon, the vertices of which are clearly distinct from those of the first. If r > 4, we repeat this last step until we have 2^{r-3} 8-gons, similarly, the vertices of Y_i (i = 0, 1, ..., R-1) are joined together to form 2^{r-3} mutually disjoint 8-gons by using the pattern $A_4A_5A_4A_6A_4A_5A_4A_6$.

Thus G has valency v. It remains to show that G has girth 5. Since we use $A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_3 - \text{joins in } X_k \quad \text{and} \quad A_4 A_5 A_4 A_6 A_4 A_5 A_4 A_6 - \text{joins in } Y_i, \text{ it follows from Lerna 2 and Remark 1 that any pair of vertices in } X_k \quad \text{which we join are not adjacent to any pair of vertices joined in } Y_i \text{ (i, k = 0, 1, ..., 2-1). This statement is true for } X_0 \quad \text{and } Y_0 \quad \text{because of the construction of } L_0 \quad \text{lonce the graph G does not contain any 4-gons. Therefore G has girth 5. This completes the proof of Case 1.}$

Example. For $P = 2^3 = 8$, we have

$$x_0^k \sim x_1^k \sim x_4^k \sim x_2^k \sim x_5^k \sim x_6^k \sim x_7^k \sim x_3^k \sim (x_0^k)^k$$

and

$$y_0^i \sim y_4^i \sim y_7^i \sim y_5^i \sim y_1^i \sim y_2^i \sim y_3^i \sim y_6^i \sim (y_0^i)$$

where i, j = 0, 1, ..., 7.

Case 2. Assume $P = 3^r$ ($r \ge 2$). The vertices of X_k are joined together to form 3^{r-2} mutually disjoint 9-gons by using the pattern $A_1A_1A_2A_1A_1A_2A_1A_1A_2$. Explicitly,

$$\begin{split} & \times_{u_0}^k \sim \times_{u_0+u_1}^k \sim \times_{u_0+u_1+u_1}^k \sim \times_{u_0+u_1+u_1+u_2}^k \sim \\ & \times_{u_0+u_2}^k \sim \times_{u_0+u_1+u_2}^k \sim \times_{u_0+u_1+u_2+u_2}^k \sim \\ & \times_{u_0+u_1+u_1+u_2+u_2}^k \sim \times_{u_0+u_2+u_2}^k \sim \times_{u_0}^k > 0. \end{split}$$

Repeating this pattern, we form 3^{r-2} mutually disjoint 9-gons from X_k (k = 0, 1, ..., R-1). Similarly, the vertices of Y_i are joined together to form 3^{r-2} mutually disjoint 9-gons by using the pattern $A_3A_3A_4A_3A_3A_4A_3A_3A_4$. Thus G has valency v. It follows from Lemma 2 and Remark 1 that G has girth 5.

Case 3. Assume R = p^r where p(z) is a prime and $r \ge 1$. Join the vertices of X_k using the pattern $A_1A_1...A_1$ to produce r mutually disjoint p-gons. Explicitly, the first p-gon is

$$x_{u_0}^k \sim x_{u_0+u_1}^k \sim x_{u_0+u_1+u_1}^k \sim \cdots \sim x_{u_0+u_1+u_1+\cdots+u_1}^k \sim (x_{u_0}^k).$$

Similarly, we join the vertices of Y using the pattern $A_{2}^{A_{2}...A_{2}}$ to get r

mutually disjoint p-gons (i, j = 0, 1, ..., R-1). Therefore G has valency \mathbf{v} . It follows from Lemma 2 and Remark 1 that G has girth 5. This completes the proof of (a).

(b). Let G be the graph constructed as in (a). The subgraph of G induced by $X_0, X_1, \ldots, X_{n-3}, Y_0, Y_1, \ldots$, and Y_{n-3} clearly has girth 5 and valency n with order 2(v-2)(n-2). This completes the proof of Theorem 1.

Remark 2. Let v be an integer ≥ 3 . Since there always exists a prime power R such that $R \geq v$, it follows that Theorem 1 gives an upper bound for f(v,5) for any $v(\geq 3)$.

Remark 3. For v = 7, Theorem 1 is identical with the construction of the Hoffman-Singleton graph given in [1] and [9], and f(7,5) = 50. The upper bound for f(v,5) given in Theorem 1 is better than the other bound mentioned previously. For example, we have $f(9,5) \le 98$ and $f(8,5) \le 84$.

Remark 4. For p = v - 1 a prime number, a set of mutually orthogonal latin squares $L_1, L_2, \ldots, L_{p-1}$ is more easily obtained by a simple rotation of the elements in the rows of L_0 which is the same as before. Explicitly

In general, in L (k = 2, 3, ..., p-1), if k appears in row i and column j. then 0 is in row i + 1 and column j. This simplifies the construction of the graph.

REFERENCES

- Bondy, J.A. and Murty, U.S.R. <u>Graph Theory with Applications</u>, American Elsevier, New York (1975).
- Brown, W.G. On the non-existence of a type of regular graphs of girth 5, Canadian J. Math. 19 (1967) 644-648.
- Denes. J. and Keedwell, A.D. <u>Latin squares and their applications</u>. Academic, New York (1974).
- Erdős, P. and Sachs, H. Reguläre Graphen Gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Uni. Falle (Math. Nat.) 12 (1963), 251-257.
- 5. Hoffman, A.J. and Singleton, R.R. On Moore graphs with diameters 2 and 3, I.B.M. J. Res. Dev. 4 (1960) 497-504.
- O'Keefe, M. and Wong, P.K. A smallest graph of girth 5 and valency 6,
 J. Combinatorial Theory Ser. B. 26 (1979) 145-149.
- Parsons, J.D. Graphs from projective planes, <u>Aequationes Math.</u> 74 (1976) 167-189,
- Robertson, N. The smallest graphs of girth 5 and valency 4, <u>Bull. Amer. Math.</u> Soc. 70 (1964) 824-825.
- Robertson, N. Graphs minimal under girth, valency and connectively constraints, Dissertation, Uni. of Waterloo (1969).
- 10. Wegner, G. A smallest graph of girth 5 and valency 5. <u>J. Combinatorial</u>
 Theory Ser. B. 14 (1973) 203-208.