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ABSTRACT. Let f(v,5) be the number of vertices of a (v,5)-care (v > 3). Ve
five an upper bound for f(v,5) which is considerably better than the previously
known upper bounds. In particular, when v = 7, it coincides with the well-known

Hoffman-Singleton graph.
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A graph is said to be regular of valency v if each of its vertices has
valency v. A regular graph of valency v and girth g with the least possible
is denoted by f(v,g). The existence of (v,g)-cages was proved by Erdos and Sachs
[4]. In this paper, we consider only regular graphs of girth 5. It is easy to see
that f£(v,5) > v2 + 1. Also, it is known that £(3,5) = 10 [1], f£(4,5) = 19
[el, £(s,5) = 30 [10], £f(6,5) = 40 [6], and £(7,5) = 50 [5]. For v> 5, Brown
[2] has shown that f(v,5) S 2(2v-1)(v-2). 1In [10], Wegner has shown that
f(v,5) £ 2v(v-1) for primes v > 3. In Theorem 1b of [7], Parsons implicitly
proved that f(v,S) S2v3-3v+1 when v is odd.

Notation. If two vertices x and y in a graph are adjacent, we write x~ y.

We now give a better bound for f(v,5).

Theorem 1. Let v (27) be an integer such that v-2 is a prime power. Then the
followins statements hold:
(a) £(v,5) < 2(v-2)2 .

(b) If n is an inteper such that 3< n < v, then f(n,5) < 2(v-2)(n-2).
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We use the same notations as in [3, p. 169], 1f g = p* is a prime power,

then a set of R-1 mutually orthoponal latin squares of order R can be const-

ructed. In fact, let the elements of the Galois field GF[R] be denoted by

uo =0, ul =1, u2 = X, u3 = x2 s esvy uR-l = x

elerent of the multiplicative group of GF[R] and x

R-2 , where x 1is a generating

R-1 = 1 . Then a complete

set of mutually orthogonal latin squares Ll . L2, ey LP-l can be obtained as

follows. u, + uj is the entry in the ith row and jth column of square Ll.

As in [3], we use the symbol u, + uj within a square to stand for the integer k,

where u; + uj = uy (i, 3, k = 0, 1, ..., R-1). The elements of the oth row of
each Li (i =1, 2, ..., R-1) are identical and the remaining rows of Li
(i =2,3, ..., P-1) are obtained by permuting cyclically the reraininf rows
of Ll. Vie let
— -
0 1 R-1
0 1 R-1
L, = . .

. . .

o 1... R-1

to obtain ® rmutually orthogonal squares.
Proof of Theorem 1. (a), Let R = v-2 (a prime power). 'e give an explicit

coentruction of a rerular graph G of girth 5 and valency v, having 2R2

vertices. In fact. let the vertices of G be arranged as in Fipure 1.

Xo X1 Xg-1
R-1
Xo 27+ e+ Xy X5 X e+ Xy 287 28y

L, L, || L,

1,41 1 R-1 , R-1 »
Yo yo. .. 42 Yo Yoot ot A A If_;
_V—’ —_— — 2 \

Yo Y: Ye-1

Figure |
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We say that the vertices {xg s x§, ooy xk_l} are in set Xk' Similarly we

define set Y; (i, k = 0, 1, ..., R-1). Ve join the set of vertices Yi to the

set Xk (for all i, k) according to the followins rule. If n is an inteper in

the ith row and jth column of Lk , then the vertex y: is adjacent to vertex
x? (i, j, k=0, 1, ..., P-1). Since the squares {LO, L are

1 e LQ-I
mutually orthogonal, it is readily seen that the graph has girth 5 and valency

R (= v-2). To increase this valency to v, it suffices to join each vertex x?

(resp. y:) to two other vertices in the same set Xk (resp. Yi) (i, x = 0,1,
.«., R-1) in such a way that the girth of the graph G remains unchanged.
For any intefer n (n= 0.1, ..., RP-1), we let K; be the set of pairs of

integers u +u_, u.+u 4u , u_+u J, ... u +u ,u,  .+u Jf in L_.
i {[ o Yo Uo n], [ul 0, 1 n] 1) [R-l 0» R-1 "n } 1

The first (resp. second) terms of the pairs are integers ranging fror 0 to R-1.

