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ABSTRACT. In this note, we show that if a topology F over a ring A satisfies a

certain finiteness condition, then the Gabriel topology generated by can be

explicitly constructed and it also satisfies the same finiteness condition.
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I. INTRODUCTION.

Let A be an associative ring with identity. A filter of right ideals F of A

is called a right topology (a pretopology in Stenstrom (1971)), if it is closed for

right quotients by arbitrary elements of A. Suppose F satisfies in addition: If

I is a right ideal of A such that (l:a) F for every a e J and J e F then

I e then is called a right Gabriel topology over A (an additive topology in

Stenstrom (1971)).

In [I], it is remarked that "if is a pretopology, then J() the weakest

topology containing E is the topology corresponding to the heriditary torsion

theory generated by {A/I I F} ".
In this note, we constructed explicitly J() from without recourse to the

torsion theory, provided E satisfies a rather natural finiteness condition. It turns

out that J(E) also satisfies this condition. Moreover, this condition holds for all

topologies over a right Noetherian ring.

Hereafter, by a ring we mean an associative ring with identity, and ideal means

right ideal; hence, all topologies are right topologies.

2. CONSTRUCTION.

Let F be a topology over a ring A and I an ideal. We define the quotient

of I with respect to F to be

( I) {a a e A (I a) e }. (2.1)

One checks easily that (F I) is an over-ideal of I and it is equal to A precisely

when I e F and that this quotient operation is monotonic in each of the variables.
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Let us write I instead of ( I) and define inductively In+ (In)
and finally In Then is an (union of an ascending chain of) idealneN
containing I called the closure of I (with respect to F ).

It is straightforward to verify that if I [ then I 11 A and it is a

preclosure operation in the topological sense, namely I j implies T and

i n J n for any two ideals I and J of A

Moreover, since ( (I A)) (([ I) a) as one can check easily, we

conclude also that (I a) (T a) for an element a e A

A topology F over A is called sequence-finite if {I is an ascending
n nN

sequence of ideals of A such that their union belongs to F then I is a member
n

of F for some n

Suppose the ring A has the property that every topology has, a subbase of

finintely generated ideals in particular, if A is Noetherian then all topolo-

gies over A are sequence-finite Ill.

In the case of a sequence-finite topology [ the remarks in the preceding

paragraph concerning the closure of an ideal can be sharpened. Indeed one has that

for an ideal I of A I F if I e F for some n and the closure of the union
n

of an ascending sequence of ideals equals the union of the closures of the members of

the chain and consequently, the closure operation is in effect idempotent; namely

I I for an ideal I of A

Now we have

THEOREM I. Let A be a ring with identity and [ a sequence-finite topology

over A Then the Gabriel topology G generated by F is given by

{I I is an ideal of A e } (2.2)

and G is also sequence finite.

PROOF. That is a topology follows easily from the preceding discussion.

Suppose now that I is an ideal of A such that for some J in F and for

every a e J we have (I A) e Then (I a) ( a) e for every a

in J Consequently, G ! ( I) ! I I Hence I But then I e [
so that I e also, showing is a Gabriel topology.

Suppose {In}neN be an ascending sequence of ideals such that uln belongs to

Then belongs to Now the sequence finiteness of F and the defini-

tion of implies that In belongs to G for some n

Let be a Gabriel topology containing and I an ideal belong to then

and so In belongs to F for some n Therefore In e H Since H is a

Gabriel topology, In_ and consequently I0 belongs to H Thus G H

The construction above shows that two sequence-finite topologies F and G

generate the same Gabriel topology iff for every I in F G (the closure of I

with respect to G) belongs to G and vice-versa.

Also, if A is a Noetherian ring then all Gabriel topologies can be constructed

using the above method.
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In conclusion, we note that without the sequence-finite assumption, the Gabriel

topology generated by can be described by a transfinite process as follows:

Let i {I I an ideal and I! ( I) g } The I is a topology

containing For a transfinite ordinal we define

(F--B) if +

<=F otherwise

Then there exists an ordinal d such that ()I and 6 is then the desired

Gabriel topology generated by

Our construction above shows that in the presence of sequence-finiteness is

equal to
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