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ABSTRACT. We establish estimates of the resolvent and other related kernels

i
nand discuss LP-theory for a class of strictly elliptic operators on

The clas of operators considered in the paper is of the form A
0 + B wlth he

leading elliptic part A
0

and a "singular" perturbation B, whose coefficients

have LP-type and are modeled after Schrdinger operators.
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I. INqRODUCTION.

-IIn this paper we shall study the resolven= kernel R_(x,y) (-A)

and other related "functions of A" for a class of strictly elliptic op=rators

AO [ aa (x)Da non and their perturbations A
0
+ B.

We are =articu!ar]v_. interesEed in LP-theory o

_
elliptic operators,

p , and typical probies :hau arise here are spectral properties ef A,

c!esedness, essential se!fadcintness, accre:ivity, semigroup generation, etc.

Underlying ali those ;s ehe qu=ion of existence and estimates of the reeivent

kernel R_.

Typically the estimate ha3 :he form of a convolution-t::pe bound

i-rxth an L adial decreasin functlcn H

In the uniformly elliptic case kernels of the resolvent R_ (-A)
-i

and

-tA
semiroup K e were studied extensively ([!], [2], [3] eta!.). In

particular, Eidelman [i] derived :he following radial bound of K
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m
where m order A, m m-I’ and I. Gelfand and G. Shilov [2] applied this

estimate to study generalized eigenfunction expansions of A.

In [4], [5] we obtained similar estimates in a different way starting with

the resolvent kernel. The latter approach allows us to treat perturbations of A,

and consequently operators with "nonregular" coefficients. We applied these

results to LP-spectral theory of elliptic operators.

In the present paper we extend the results of [4] to a class of strictly

elliptic operators with possibly unbounded coefficients, obtained by linear

deformations of uniformly elliptic symbols in the -variable,

a a(x,) (X,x()) Here x x means a matrix function (ij(x))
depending smoothly on x E n.

Natural examples of such deformations are second order elliptic operators

A aij(x)D2... Indeed any quadratic form a(x,) aij(x)i can be viewed

deformation of the simplest one: Il 2 2
(aij "6 ()I with (x))=.as a

x x
Other examples appear as right (left) invariant operators on nilpotent Lie groups

(see [6]).

For the sake of presentation we shall restrict ourselves to the simplest

case of deformations when (x)l is scalar ("conformal dilations"). Such
x

transformations correspond to a multiplication of the leading symbol of A with

a positive function (x)m, m order of A. The dilating factor (x) is

subject to a certain constraint, called "finite propagation speed" condition.

Its precise definition is given in 2. This condition limits the rate of

growth of at , which can not exceed O(Ixl) In other words leading

coefficients of A can not grow faster than xl m for m-th order operators.

Let us observe that growth restrictions on the leading coefficients are

well known in both ordinary (Sturm-Liouville) theory,

d2
A-- -a(x).--- + (see for instance [7], Ch. 9) and also for partial

dx

differential operators A I aij (x)D’2"lj + ([8]). A sufficient condition for

A to be well defined (essentially selfadjoint or Weyl’s "limit circle case") is

the divergence of the integral

+
dx

+
dr

on
(x) (r)

(a(r) sup (x)!l) on n
Ixl<r aij

The latter condition was called in [8] "finite propagation speed." Physically,

a(x)ll can be interpreted as a "local propagation speed," then integrals (1.2)

measure the "amount of time required to get from a finite point to ".
It is not clear to what extent(l.2)is necessary to get a well defined

operator A. Results of [9], [I0], [ii] indicate that it might be "too
restrictive," yet in special cases ([12], [13]) it proved to be necessary in a

certain sense.
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The form of "finite propagation speed" used in our paper is close but

somewhat stronger than (1.2). It is expressed in terms of derivatives of (x)

rather than integrals. Also the way we apply it in our setting differs from the

standard method of "hyperbolic wave propagators" (cf. [8], [14]).
-th

Under assumptions of 2 we show that m order elliptic operators are well

defined in different LP-spaces (I < p ) and their kernels (resolvent,

semigroup, etc.) share many properties of "constant coefficient" and "uniformly

elliptic" kernels (cf. [15], [16], [5], [4]). There is one notable exception

however: the radial bound (I) central for the argument of [5], [4] is no longer

valid. Instead we utilize another Fourier analytic tool The Hardv-Littlewood

maximal function:

f f*(x) sup
n f(x+y) ldy (1.3)

Maximal functions appear in this context when "deformations" of symbols (of

resolvent and related operators) are translated into "deformations" of kernels.

