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ABSTRACT. This is the first part of a survey on analytic solutions of functional

differential equations (FDE). Some classes of FDE that can be reduced to ordinary

differential equations are considered since they often provide an insight into the

structure of analytic solutions to equations with more general argument deviations.

Reducible FDE also find important applications in the study of stability of differ-

ential-difference equations and arise in a number of biological models.
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I. INTRODUCTION.

In [1-4] a method has been discovered for the study of a special class of func-

tional differential equations differential equations with involutions. This basi-

cally algebraic approach was developed also in a number of other works and culminated

in the monograph [5]. Though numerous papers continue to appear in this field [6-10],

some aspects of the theory still require further investigation. In connection with

the DurDoses of our article we mention only such topics as hiher-order equations

with rotation of the argument, equations in partial derivatives with involutions,

influence of the method on the study of systems with deviations of more general

nature, and solutions in spaces of generalized and entire functions.
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2. DIFFERENTIAL EQUATIONS WITH INVOLUTIONS.

In studying equations with a deviating argument, not only the general properties

are of interest, but also the selection and analysis of the individual classes of

such equations which admit of simple methods of investigation. In this section we

consider a special type of functional differential equations that can be transformed

into ordinary differential equations and thus provide an abundant source of relations

with analytic solutions.

Silberstein [ii] studied the equation

x’(t) x(), 0 < t < (2.1)

In [12] we proved that the solution is obtained very simply by a differentiation of

(2.1). As a matter of fact,

whence,

x"(t) -- x’( - x(t),
t t

t2x"(t) + x(t) 0. (2.2)

Consequen t ly,

x(t) r[ClCS(--z In t) + C2sin(Z-z in t)].

Substituting x(t) in (2.1), we obtain CI=C2, and finally,

x(t) C cos(- In t ).

Obviously, the key to the solution is the fact that the function f(t) i/t maps the

interval (0, ) one-to-one onto itself and that the relation

f(f(t)) t, (2.3)

or, equivalently,

-I
f(t) f (t)

is satisfied for each t (0, oo).

A function f(t) 7 t that maps a set G onto itself and satlsles on G condition

(2.3), is called an involution. In other words, an involution is a mapping which

coincides with its own inverse. Let

fl(t) f(t) fn+l(t) f(f (t)) n 1 2
n

denote the iterations of a function f:G G. A function f:G G is said to be an

involution of order m if there exists an integer m _> 2 such that f (t) t for each
m
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t E G, and f (t) t for n I, m i. It is easy to check that the following
n

functions are involutions.

EXAMPLE 2.1. f(t) c t on R (_oo, oo), where c is an arbitrary real.

EXAMPLE 2.2.
-at for t _> 0,

f(t)
-t/a for t <_ O,

on R, where a > 0 is arbitrary [5].

EXAfPLE 2.3.
t

k
for 0 < t < i,

on (0, oo), where k is an arbitrary positive integer [5].

EXAMPLE 2.4. The function f(z) ez, where E exp(2i/m), is an involution of

order m on the complex plane.

EXAMPLE 2.5. The function [13]

t, t e (_oo, O)U(m, +oo),

f(t) t+l, t (0, I)U(I, 2)U.. U(m-2, m-l),

[t-(m-l), t (m-l, m)

is an involution of order m on G (_o, O)U(O, I)U... U(m-l, m)U(m,

DEFINITION 2.1. A real function f(t) t of a real variable t, defined on the

whole axis and satisfying relation (2.3) for all t, is called a strong involution

[].

We denote the set of all such functions by I. The graph of each f e I is sym-

metric about the line x t in the (t, x) plane. Conversely, if F is the set of

points of the (t, x) plane, symmetric about the line x t and which contains for

each t a single point with abscissa t, then F is a graph of a function from I. One

of the methods for obtaining strong involutions is the following [14]. Assume that a

real function g(t, x) is defined on the set of all ordered pairs of real numbers and

is such that if g(t, x) O, then g(x, t) 0 (in particular, this is fulfilled if g

is symmetric, i.e., g(t, x) g(x, t)). If to each t there corresponds a single real

x f(t) such that g(t, x) 0, then f g I. For example,

g(t, x) t + x c,

then

f(t) c- t.
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If we take

then

t
3 3

g(t, x) + x c,

f(t) 3Jc t
3

Every continuous function f I is strictly decreasing [15]. Hence,

lim f(t) +oo, lim f(t) _o. (2.4)
t-_oo t-+o

THEOREM 2.1. A continuous strong involution f(t) has a unique fixed point.

PROOF. The continuous function @(t) f(t) t satisfies relations of the form

(2.4) and, therefore, has a zero which is unique by virtue of its strict monotonicity.

We also consider hyperbolic involutary mappings

t+ (2 + > 0) (2.5)f(t) Yt-

which leave two points fixed. We introduce the following definition.

DEFINITION 2.2. A relation of the form

(n)
F(t, x(fl(t)) x(fk(t)) x(n) (fl(t)) x (fk(t)))=O,

in which fl(t), fk(t) are involutions, is called a differential equation with

involutions [i].

THEOM 2.2([1]). Let the equation

x’(t) F(t, x(t), x(f(t))) (2.6)

satisfy the following hypotheses.

(i) The function f(t) is a continuously differentiable strong involution with

a fixed point tO.

(ii) The function F is defined and is continuously differentiable in the whole

space of its arguments.