Each row of every square contains every integer from 0 to R-1. Suppose a pair

[s.t] in Kg appears in the ith row and the sy and tj colurns of Lk. Then
we associate s and t with the two vertices x§ andé x: in set Xk and
. . 1 1
also with the two vertices y1 and y; in set Yi (i, k= 0,1, ..., P-1).
s

tie define An to be the set of all pairs of vertices so associated with the : ot

An . The joinins of a pair of vertices belong to A , we call an An-‘oin.
n

Ve know fror the corstruction of squares Lk (k = 2,3, ..., P-1) fronm Ll,
s anc tl

of L if and only if the sare pair appears in some row and in columns sl anc

that a pair of integers [s,t] appears in some row and in colurns

tl of Ll’ Thus in what follows. we need only look at squares Ll'

Lerma 2. Let [s,t] € 1; and [v,w] € Eg . Then [v,w] € K; if and only if
v=s and w=t or v=t and w = s. Equivalently, 3;){\ An ={¢} if and
only if n#n (m,n=1, 2, ..., R-1).

Proof. Suppose a pair of integers [s.t] appears in row i and columns s

and tl anc also in row I and colunn S and T of square Ll' Then another
pair, say [v,w], of integers appears in some row i' and columns sy and ty
if and only if [v,w] also appears in some row, say I' and columns S and T.

In fact, let z be the intefer in column T and in the same row I' as the v

which appears in colurn S (see Figure 2).
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column sy column tl column S column T
S t
row I s t
row I' v z
1 v w
Figure 2
Then
us=ul+uSl=uI+u¢’
u =u + u = u +u
t i tl 1 T
u, Tuotu - oug
v tl 1
uz = uv + uT - uS
= + + - - 3 -
u, (ui ut uI) (ul +ug uI)
1 1
=u +u -u_ =u

It follows that if a pair of intersers [s,t] is in set K; , then it does not

belong to set I} for m # n. This corpletes the proof of the lemma.

vertices of each set Xk (k =0,1, ..., R-1) and a different collection of sets

f Kw :mé€ M} , where MAN = {0} to join together the vertices of each set
Yi (i =0,1. ..., R-1), then the girth of the graph G remains five. In fact,
suppose x§ ~ x: , where [xz . xt ] €>An , then by construction of G,

1

1 . .
yéwx‘; and yia x)é . But by the above lemma, [y?*, yt]é A_ and
t 1 s n

[

N

i i _ss s i Ui
Vg 4byt under an A -join m # n. That is [ys, yt] €A, ™ # n.

We divide the remaining proof of Theorem 1(a) into three saces.

Case 1. Assume R = 2¥ (r > 3). The vertices of x,_ (k = 0, 1, ..., R-1) are
S L k

joined together to form or-3 mutually disjoint 8-gons by using the pattern

A1A2A1A3A1A2A1A3. Explicitly,



ON CERTAIN REGULAR GRAPHS OF GIRTH 5 78S

k k k k
X ~ X ~J ~y X

Ug  Yptuy  Hptujtuy - Ugtus

K k X K K

X ~ x ~AX ~X (~x ).
ugtiytug  Tugtuy tuotuy YUY U Y Tugrug Uy

It is easy to see that these eight vertices are distinct and they form an 8-gon

and, use the same pattern, A1A2A1A3A1A2A1A3, starting with XE to get a second

by
8-ron, the vertices of which are clearly distinct from those of the first. If

r-3

r> 4 , we repeat this last step until we have 2 8-pons. similarly, the

-3
vertices of Yi (i=0,1, ..., R-1) are joined together to form 2F mutually

disjoint 8-sons by using the pattern AuASAMAGAuAsAuAs'