As a result one gets kernels of the type

K(x,y) -nxIKrx-Yl,(x)J

where K is Ll-radial, (x) > 0 the dilating factor. If ,(x) < c is bounded

(uniformly elliptic case) K is estimated by the usual "Ll-dilation

K(x,y) < K() (1.4)

In our case (unbounded (x)) K has no longer a single convolution type
0

bound (I.A). But the maximal function (1.3) applies to give

(Kf)(x) < KII f*(x)

The maximal operator f f* is well known to be Lp (I < p < ) (see for nst.

[17]), which yields a bound for the LP-operator norm of K Such bounds are

used throughout the paper as a substitute for the radial bound (I.I).

Otherwise our argument is similar to [4].

First we construct the "free" resolvent R
0 (-Ao)-I A

0
is the leading

(homogeneous) part of A, via tle "parametrix series"

R
0

K tk K(l-e )-I

Here K is a pseudodifferential operator (DO) with symbol
-a(x,) a(x,$)

being the leading svmbol of A, and L a @DO of order -I whose symbol
is computed explicitly ( 4).

The "perturbed" (-A) -I
is constructed via the perturbation

resolvent R
series

(1.6)
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The coefficients of perturbation B b (x)Da are taken in LP-ciasses.
Such classes are well know’n in the theory of Schrdinger operators -4 + V(x)

(cf. [18]) and were studied for higher order operators in [15], [16], [5], [4].

In our case b (x) can be allowed certain growth at {} depending on (x)

Such conditions are naturally formulated in terms of weighted LP-spaces, Lp with

weights w, that are fractional powers of Also the L-domin of A
0

and

A ca be characterized as a weighted LP-Sobolev space (Theorem 2).

The central result of the paper, Lemma i, analogous to Le.ma of [5], gives

conditions (in terms of LP-classes of coefficients) for relative boundedness of

B with respect to A
0

and estimates the norm of BK This result applies in

4 to sum series(l.5)and(l.6),and to derive different corollaries. Among them

we ge

a) LP-closedness of A A
0 + B and bounds on its LP-spectrum;

2b) a priori estimates and essential selfadjointness of A in L

c) resolvent summability, i.e., convergence Rf(x) f(x) in Lp and a.e.

d) existence of a strongly continuous holomorphic semigroup

-tA}{e
Re t > 0"

Let us remark that due to the maximal function techniques adopted in the

paper the Ll-space is excluded from consideration. The Ll-theory of integral

kernels Kd(x,y) (x)-nK((x)-l(x-y)) with K E L poses an interesting

harmonic analysis question. At the end of 4 we give two examples which have

bearing on Ll-theory.
In conclusion let us mention that the basic L2-theory of elliptic operators

([19], [0], [3]) was extended later in a fairly general setting of

pseudodifferential calculus ([21], [9], [22], [6]). But much less i known about

Lp, p # 2. Two recent works that discuss specifically LP-theory are those by

Nagel and Stein [6] and Beals [23]. Both methods allow to treat a variety of

"nonelliptic problems" (subelliptic Lap!acians, degenerate elliptic operators,

etc.), but remain entirely within the pseudodifferential framework in the sense

that symbols (coefficients) are assumed sufficiently smooth.

Another trend ([15], [16], [5]) was to explore what "amount of nonregularity"
of coefficients yields "well defined" LP-operators. The present paper continues
the latter trend, but our approach seems to be extendable to various
"nonelliptic" situations as well. This extension will be discussed elsewhere.
2. THE CLASS OF OPERATORS.

Throughout this paper we shall consider operators of the form A A
0
+ B

with the leading elliptic part A
0 a (x)Da and a "singular"

perturbation B b (x)D

The following assumptions will be made on A
0

and B.
I. The leading part A

0
is assumed to be homogeneous of degree m and have

a real symbol a(x,) obtained by the "deformation" of a uniformly elliptic
symbol a(x,$)

a(x,) (x,(x)) m(x)(x,)
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Uniform ellipticity as usual means that

The dilating factor (x) and the coefficients of (x,) (x).

are subject to the following constraints

’(g)(x) < const 61-igl; Igi < m (2.1)

l(fl)(x)l < const -131; I < m (2.2)