(iii) The given equation is uniquely solvable with respect to x(f(t)):

x(f(t)) G(t, x(t), x’(t)). (2.7)

Then the solution of the ordinary differential equation

F F Fx"(t) + x(t) x’(t) + x(f(t)) f’(t)F(f(t), x(f(t)), x(t)) (2.8)

(where x(f(t)) is given by expression (2.7)) with the initial conditions

x(t0) x0, x’(tO) F(to, Xo, xO) (2.8’)

is a solution of Eq. (2.6) with the initial condition

x(t O) xO. (2.9)
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PROOF. Eq. (2.8) is obtained by differentiating (2.6). Indeed, we have

F F Fx"(t) + x(t) x (t) + x(f(t)) x (f(t))f’(t).

But from (2.6) and the relation f(f(t)) it follows that

x’(f(t)) F(f(t), x(f(t)), x(t)).

The second of the initial conditions (2.8’)is a compatibility condition and is found

from Eq. (2.6), with regard to (2.9) and f(t 0) tO
It is especially clear to see

the role of involutions in equations which do not contain and x(t) explicitly. In

this case,

x’(f(t)) F(x(t)).

THEOREM 2.3 ([i]). Assume that in the equation

x’(t) F(x(f(t))) (2.10)

the function f(t) is a continuously differentiable strong involution with a fixed

point to and the function F is defined, continuously differentiable, and strictly

monotonic on (_oo, o).

Then the solution of the ordinary differential equation

x"(t) F’(x(f(t)))F(x(t))f’(t),

x(f(t)) F-l(x’(t))

with the initial conditions

x(tO) Xo, x’(to F(Xo)
is a solution of Eq. (2.10) with the initial condition X(to) xO.

COROLLARY. Theorems 2.2 and 2.3 remain valid if f(t) is an involution of the

form (2.5), while the equations are considered on one of the intervals (_oo, a/y) or

(I, ).

REMARK. Let t
O be the fixed point of an involution f(t). For t > to, (2.6) and

(2.10) are retarded equations, whereas for t < t
O they are of advanced type.

EXAMPLE 2.6. By differentiating the equation [1]

Ix’(t)
x(a-t) (2.11)

and taking into account that

x’(a-t) I
x(t)

we obtain the ordinary differential equation

d2x i
2 x(t)

dt

dx 2
() (2.12)
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The fixed point of the involution f(t) a-t is to a/2. The initial condition for

(2.11) is

x() xO;

the corresponding conditions for (2.12) are

1x() xo, x’() x0
Eq. (2.12) is integrable in quadratures:

a
t-

x(t) x
0

exp 2
x
0

This is the solution of the original equation (2.11).

The topic of the paper [16] is the equation

F(t, x(t), x’(t) x(n)(t)) x(f(t)), (2.13)

where x is an unknown function.

THEOREM 2.4 ([16]). Let the following conditions be satisfied:

(I) The function f maps the open set G into G, G being a subset of the set R of

real numbers.

(2) The function f has iterations such that

fl(t) f(t) fk(t) f(fk_l(t)) f (t) t

for each t e G, where m is the smallest natural number for which the last expression

holds.

(3) The function f has derivatives up to, and inclusive of, the order mn n

for each t g G, f’(t) # 0 for each t G.

(4) The function F(t, Ul, u2, Un+I) is mn n times differentiable of its

Farguments for each t g G and Ur R (r I, n + I) and
u
n+l

(5) The unknown function x has derivatives up to, and inclusive of, the order

mn on G.

In this case there exists an ordinary differential equation of order mn such

that each solution of Eq. (2.13) is simultaneously a solution of this differential

equat ion.

Let us consider the functional differential equation [17]
(kl) (k)

nF(fl(t), x(fl(t)) x (fl(t)) X(fn(t)) x (f (t)))=0 (2 14)

where x is an unknown function and where the following conditions are fulfilled:
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(I) The functions fl’ f form a finite group of order n with respect ton

superposition of functions, fl(t) t, and map the open set G into G, G being the

largest open set wherein all expressions appearing in this paper are defined.

(2) The functions x and f (r i n) have derivatives up to the order p,r

where p max(k
I kn) so that f’(t) # 0 for every t G and r I n.

r

(3) For the function F at least one relation
F

x (s)
(f)

r

# 0 is valid for s O,

p" r 2, n and every t G.

THEOREM 2.5 ([]7]). If conditions (1)-(3) are satisfied, then every p-times

differentiable solution of Eq. (2.14) is a component of the solution of a system of

ordinary differential equations with argument t only. This system is obtained from

Fq. (2.14).

To investigate the equation x’(t) f(x(t), x(-t)), the author of [6] denotes

y(t) x(-t) and obtains

y’(t) =-x’(-t) =-f(x(-t), x(t)) =-f(y, x).

Hence, the solutions of the original equation correspond to the solutions of the

system of ordinary differential equations

d__x f(x y) dy _f(y x)
dt dt

with the condition x(O) y(O). From the qualitative analysis of the solutions of

the associated system he derives qualitative information about the solutions of the

equation with transformed argument. The linear case is discussed in some detail.

Several examples of more general equations are also considered.

Boundary-value problems for differential equations with reflection of the argu-

ment are studied in [I0].

3. LINEAR EQUATIONS

In this section we study equations of the form

n
Lx(t) Y. ak(t)x(k)(t) x(f(t)) + (t)

k=O
(3.1)

with an involution f(t).