i i i i
ve ~y
ugtu otuytug  “Ygtug
y ~ yt vt
~ ) + ~/
Uptugtug  TugtUytugtug T Tugty,tug

i i
~ (v )
Tugra™ g

Thus G has valency v. It remains to show that G has pirth 5. “ince we ‘1se

AlA?AlA3AlA2AlA3 -ioins in Xk and AuASAuAGAuASAuAe - joins in Yi’ it follows

from Lerma 2 and Permark 1 that any pair of vertices in Xk which we join are not

adjacent to any pair of vertices joined in Y (i, k = 0, 1. .... ®°-1). This

i
statement is true for Ko and YO . because of the constructinn of L _. !ence the
! 2

craph G does not contain any 4-rons. Therefore G has rirth 5. This cor:letes

the proof of Case 1.

Txample. For P = 2% = 8, we have
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k k k k k k k k k
xofv xl ~X, Xy ~xs~ x6~x7 ~x3~(xo)
and
i i i i i i i i i
Yo~ Yy~ Y3~ Y N Y~ Yy Y~ Yo~ (3g)
where i, j =0, 1, ..., 7.

Case 2. Assume P = 3T (r 2 2). The vertices of X _ are joined together to form

k
3r-2 mutually disjoint 9-gons by using the pattern AlAlA2AlAlA2AlAlA2. Explicitly,

xk »X xk k

~N +u v ~ + + ~
U™ Tt Y Fugru vy~ Tugru s
k k k
X, ~ X ~ X

+u ~
UO 5 U0+ul+u2 u0<l'ul<|>u2+u2
xk S O B
Yotuptuztuptupt T Ugtuytis Yo

Repeating this pattern, we forn 3!“2 mutually disjoint 9-pons from X

k
(k = 0,1, ..., R-1). Similarly, the vertices of Yi are joined togfether to form
3’2 mutually disjoint 9-gons by using the pattern AJA AAAAAAA . Thus G

334334
has valency v. It follows from Lemma 2 and Remark 1 that G has girth 5.

Case 3. Assume R = p¥ where p(z 5) 1is a prime and r > 1. Join the vertices
of Y.k using the pattern AlAl“'Al to produce r
P

mutually disjoint p-gons. Explicitly, the first p-gon is

k,\,xk +u~xk St +u~...~xk P N(xk ).
u u0 1 1™ uo+ul+ul cos ul uo

X
p-1
Similarly, we join the vertices of Yi using the pattern A2A2...A2 to get r
——
P

mutually disjoint p-gons (i, j = 0. 1, ..., R-1). Therefore G has valency v.
It follows from Lemma 2 and Remark 1 that G has girth 5. This completes the
proof of (a).
(b). Let G be the graph constructed as in (a). The subgraph of G induced by

XO’ X X Y .Y ..., and Y,-3 clearly has girth 5 and valency n

l y te n_3 bl 0 1 3
with order 2(v-2)(n-2). This completes the proof of Theorem 1.
Remark 2. Let v be an integer > 3. Since there always exists a prime power R

such that R » v, it follows that Theorem 1 gives an upper bound for f(v,5) for

any v(Z 3).
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Remark 3. For v = 7, Theorem 1 is identical with the construction of the Hoffman-
Singleton graph given in [1] and [9], and £(7,5) = 50. The upper bound for f(v,5)
given in Theorem 1 is better than the other bound menioned previously. For ex-
ample,we have f(9.5) < 98 and £(8,5) < 8.

Remark 4. For p = v - 1 a prime number, a set of mutually orthoronal latin

squares Ll’ Loy vees Lp—l is more easily obtained by a sirple rotation of the

elerents in the rows of LO which is the same as hefore. Explicitly

[0 1 2 3 . . . pa1]
p-1 0 1 2 . . . p-2
p-2 p-1 0 1 . p-3
L = .. .
|l 1 2 3 4. . . o

I . . - . .
n peneral, in Lk (k 2, 3,..., p-1). if k appears in row i and column j.

. P . s e . A
then 0 is inrow i+ 1 and column j. This simplifies the construction of the

Fraph.
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