Here and elsewhere u
()

denote a partial derivative Du. Condition (2.1) is

close but somewhat stronger than the "finite propagation speed" condition [8].
-th

The latter adjusted for m order operators of the above type requires

dr
(r) +’ (r) sup 6(x) (2.3)

whereas (2.1) implies

’ C [+ drI-I g(r)
) ngl+ +"

Both conditions do not allow (x) to grow faster than O(Ix I) as x .
II. Perturbation B [ b (x)D

a
has coefficients with local LP-type

Pa
singularities b For each term b (x)D

a Lloc a
of B we introduce its

"fractional order"

d n__+ la and require d m.
p a

The latter is needed in order to have B bounded relative to A
0

We also need some control of b at {}, depending on 6 A convenient

way to express it is in terms of weighted LP-spaces, Lp {f: IfwlPdx < }
W

Pa
Precisely, we take b L with the weight

W

-d
w w (2.5)

Let us notice that the above class of operators is closed under the

adjunction A A* provided the coefficients of g are sufficiently smooth

(b P the LP-weighted Sobolev space of order I’a lal,w I) Indeed the adjoint

of a (x) D is

Da(aa ") (a)a(a-)D

Remembering that a m with and g subject to (2.1) (2.2), we

estimate the g-order coefficient of the adjoint

(a-g)
a . (m) () () ()

y ’+y=a-
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as

So the lower order terms of A* coming from the top order coefficients:

b a
(-)

are L (w -II) i.e. belong to the above class of

perturbations. Similar argument applies to derivatives of the coefficients b of

B. Namely, interpolating in 3 parameters: p (for LP-class of b Sobole
t

(fractional) order s and the exponent t of the weight w g one can show

that

b 6 LPs;t- b
(Y)

6 [qs_iyl; t-IYl where eq ep + IYI

This implies in particular that the class of perturbations A
0
+ B includes

all symmetric operators with the leading part A
0

The latter is important both

for the argument below and in various applications.

3. THE MAIN LEM.

In this section we shall prove the main Lemma, which gives condition for

relative boundedness of the operator B b(x)D
a

with respect to A
0

of I, and

provides an estimate of the operator norm of the product B "parametrix o (’-AO)
This result will enable us to prove the convergence of series (1.5) and (1.6)

and to derive all consequences in 4.

Let A
0

a(x,D) be an elliptic operator of 2 with symbol

a(x,) a(x,d(x)) Define a DO K K (x,z),z x y, with symbol

I
-a(x,)

a parametrix of (-Ao)

(2)
-n/2 ei’z

K(x,z) |
-a(x,) d (3.1)

P
LEMMA I. Let a(x ) (x (x)) and b(x) 6 L

e
w’ satisfy assumptions

(2.1) (2.5) of 2, then for all 6 range a(x,) +, the operator BK
is LP-bounded, I < p -<. p, and its norm is estimated as follows

BKII < C -l+d/m iO n___ + < m
PsinS/2

n+l
r re ,d d (3.2)

where C depends on p the L -norm of b(x) and the leading symbol
W

a(x,)

PROOF. The operator BK consists of a DO DK followed by a

multiplication with b(x) We start with DK. By the usual product formula of

DO’s its symbol is equal

(x,) [ ()*-88 --a)"x (3.3)

1
We apply the "iterated chain rule" to partial derivatives of (_-)

k

8xS(a)C81-...8
k

(-a)-k-l’[’[(83Ja)
’ix

(3.4)
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k
summation taken over all partitions B 8J into the sum of multi-indices {BJ}

i
with certain combinatorial coefficients CBI "8

k. As a result o is

represented as

i(x)i(x’) (3.5)

where

k

product of k partial derivatives of the

coefficients of a(x, $) (3.6)

and

v k
.(x,E) k+l’ where the multiindex

(-a) II km + I-i I

In order to treat a possible LP-type singularity of the coefficient E(x we

shall use two interpolation inequalities for convolution and multiplication.

i i i< llgll f!l (I- (YoungK*fll p q P )
i i I< llbil f + (HIder) (3.7)

including a stronger version of Young’s inequality the Hardy-Littlewood-Sobolev

inequality, where K 6 Lq-weak (see for instance [17], Ch. 3). The relation

between p, p’ and q is the same but p i is excluded in the latter case.