THEOREM 3.1 ([i]). Suppose that the initial conditions

(k)
k= 0 n- 1x (tO) x

k
(3.2)

are posed for Eq. (3.1) in which the coefficients ak(t) the function (t), and the

strong (or hyperbolic (2.5)) involution f(t) with fixed point t o belong to the class

cn(_m, oo) (or cn(/y, oo)). If n > I, then f’(t) # O. We introduce the operator
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M
i d

f’ (t) dt

Then the solution of the linear ordinary differential equation

(3.3)

n n

ak(f(t))MLx(t) x(t) Z ak(f(t))M@(t) + @(f(t))
k=O k=O

(3.4)

with the initial conditions

(k)
x (t

O
xk, k 0 n 1,

Mx(t) lt=t
0

Xk + Mk*(t)It=to, k 0 n i

is a solution of problem (3.1)-(3,2).

PROOF. By successively differentiating (3.1) n times, we obtain

x(f(t)) Lx(t) (t) MOLx(t) MO(t),

d 1 dx’(f(t)) f’(t) dt
Lx(t) f’(t) dt (t) MLx(t) M(t),

1 d
x"(f(t)) f,(t) dt

MLx(t) I d
f’(t) d- M(t) M2Lx(t) M2(t),

(n)
x (f(t)) I d

Mn-ILx(t)f’ (t) dt
i d Mn-l(t) MnLx(t) Mn(t).f’ (t) dt

These relations are multiplied by a0(f(t)) al(f(t) a (f(t)) respectively
n

and the results are added together:

n nn
(k)Z ak(f(t))x (f(t)) Z ak(f(t))Mx(t)- F. ak(f(t))Mk(t).

k=O k=O k--O

By virtue of f(f(t)) t, it follows from (3.1) that

n
(k)

ak(f(t))x (f(t)) x(t) + (f(t)).
k=O

Thus, we obtain Eq. (3,4). In order that the solution of this equation satisfies

problem (3.1)-(3.2), we need to pose the following initial conditions for (3.4): the

values of the function x(t) and of its n 1 derivatives at the point t
O

should

(n) (2n-l)equal Xk, k O, n i, from (3.2), while the values x (t
O

x (t
O

are determined from the relations

Mx(t) x(k)(f(t)) + Mk@(t), k 0 n i

(k)
by substituting the values t O and x

k
for t and x (t).
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THEOREM 3.2 ([i]), The equation

x (t) x( (3.6)

is integrable in quadratures and has a fundamental system of solutions of the form

ta(In t) sin(b In t), ta(In t) j cos(b In t),
a and b are real and is a nonnegative integer.

(3.7)

PROOF. By an n-fold differentiation Eq. (3.6) is reduced to the Euler equation

2n
I b(kn) tkx (k)

k=n+l
(t) x(t). (3.8)

For n i this follows from (2.2). Let us assume that the assertion is true for n

and prove its validity for n + i. In accordance with formula (3.3), we introduce for

Eq. (3.6) the operator

2 d
M -t

dt

On the basis of (3.4) and (3.8) we have

2n
Mnx (n) (t) l b(kn) tkx (k)

k=n+l
(t),

2n (n) tkx(k+l)Mnx (n+l (t) I b
k

(t).
k=n+l

Then
2n

2 d (n)tkx(k+l)__Mn+ix(n+l) (t) -t k=n+lZ bk (t)

2n (n) k+l (k+l) 2n (n) k+2 (k+2)l KD
k

t x (t) l b
k

t x
k=n+l k=n+l

(t)

Consequently, the equation

x
(n+l)

(t) x()
is reduced by an (n+l) -fold differentiation to the Euler equation

Mn+ix(n+l)(t) x(t).

At the same time we established the recurrence relation

(n+l)= -(k-l)" (n) (n)
b
k bk_1 bk_2

n + 2 <_ k < 2n + 2,

b(’n’= 0 b(n) 0
n 2n+l

connecting the coefficients of the Euler equations

2n 2n+2

k
(n+l)tkx(k)(t): x(t),b t__

(k)
(t) x(t) and F, b

k
n)

k=n+l k=n+2
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which correspond to the equations

(n) (n+l) _i
t

x (t) x( and x (t) x().

It is well known [18] that the Euler equation has a fundamental system of solutions

of the form (3.7), where a + bi is a root of the characteristic equation and j is a

nonnegative integer smaller than its multiplicity. The theorem is proved.

EXAMPLE 3.1. The investigation of the nonhomogeneous equation [I]

) o, C
1x’(t) x( + 9(t), 0 < t < 9(t) g (0,

x(1) x
0

reduces to the problem

t2x"(t) + x(t) t29’(t)

x(1) O, x’(1) x
0
+ 9(1).

The solution is

x(t) Xo/- cos( In t) + (- + 9(1)) r sin( In t) +

it -3 / _t_) () du.2 u
/2

sin(--- In [u2 (u)
f i

u

THEOREM 3.3 ([i]). The solution of the equation

x’(t) tx(), 0 < t <

x(1) x
0

is representable in closed form.

PROOF. After differentiation Eq. (3.9) is reduced to the form

t2x"(t) tx’(t) + 2x(t) 0

with the initial conditions

x(1) Xo, x’(1) ax0.

Putting t exp u, we obtain

x"(u) (l+8)x’(u) + e2x(u) O,

The roots of the characteristic equation

2 (I + S) + 2 0
are

kl,2 2 et2.