Rephrasing (3.7) in the reciprocal scale 6 [0,i] one can say that a
P

convolution with K 6 Lq (or Lq-weak) shifts the LP-class to the left by the

amount (i ) while a multiplication with b E L
r

shifts it to the right by
q!. The product of two operations f bK*f is bounded if the LP-classes of b

r
i i

and K are "Young-dual": I
r q

This relation explains the limitation on the scale of LP-spaces in Lemma I,

p (we do not want a convolution-type term K to "push" the LP-class ofP

f out of the scale [0,i]). It also explains the definition of the "fractional

order" (2.3). Indeed, a multiplication with b 6 Lp is "equivalent" by (3.7) to

a convolution with the "fractional Laplacian" As (_)s/2 ;s
Now we return to the operator b(x)D=K and want to make the above heuristic

argument accurate. It is convenient to multiply and divide BK by the

fractional Laplacian As, s --n (s O, of pa =) Then we get from (3.5)
P

BKSA-s [ (bi)MiA-S

i
with symbolsa combination of multiplication operators (b DO’s M

i

o.
a)

k+l
(_

(3.8)

and a fractional Laplacian A-s The order of o. is II + s m(k+l) which
1
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by (3.6) is equal to

m d -m- [8] < 0p

i8We "pull out" the absolute value of complex re in the denominator of
(3.8), and by the homogenuity of a write o. in terms of a "uniformly elliptic"

symbol oi --i
e -a(x,)

r -i/m
6i(x’) 7 i(x; r (x)E) (3.1o)

where

I -I + d/m Slim; d d + [ol

t I’vl + s mk + d Isl.
-t

The weight 6 (x) will joint the left (multiplication) factor of

(bi)MiA-s Remembering that #i is a product of derivatives

k
(J), Sj we get]aaj i

k

i

(b/d)(a(.BJ)/m-lSJl)d+km-] B

By hypothese (2.1), (2.2), (2.5) of 2 the first factor b/d
is Lpa,

whereas all terms of the product are L Thus the "multiplication: (left)
(bi) LP6 and the "convolution" (right) factor A-s of thefactor i t

-s
product iMiA "complete" each other in the sense of interpolation formulas

(3.7). It remains to study the middle term. We shall show that a DO M. is

LP-bounded (l<p<) and estimate its norm.

We first observe that the dilation of symbols . o. (x,pK) with

-i/m6 Ll_dilation
l

O r results in the dual of kernels, i.e.

M.l(x,z) p-ni(x; 0-1z)

which represents M. in terms of the "uniformly elliptic" kernel ..
l

The order of a DO o. is nonpositive by (3.9). So two cases are
l

possible.
o

1 Strictly negative order, Z < O.

is well known to have an Ll-radialA negative order DO SI, 0
convolution-type bound

[Bi(x,z)[ < cH(lzl)

(3.11)

(3.12)
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where c depends on a finite number (N-- n + I) symbol class semlnorms of $
(see for inst. [5]).

A straightforward evaluation of seminorms yields

sup llNl(aoi)( )I < in
C

x,( e/2]N, N IBI

whence the constant in estimate (3.2) of Lemma i.

From (3.11), (3.12) it follows that the kernel M4(x,z) is bounded by the
-i/m

6so-called p-dilation of the radial Ll-function H with p p(x) r (x)

.IMi(x,z) < co-n[x)H[io""’ (x)z) H z x Y.

If 0 were bounded o(x) < e (uniformly elliptic case), then H < H and

the usual Ll-convolution would immediately imply the result: LP-boundedness of

Mo for all i < p < (cf. [4], [5]). In case of unbounded 6(x) the maximal
1

function estimate applies,

(Hof)(x) < Hlllf*(x)
This yields LP-boundedness of M in all spaces I < p < and proves

1

Lemma I in the first case.
0

2 Order 0 We split $i E SI,0 into the sum of 3 terms:

o’l c(x)l + 0 + - a multiple of the "identity" (in the -variable) function"

a homogeneous of order zero (in ) sbol Oo(X,E) with the zero mean-value

over the unit sphere i and a negative order sbol 6 S
1,0

Let us illustrate this splitting for k O, i.e.

( m) en

a (-a)a

the first te splits into the sum of c(x) /(x,g)d and_
-m

Notice tha iso
0

/a c(x), while the second is obviously in SI, 0
sufficiently regular at {0} which is important for the existence of "global"

radial bound H of the kernel $ (x,D) (cf. [5]).