Consider various cases:

2
(1) (I+B) 2 A2

4 -e --- > O,

(3.9)
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Xo kl
x(t) Xl_%2

[(a-%2) t + (%l-a)t%2].

(2) (1+6) 2
-a O,

1+6x(t) Xot
(1+6) /211 + (a __)In t].

(3)
(i+6) 2 _A2 < 0,

1+6c
2x(t) Xot(l+6)/2[cos(Aln" t) + A sin(& In t)]

For a I, $ 0 the latter formula yields the solution of the Silberstein equation

(2.1).

EXAMPLE 3.2. The equation

t
r btr+l s+l s

x
I

a x(t) + x (t) ct x( + at ’(), (t > o) (3.10)

where a, b, c, d, r, s are real constants and x is an unknown function, was explored

in 17].

Let b
2

d
2 # O. By putting x() y(t), Eq. (3.10) becomes

r r+l s+l s+2
at x(t) + bt x’(t) ct y(t) dt y’(t).

I
If is substituted for t in (3.10), we get

-r -r+l -s-I -s
at y(t) bt y’(t) ct x(t) + dt x’(t).

(3.11)

(3.12)

From (3.11) and (3.12) Euler’s equation is obtained:

t2x"(t) + (r-s)tx’(t) + (Bs-Br+A2-m2+B)x(t) 0,

where A (bc-ad)/(b2-d2), B (cd-ab)/(b2-d2).

If b d and a c, Eq. (3.10) is equivalent to the system of equations

ax(t) + btx’(t) u(t), u() tr-s-lu(t).
If b d and a c, (3.10) reduces to the functional equation

x(tl_) t
r-s-I

x(t).

In the case of b -d and a -c Eq. (3.10) reduces to the system

ax(t) + btx’(t) u(t) u() -t
r-s-I

u(t).

In the case of b -d and a # -c (3.10) reduces to the functional equation

x() -t
r-s-I

x(t).

The equation x’(t) x(f(t)) with an involution f(t) has been studied in [19].
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Consider the equation [13] with respect to the unknown function x(t):

x’(t) a(t)x(f(t)) + b(t), (3.13)

(i) The function f maps an open set G onto G.

(2) The function f can be iterated in the following way:

fl(t) f(t) fk(t) f(fk_l(t)) f (t) t (t E G)
m

where m is the least natural number for which the last relation holds.

(3) The functions a(t), b(t) and f(t) are m 1 times differentiable on G, and

x(t) is m times differentiable on the same set.

THEOREM 3.4 (3]). Eq. (3.13), for which conditions (I)-(3) hold, can be

reduced to a linear differential equation of order m.

EXAMPLE 3.3. Consider the equation 1161

x’(t) x(f(t)), f(t) (l-t) -I (3 14)

and G (_o% 0)U(0, I)U(lo + oo). For f we have f3(t) t on G. In this case (3.14)

is reducible to the equation

t2(l-t)2x (t) 2t2(l-t)x"(t) x(t) O.

THEOREM 3.5 ([i]). In the system

x’(t) Ax(t) + Bx(c-t), x(c/2) x
0

(3.15)

let A and B be constant commutative r xr matrices, x be an r-dimensional vector,

and B be nonsingular.

Then the solution of the system

x"(t) (A2-B2)x(t)
x(cl2) x0,

x’(cl2) =(A+B)x
0

is the solution of problem (3.15).

In [7] it has been proved that the equation

t2x"(t) f x() O, 0 < t <

has the general solution

2 + t-2) + c2[sin(r In t)x(t) cl(r t

while the equation

t2x"(t) + I x(--It 0

has the general solution

x(t) c3(t
2 t-2) + c4[sin(’] In t) +

cos( In t)],

3+I/ cos( In t)].
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It follows from here that, by appropriate choice of cI, c2, c3, and c4, we can

obtain both oscillating and nonoscillating solutions of the above equations. On the

other hand, it is known that, for ordinary second-order equations, all solutions are

either simultaneously oscillating or simultaneously nonoscillating. It has been

also proved in [7] that the system

x’(t) A(t)x(t) + f(t, x(tl-)) 1 <_ t <

II f(t, x())II <-- II x()ll q,
where 6 > 0 and q _> 1 are constants, is stable with respect to the first approxima-

t ion.

For the equation

n
Z aktkx(k)

k=0
(t) x(), 0 < t < (3.16)

we prove the following result.

sTHEOREM 3.6. Eq.(3.16) is reducible by the substitution t e to a linear ordi-

nary differential equation with constant coefficients and has a fundamental system of

solutions of the form (3.7).

sPROOF. Put e and x(es) y(s), then tx’(t) y’(s). Assume that

tkx(k)(t) Ly(s),
where L is a linear differential operator with constant coefficients. From the

relation

we obtain

tk+l x
(k+l) (t) t a-.- [tkxk)t (t)] kt

k (k)
x (t)

k+l (k+l)
t x (t) L[y’(s) ky(s)],

which proves the assertion.