Correspondingly kernel splits into the sum of three kernels:

c(x)l + M
0
+ M_, a multiplication with "nice" (bounded) function c(x) a

Calderon-Zygmund kernel o(X’Z) (homogeneous of degree -n in z) and an

L
!
-adially bounded kernel

The first two of them are invariant under the 0-dilation

(z) -(-z)
o

while the third is dominated by the maximal function as in case i This

completes the proof.
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&. RESOLVENT KERNELS OF A
0

AND A AND THEIR APPLICATIONS.

After Lemma I we can study the convergence of series (1.5) and (1.6), that

give resolvent kernels R
0 (-A0)-1 and R (-A) -1

We start with R
0

THEOREM i. Series (1.5) converges absolutely in the complement of a

parabolic region about positive real axis in , in all LP-spaces
1 < p < , and defines the resolvent R

0 of A.

PROOF. We recall that the operator L (-A0)K I. By the product formula

of .DO’s its symbol

i (a)8(_)xoe(x,) <181 <m - D
expands into the sum ioi of the type that appear in Lemma i. Namely,

k
a(Sj k

i(x) a
e
j

i
8; (a

e
6 L_m plays the role of b(x))

and

k

i(x’) (-a)k+l
e 8 +

1
e; II (k+l)m 181

So the whole argument of Lemma I can be repeated for L" Notice that all

DO’s o.(x,D) have strictly negative order, -i.
1

Hence by Lemma i each term M of L and consequently the whole operator L

is estimated as

]ILl1 < [liMi[l < C - --, (4.1)
[sin 8/21 n+l

r X i [8[/m ) i
m

with C depending on L-norms of i and p (I < p < ) Returning to series

expansion (1.5), we see that i Lk converges absolutely if the right hand side

of (4.1) 0

C
r < i. (4.2)

Isin 8/21 n+l

This condition gives a parabolic region about positive real axis in , in

whose complement we have a well defined bounded operator R
0

K(I-L)
-I

We want to show that R
0

is the resolvent of A
0

that is

(I) (-A0)ROf f f 6 ep

(II) RO(-A0)f f for all f in the LP-domain of A
0

The first formula immediately follows from the relation (-Ao)K I L. It

shows that R
0

is the right resolvent of A
0

To show the existence of the left

resolvent (II) we shall use duality between LP-spaces. Namely: the adjoint of

the right resolvent of A
0

in Lp becomes the left resolvent of the adjoint

* L
p i

operator A
0

in ( + -- I) and vice versa.

We can not apply the above result directly to A
0

to show the existence of

the right resolvent, since A
0

is not of homogeneous order. But A
0

A
0
+ B,

whose lower order terms {beDe }lel<m have coefficients bounded "relative to A
0
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Therefore the "perturbation" Theorem (Theorem 4 below) applies to prove the
existence of the right resolvent for A

0 outside of another parabolic region ’Once both resolvents, right and left, are shown to exist they must be equal. This
completes the proof of Theorem i.

Next we apply Lemma i to characterize the LP-domain of A0, Pp(Ao), i < p < .
-th

For constant coefficient elliptic operators P (AO) is known to be the m
P

Sobolev space iv’m" (I-A)m/2LP and the same is true for uniformly elliptic

operators (see [4]). For strictly elliptic operators of the above type we have
-thTHEOREM 2. The LP-domain of A

0
is equal to the m weighted Sobolev spce

with the weight w 6
m

IP’m {f: I lwf(a) IP dx < }w

Ip,min are equivalent.and the norms (-Ao)fll in P (AO) and !lwDfll.pp w

PROOF We have to show that the operator w(l-)
m/2-0

is bounded and

invertible in Lv But R0 K(I-L) -I
It suffices to show boundedness and

invertibility of the operator T w(l-&)m/2K. Boundedness follows directly from

Lemma I. Indeed

w(l- &)m/2K [ c wDK.

is the sum of terms that appear in Lemma i.

To prove invertibility it is convenient to use (-A)
m/2

for sufficiently

large > 0 instead of (l-&) m/2 in the definition of ip,m norm and also to
w

reverse two terms in the product w(%-A)m/2

We observe that

w(k g)m/2 [( A)m/2 + B]w, (4.3)

where order B < m i and the coefficients b [ c wv’/w are all

bounded. Then for sufficiently large X the operator norm

B(;k A)-m/2[[ < 1/2.

Hence the inverse [(l A)m/2 + B] -I exists and is bounded.

Now we can invert T w(% A)m/2R0 using (4.3)

T
-I ( A0)w-I [( A)

m/2 + B]
-I (4.4)

But A0w-i 0 + with uniformly elliptic 0 w-iA0 and of the same type

as B.

Finally "pulling out" (\-A) m/2 from the right factor in (4.4),

(l A)
-m/2

[I + ( A)-m/2B -I
the problem reduces to LP-boundedness of the
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operator S (0 + )(k &)-m/2 for uniformly elliptic 0 and "relatively

small" , which is well known (cf. [4]) Indeed the operator S is a

combination of zero- and negative order ,DO’s { (x)D( g)m/2: II < m}. The

former are given by Calderon-Zygmund kernels, hence L
p

for all 1 < p < (see

[!7], ch. 2). The latter have Ll-radially bounded kernels, hence Lp for all

i-<. p .
In many applications, including the perturbation series (1.6) one needs to

estimate the operator norm of BR0. By Theorem I R0 K (I L)
-I

and
-i

(I-L) is easily shown to converge to I as uniformly in any sector

{iarg I > > 0} The problem is thus reduced to estimating BKII The latter

is provided by Lemma I.

COROLLARY i. If A
0

and B satisfy assumptions of 2, then

-l+d/m

BROil < (C !Ib=il) r

Isin /21 k+l

and E (where R0 exists). Herefor all Lp i < p < rain {p
d max {d is the "fractional order of B, constant C depends on p and the

symbol a(x,)

From (4.5) immediately follows

COROLLARY 2 (cf. [5] [4], [16]). The operator B is Ao-bounded and the

LP-domains of A and A
0

are equal

(4.5)

w i < p < rain Ipp(A) p(A0) 6p,m,w -m,

Let us notice that the relative bound in the right hand side of (4.5) can be

made as small as one likes, taking sufficiently large r, provided the

"fractional" order d < m. In this case the perturbation series (1.6 converges

absolutely in the complement of a parabolic region

’ {: relative bond < I}

The limit case, d m, is important, as it gives the "optimal amount" of

LP-type singularity of lower order coefficients and also allows "top order"

perturbations. In this case one can claim somewhat less.

PROPOSITION I. Operator BR?II < i in any regioD

: II > R; lard I > }R, (4.6)

with arbitrarily small and large , depending on

To prove Proposition i we cut each coefficient b E L
p

into two parts:

Pb’ L and "very small" b" L !ib"’l < e. Consequently, te whole

perturbation B splits into the sum B’ + B". The first term has order

d < m- i hence B’RO!l becomes small outside of a parabolic region .’

while the second B"R?I< 1 in some region fR,O" Here depends on

b"!l and can be made as small as one likes. This proves the Proposition

From Proposition i easily follows
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COROLLARY 3 (a priory estimate). For any > 0 there exists

C=C >0 s.t.

(4.7)Bf!I < !IAofll + cIIfll f 6 Lp’m
p p p w

Along with Kato-Rellich Theorem a priory estimate (4.7) implies essential

selfadjointness in L
2

of a formally symmetric operator A0 + B. Proposition i

also yields a large class ("optimal" in the sense of LP-type singularity of

coefficients) of "well defined" elliptic operators in LP-spaces. Namely,

THEOREM 3. i) If an operator A a(x)D of i has leading

m(x) ll--m
coefficients a 6 L

p
satisfy (2.3) (2.4), then A is "well defined" in all

w
LP-spaces I < p < min p in the sense that

D (A) Lp,m and Al[P,m closure {A A iC0}p w w mln

2) If A is formally symmetric and min {p=} > 2 then A is essentially

selfadjoint on CO
Theorem 3 extends many of earlier known results [8], [9], [24], [41, [ii],

[15], [16] on essential selfadjointness and LP-theory.
Now we turn to the resolvent R of A.

THEOREM 4. (cf. [5], [4]) Let A A0 + B be an operator of Theorem 3.

Then

the resolvent R (-A) exists in R,(I) for all I < p < rain {pa
and is given by an absolutely convergent series (1.6).

(II) (resolvent summability) for all f Lp (i < p < rain {p}) the family

(Rf)(x) f(x) as uniformly in

in Lp-norm.
The first statement is already proved, the second follows from the estimates

of eemma i (cf. [4], [5]).