The functional differential equation

Q’(t) AQ(t) + BQT(T t), < t < (3.17)

where A, B are n x n constant matrices, T _> 0, Q(t) is a differentiable n n matrix

and QT(t) is its transpose, has been studied in [20]. Existence, uniqueness and an

algebraic representation of its solutions are given. This equation, of considerable

interest in its own right, arises naturally in the construction of Liapunov functio-

nals for retarded differential equations of the form x’(t) Cx(t) + Dx(t-I), where

C, D are constant n n matrices. The role played by the matrix Q(t) is analogous to

the one played by a positive definite matrix in the construction of Liapunov functions
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for ordinary differential equations. It is shown that, unlike the infinite dimen-

sionality of the vector space of solutions of functional differential equations, the

linear vector space of solutions to (3.17) is of dimension n2. Moreover, the authors

2
give a complete algebraic characterization of these n linearly independent solutions

which parallels the one for ordinary differential equations, indicate computationally

simple methods for obtaining the solutions, and allude to the variation of constants

formula for the nonhomogeneous problem.

The initial condition for (3.17) is

Q(-) K, (3.18)

where K is an arbitrary n n matrix. Eq. (3.17) is intimately related to the system

Q’(t) AQ(t) + BR(t),

R’(t) -Q(t)B
T R(t)AT,

(3.19)

with the initial conditions

T K
TQ( K, R(-) (3.20)

2 2For any two n n matrices P, S, let the n x n matrix PS denote the Kronecker

(or direct) product [21] and introduce the notation for the n x n matrix

Sl*S (sij) (n,)
Sn*

where si, and s,j are, respectively, the i th row and the j th colun of S; further,

let there correspond to the n> n matrix S the n2-vector s (Sl, Sn,)T. With

this notation Eqs. (3.19) and (3.20) can be rewritten as

r(t t)B -I IA (t

and

T T Tq() [kl,, kn,]T, r(-) [k,l, k,n
which, with the obvious correspondence and for simplicity of notation, are denoted as

p’(t) Cp(t), p(T/2) PT/2" (3.21)

Here p(t) is an 2n2-vector and C is a 2n2 2n
2

constant matrix. (3.21) is used in

provinR the followin result:

THEOREM 3.7 ([20]). Eq. (3.17) with the initial condition (3.18) has a unique

solution Q(t) for < t < oo.

Examination of the proof makes it clear that knowledge of the solution to (3.21)
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immediately yields the sol’ution of (3.17)-(3.18). But (3.21) is a standard initial-

value problem in ordinary differential equations; the structure of the solutions of

such problems is well known. Furthermore, since the 2n
2

2n
2
matrix C has a very

special structure, it is possible to recover the structure of the solutions of Eq.

(3.17). Let I’ %p’ p 2n2’ be the distinct eigenvalues of the matrix C, that

is, solutions of the determinantal equation

det[%I C] O, (3.22)

each ., I, p, with algebraic multiplicity m. and geometric multiplicities

nj,r Zr=s I n. mj, Zj m.=3 2n2" Then 2n
2

linearly independent solutions of (3.21) are

given by

T q-i

j
q (t) exp(% (t- T

q (t -)
ej

i (3.23)
r j )) Z (q-i)’ r

i=l

where q i, n., and the 2n2 linearly independent eigenvectors and generalized

eigenvectors are given by

i i-I 0
[% I C]e. -e. e O.

j 3,r 3,r j,s

A change of notation, and a return from the vector to the matrix form, shows that 2n

linearly independent solutions of (3.19) are given by

r
T

q (t- r

exp(%j(t )
i=l (q-i) i

Yj q(t)J Mjr r

where the generalized eigenmatrix pair (Li Mj i)associated with the eigenvalue
j ,r’ ,r

satisfies the equations

(%. I A)L i. BM i. L.
i-I

3 3, r 3, r 3, r

i
B
T

M
i

M
i- 1

L + (% I + AT)
j,r j,r j j,r

(3.24)

The structure of these equations is a most particular one; indeed, if they are multi-

plied by -I, transposed, and written in reverse order, they yield

T
i
T

1
T

i i-
(- I A)M. BL. M.

j 3,r 3,r 3,r

.T .T .T AT i_I
T

M.
I B I +L

i (_% I+ L
3,r j,r j,r j,r

0
T

0
T

L. M. 0. But this result demonstrates that if %. is a solution of (3.22),
2,r 3,r 3

-%. will also be a solution; moreover, %. and -%. have the same geometric multiplici-
3 3 3
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ties and the same algebraic multiplicity. Hence, the distinct eigenvalues always

appear in pairs (%. %j), and if the generalized eigenmatrix pairs corresponding to
3’

i i

%. are (L., r, Mj,r), the generalized eigenmatrix pairs corresponding to -%j will be

.T .T
1 (-i)

i+l
Lj

I ). These remarks imply that if the solution (3.23) cor-((-i)
i+l

Mj,r ,r

responding to %. is added to the solution (3.23) corresponding to -%. multiplied by

(-I) q+i the n
2

linearly independent solutions of (3 19) given by

Zj q(t) r L
i

,r Tq-i j r
T

q (t 1
exp(j(t ))

i=l (q- i):
Mj

i
q(t)W.

3 r ,r

T q-i
q (t )

T q+i
exp(-j (t )) Y (-I)

i=l
(q i):

+

Mj r

Lj r

satisfy the condition
T

Zj, Wj,r

But this is precisely condition (3.20)" it therefore follows that the expressions

T q-i
q (t )

Z q(t) l
j,r

i= I (q- i)!
T i

[exp(%j(t ))Lj,r +

T i
T

(-1) q+i exp(-Ej(t z
-) )Mj,r (3"25)

2
are n linearly independent solutions of (3.17).

2
THEOREM 3.8 ([20]). Eq. (3.17) has n linearly independent solutions given by

i Mj,ri satisfy Eq. (3.24)Eq. (3.25), where the generalized eigenmatrix pairs (Lj, r
for one of the elements of the pair (j, -j), each of which is a solution of Eq.

(3.22).

Eq. (3.17) has been used in [22] for the construction of Liapunov functionals and

also encountered in a somewhat different form in [23].

Some problems of mathematical physics lead to the study of initial and boundary

value problems for equations in partial derivatives with deviating arguments. Since

research in this direction is developed poorly, the investigation of equations with

involutions is of certain interest. They can be reduced to equations without argu-

ment deviations and, on the other hand, their study discovers essential differences
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that may appear between the behavior of solutions to functional differential equa-

tions and the corresponding equations without argument deviations.

The solution of the mixed problem with homogeneous boundary conditions and ini-

tial values at the fixed point to of the involution f(t) for the equations

ut(t, x) au (t x) + bu (f(t) x)
XX XX

(3.26)

and

utt(t x) a2u (t x) + b2u (f(t) x)
XX XX

(3.27)

can be found by the method of separation of the variables. Thus, for (3.26) the

functions T (t) in the expansion
n

u(t, x) l T (t)X (x)
n n

n=l
(3.28)

are determined from the relation

T’(t) -% aT (t) % bT (f(t)) T (t O) Cn n n n n n n
(3.29)

Its investigation is carried out by means of Theorem 3.1, according to which the

solution of the equation

T"(t) =-% a(l+f’(t))T’(t) %2(a2-b2)f’(t)T (t)
n n n n n

with the initial conditions

(3.30)

T (t
O

C
n

T’(t
O

-% (a+b)C
n n n n

satisfies Eq. (3.29). The following theorems illustrate striking dissimilarities

between equations of the form (3.26) and (3.27) and the corresponding equations with-

out argument deviations.

THEOREM 3.9. The solution of the problem

ut(t x) au (t, x) + hu (c-t, x), (3.31)xx xx

u(t, 0) u(t, ) 0, u(cl2, x) (x)

is unbounded as t +, if a b # 0. If Ibl < lal, b # 0, expansion (3,28) diverges

for all t # c/2.

PROOF. By separating the variables, we obtain

2 2
T,(t)=__n (aT (t) + bT (c-t)), T (c/2) Cn oz n n n n

(3.32)

The initial conditions for equations (3.31) and (3.32) are posed at the fixed point

of the involution f(t) c t. In this case, Eq. (3.30) takes the form

4 4
T"(t)n n4 2),b

2
a T (t)

n

2 2T (c/2) C T’(c/2) n
n n’ n -2 (a + b)C

n
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The completion of the proof is a result of simple computations. Depending on the

relations between the coefficients a and b, the following possibilities may occur:

(i) T (t) C (cos
n n

2 2 2 a2 c
n (t-)
2

2 2 2_a2
a+b

n (t- c_),
s in

b2_a2 2
), (lal < Ibl);

2 2
(2) T (t) C (i n c

n n
(a+b)(t- --)), (lal Ibl);

(3) T (t) I
n =Cn [(I

/a2
b
2 2 2

n /a2_b2
a_-----) exp(----

c(t -)) +

/aa 222_ n /a2_b2(i + )exp(- - c(t-))], (Ib < lt).

IEOREM 3.10. The solution of the equation

u (t, x) a2u (t, x) + b2u (-t, x)
t t xx xx

(3.33)

satisfying the boundary and initial conditions

u(t, O) u(t, ) O, u(O, x) (x), ut(O x) (x),

2
b
2is unbounded as t /, if a

2
b 2. In the case a < expansion (3.28) diverges

for all t # 0.

PROOF. Separation of the variables gives for the functions T (t) the relation
n

222 2

T(t)
a n T (t) 2b2n
2 n 2 Tn(-t) (3.34)

T (0) A T’(0) B
n n n n

by successive differentiation of which we obtain

2 2 2 262n2T (3)(t) a n
T(t) + T- T’(-t)n 2 n

2 2 2 2b2n2(4) r a n 7rT (t) T"(t) T" (-t)n 2 n 2 n

From Eq. (3.33) we find

222 2b22T"(-t) a n
Tn(_t) n

n 2 2 Tn (t)

and also

222 2 242a n a T"(t) + z a ,n,
2 Tn(-t) 7 n b22 Tn(t)"
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Thus, Eq. (3.34) is reduced to the fourth-order ordinary differential equation

4 4T(4)(t) + 22a2n2 T"(t) + (a4-b4)n
T (t) 0n 2 n 4 n

with the initial conditions

2(a2+b2) 2

rn(O) An, T’(O)n Bn, T"(O)n 2
n

An,

T
(3) (0) 2(a2-b2)n2
n _2 n

It remains to consider various cases that may arise depending on the characteristic

roots.

2(I) For b
2 < a

T (t) A cos t +n n

2
b
2(2) If a then

na
T (t) A cos t + B t.
n n n

2
b
2(3) Finally, the inequality a < leads to the result

n/a2+b2
n b2-a2

T (t) A. cos t + B sinh t.n n

n b2_a2
n

Of some interest is the equation

ut(t, x) Au (t +_____B x)
xxyt

with the hyperbolic involution

(3.35)

having two fixed points

t _+A _e-A
0 y 1 y

The search of a solution in the region (e/y, o)[0, 1] (or(-oo, a/y)x[O, 1]) satis-

fying the conditions

u(t, 0) u(t, g) 0, u(t0, x) (x) (or u(t!, x) O(x))
leads to the relation

(3.36)

T’(t) Az2n2 at + 8
n 2 Tn(y-_) (3.37)
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which is a generalization of Eq. (2.1). Differentiation changes (3.37) to the form

(yt )2T"(t) + A2A24n4
n 4 Tn(t) 0. (3.38)

The substitution Iyt- al exps permits integration of (3.38) in closed form.