After Theorem 2 we can obtain a variety of other "analytic multipliers" (A)

and "summation families" {e(A)} e
by Cauchy integration of Rr.. Indeed, the

formula

(A)
F

defines a nice (bounded) operator (A) provided is integrable over the

cr-l+d/m
contour with respect to the measure du

sin /21n+I d. One such example

-tis the family of functions {t() e }t" Here contour F consists of two rays
ie{re+-i; r > ro}, 0 < < and a circle {roe Ii > }. Angle can be

chosen arbitrarily small due to the shape of QR,"
Thus we get
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THEOREM 5. An operator A of Theorem 3 generates a holomorphic semigroup
-tA

e in the right half plane Re t > 0 in all Lp I < p min {p}
-tAfMoreover, the family of functions e (x) f(x) as t 0 in LP-norm

REMARK i. As in [4] ( ), all the above results extend to strictly elliptic

operators on certain Riemannian manifolds diffeomorphic to Rn and strictly

elliptic systems.

REMARK 2. More general classes of coefficients {b of the perturbation B

can be allowed in 3. One such class consists of b (x) defined on quotient=
Lpspaces E n/E (E is a subspace of n) which are on E, like "N-body"

3N 3potentials: V [ V(xl-xj) on (x
I

6 In this case condition (2.4)
i<j

dim E
of 2 should read: + lal m, (see [5]). Another extension of Lp

Pe
classes is discussed in [15], [16]. It consists of all functions b (x) whose

convolution with H (z) Izl -s (Izl i, and s n m + a) (a "local

singularity" of Da(-Ao)-I) is bounded. This condition is close to so called

"Rollnik condition" in the theory of Schrdinger operators (see [25]).

We shall conclude this section with two examples, which have bearing on

Ll-theory of the above class of operators. This theory poses the following

interesting harmonic analysis problem: given an L
I

function K(x) and a

x-y L
II

K( (x)) is bounded.dilating factor (x) > O, when the kernel K n(x)
Two examples below indicate that the situation in Ll-case becomes more subtle

compared to LP-theory (p > i) Namely, an Ll-radially bounded K and a

"finitely propagating" are no longer sufficient for LI: the growth of 6 must

be "slower" than O(Ixl) and some additional relation between K and appears.

EXAMPLE I. Take (x) Ixi on . Then K(x,y) K(l- is

homogeneous of degree -I. It is well known (see, for instance, [17], Appendix)

that K is Lp if and only if J y-PK(l-y) dy < =. The latter is obviously

true for p > i, but fails for p I.

XAMPLE 2. Now we take (x) 2vrx on R and write the operator K6f as

(K6f)(x) I K(y)f(x (x)y) dy.

Then

IIKflll f K(y)I f(x- 6(x)y)dx dy.

We introduce a new variable u x (x)y (x) The range of u is the
Y 2whole real line R but the function u y(X) has a critical point x

0
y

and on the interval _y2 u 0 u is "three-fold" (see figure) We divide the

line Rx into three intervals II (-;0]; 12 (0;2y2]; 13 (2y2;+) On II
and 13 the Jacobian (d) is bounded from both sides,

0 < c I (=d__u_) c2 <
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Hence

+ f(x d(x)y) dx < i fl[ I
I
1 13

It is only a neighborhood of the critical point x
0

y- that causes

to "blow up". The Jacobian () is computed explicitely.

du y y2(-fx) I +_ on [0,

/y2+u
"+" on [y2,2y2]

Hence

0 0

I f(x (x)y) dx 2 f(u) v------ du + 2 I f(u) du.
2 212 -y -y

Finally, the change of variable y y, and the order of integration yields

2 /y2+u v0 -y 0 -u

This shows that K is Ll-bounded iff the convolution K(y)

is bounded. Then

Ks(f)
I+ ![K(y) * II) llfI[ I.

A similar condition on K can be derived for other polynomial functions

(x) Ixl s
(s < I) Namely the convolution of yl/2-s K(yl_s and

i
must

y
be L

These results can be used to study LI properties of the resolvent kernel R

d
m

for operators A 6(x)m+ on R Indeed, the kernel
dx
m

iz’
K(z) e------d is bounded near {0} and decays exponentially at

_m
{} K(z) e-Ylzl If 6(x) Ixi with s < m, the condition

Y-1/2 -SK(yl-S) , l__y L is obviously satisfied. Hence Ks and consequently R
i

are L On the other hand if 6(x) Ixl has the maximal allowed growth both

kernels fail to be L
I
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