Omitting the calculations, we formulate a qualitative result.

THEOREM 3.11. The solution of problem (3.35)-(3.36) is unbounded as t o. For

the functions T (t) are oscillatory.
n

4. EQUATIONS WITH ROTATION OF THE ARGUMENT

An equation that contains, along with the unknown function x(t) and its deriva-

tives, the value x(-t) and, possibly, the derivatives of x at the point -t, is called

a differential equation with reflection. An equation in which as well as the unknown

function x(t) and its derivatives, the values x(1t-aI) X(mt-am and the cor-

are mth roots of uni-responding values of the derivatives appear, where gl’ m
ty and al’ m are complex numbers, is called a differential equation with rota-

tion. For m 2 this last definition includes the previous one. Linear first-order

equations with constant coefficients and with reflection have been examined in detail

in [5]. There is also an indication (p. 169) that "the problem is much more diffi-

cult in the case of a differential equation with reflection of order greater than

one". Meanwhile, general results for systems of any order with rotation appeared in

[3], [4], [9], and [24].

Consider the scalar equation

n n
E akx(k) (t) E bkX

k=0 k=0

(k) (ct) + lp(t), m__ 1 (4.1)

(k)
x (0) Xk, k 0 n- 1

with complex constants ak, bk, e, then the method is extended to some systems with

variable coefficients. Turning to (4.1) and assuming that is smooth enough, we

introduce the operators

n
d
k n

bkJk d
k

A E ake-Jk Z
j

k=0 dt
k Bj

k=0 dtk
(j 0 m- i),

and apply AI to te given equation
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S inc e

we obtain

AoX (B0x)(Et) + .
AI[(BoX)(Et)] (BIBoX)(E2t) + (B0@)(gt)

AIAoX (BiBoX)(e2t) + AI@ + (Bo)(et),
and act on this relation by A2. From

A2[(BIBoX)(2t)] (B2BIBoX)(E3t) + (BIBo@)(F2t),
A2[(Bo)(Et)] (AiB0)(et)

it follows that

3
tA2AIAox (B2BIBoX)(e + A2AI + (AIBo)(Et) + (BIBo@)(E2t).

Finally, this process leads to the ordinary differential equation

m-I
(m_l_J)B(J_l) j(m-l))x Z (A
I 0(AO(m-l) B

0 ) (e t)
j=O

where

A (j)= A A A B (j)
B B B i <

i j j-1 i’ i j j-l’’" i’

(4.2)

AO)= B-1)

and I is the identity operator.

I,

Thus, (4.1) is reduced to the ODE (4.2) of order

mn. ’I make the initil onditions for (4.2) agree with the riRinal probl,m, it

necessary to attach to ’onditions (4.1) the additional relati,,s

(A0(j) gk(j+l) (j))x(k)(t)] ikAJ-i) i-l)(k) (4 3)B
0 t=0

Y. g B * (t) It__0
i=O

(j 0 m-o 2; k 0 n- i).

System (4.3) has a unique solution for x(k)(O)(n < k _< mn- I), iff

a
j # (eib)J (0 < i < m- i, i < j < m- i) (4 4)
n n

These considerations enable us to formulate

THEOREM 4 1 ([9]) If @EC
(m-l)n

and inequalities (4.4) are fulfilled, the solu-

tion of ordinary differential equation (4.2) with initial conditions (4.1)-(4.3)

satisfies problem (4.1).

THEOREM 4.2 ([9]). If g # i, the substitution

transfor.s the equation

y x exp(at/l e)

Ay exp(ct)(By)(et) + (4.5)
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with operators A and B defined by (4.1) to

Px (Qx)(et) + exp(-c,t/l

where P and Q are linear differential operators of order n with constant coefficients

Pk’ qk and Pn an’ qn hn.
COROLLARY. Under assumptions (4.4) and m I, (4.5) is reducible to a linear

ordinary differential equation with constant coefficients.

REMARK. Conditions (4.4) hold if, in particular, lanl # Ibnl. Theorems 4.1 and

4.2 sharpen the corresponding results of [25] and [26] established for homogeneous

equations (4.1) and (4.5) by operational methods under the restriction lanl >

EXAMPLE 4.1. The substitution y x expt reduces the equation [9]

y’(t) (5y(-t) + 2y’(-t)) exp2t, y(O) YO
to the form

x’(t) + x(t) 7x(-t) + 2x’(-t), x(O) YO"
Therefore (4.2) gives for x(t) the ODE x" 16x 0 with the initial conditions

x(O) Y0’ x’(O) -6y0. The unknown solution s

y(t) Yo(5 exp(-3t) exp5t)/4.

The analysis of the matrix equation

X’(t) AX(t) + exp(at)[BX(et) + CX’(et)], (4.6)

x(0) E

with constant (complex) coefficients was carried out in [3]. The norm of a matrix is

defined to be

lcll max .leij !, (4.7)

and E is the identity matrix.

THEOREM 4.3. ([3]). If e is a root of unity (e # I), Icll < 1, and the matrix A

is commuting with B and C, then problem (4.6) is reducible to an ordinary linear

system with constant coefficients.

The following particular case of Eq. (4.1) has been investigated in [27].

THEOREM 4.4. ([27]). Suppose we are given a differential equation with reflec-

tion of order n with constant coefficients

n
[a-x(k) (k)7.
k

(t) + bkX (-t)] y(t).
k=O

(4.8)

We suppose that

2 2(a) a b
n n
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(b) aj_kak bj_kbk 0 for k O, I, n and j k + I k + n,

n
(c) the polynomial 7. %2jt

j
has simple roots u only, where

j--O
q

J

k=ZO Cjk for 0 < j < n,

Cjk (-l)n+j-k(an2-bn2)(aj_kak-bj_kbk).
n

k=j-n
j k

for n < j 5_ 2n,

Then every solution of Eq. (4.8) is of the form

x(t) (-l)n(a2- b
2

n n

n
Z [(-l)ma (t) b (-t)] +

m m
m=O

n n k/^ t -- t
q qZ Z C

k Uq (a
k

e b
k

e

q=l k=O

where the C
k

are arbitrary constants and (t) is a solution of the equation

n
d
2

(d--- Uq)(t) y(t).

q=l

THEOREM 4.5 ([9]). Suppose that the coefficients of the equation

n (k) (k)Y. ak(t)x (t) x(et) + (t), x
k=O

(0) xk,
k O, n 1 (4.9)

(m-l)n em i, a (0) # 0 andbelong to C

n
l E-Jka,_(eJt)dk/dt k, 0, m- 1.ej

k=O
(4.10)

Then the solution of the linear ordinary differential equation

m-i (m-l)(m-l)
L
0

x(t) x(t) + Z (L
k

k=l
)(ek-lt) + (em-lt) (4.11)

(m-l)
L L

k
0 k < m I)(L

k m_ILm_2

with the initial conditions

(k)
Xk(k Lox(k)x (0) 0 n 1), (t) It=o

n(m-1) 1
satisfies problem (4,9),

k (k) (k)_
x (0) + (0) ,k=O

PROOF. Applying the operator LI to (4.9) and taking into account that
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(LoX)(et) x(e2t) + (et)

we get

LIeOX(t) x(2t) + Ll(t) + (t)

and act on this equation by L
2

to obtain

L2LILoX(t) x(e3t) + L2LI(t) + (L2)(et) + (2t).

It is easy to verify the relations

In particular,

(L.x)(Jt) x(ej+l
3

t) + (eJt), 0 m- I.

(L (em-lt
m_l

x) x(t) + (em-lt).

Thus, the use of the operator Lm_I at the conclusive stage yields (4.11).

THEOREM 4.6 ([9]). The system

tAX’(t) + BX(t) X(Et) (4.12)

with constant matrices A and B is integrable in the closed form if em I, det A 0.

PROOF. For (4.12) the operators L. defined by formula (4.10) are
3

L. tAd/dt + B.
3

Hence, on the basis of the previous theorem, (4.12) is reducible to the ordinary

system

(tAdldt + B)m X(t) X(t). (4.13)

This is Euler’s equation with matrix coefficients. Since its order is higher than

that of (4.12) we substitute the general solution of (4.13) in (4.12) and equate the

coefficients of the like terms in the corresponding logarithmic sums to find the

additional unknown constants.

EXAMPLE 4.2. We connect with the equation [9]

tx’(t) 2x(t) x(et), e3 1 (4.14)

the relation

3(td/dt 2) x(t) x(t).

The substitution of its general solution

x(t) C1 t3 + t
3/2 (C2sin(23- lnt) + C3cos( lnt))

into (4.14) gives C
2

C
3

0. A solution of (4.14) is

3
x= Ct

THEOREM 4.7 ([9]). The system

tAX’(t) BX(t) + tX(et) (4.15)
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with constant coefficients A and B, det A # 0 and e
m

1 is Integrable in closed form

and has a solution

X(t) e(t)tA-IB (4.16)

where the matrix P(t) is a finite linear combination of exponential functions.

PROOF. The transition from (4.15) to an ordinary equation is realized by means

of the operators

L. e-J(Ad/dt t-IB), j 0 m-

in consequence of which we obtain the relation

(Ad/dt t-IB) m X(t) em(m-l)/2X(t). (4.17)

Since ere(m-l)/2= +_I, it takes the form

m

[Ad/dt (ekE + t-IB)] X(t) 0
k=l

where gk are the m-order roots of i or -I. The solutions of the equations

AX’(t) (ekE + t-IB)x(t)

are matrices

Xk(t) exp(ktA-l)tA-IB, k I, mo

Their linear combination represents the general solution of (4.15).

EXAMPLE 4.3. In accordance with (4.17) to the equation [9]

tx’(t) 3x(t) + tx(-t) (4.18)

there correspond two ordinary relations

x’(t) (3t-I + i)x(t), x’(t) (3t-I i)x(t).

We substitute into (4.18) the linear combination of their solutions

x(t) t3(Clexp(it) + C2exp(-it))
and find C

2
ICI. A solution of (4.18) is

x(t) Ct3(slnt + cost).

Biological models often lead to systems of delay or functional differential

equations (FDE) and to questions concerning the stability of equilbrium solutions of

such equations. The monographs [28] and [29] discuss a number of examples of such

models which describe phenomena from population dynamics, ecology, and physiology.

The work [29] is mainly devoted to the analysis of models leading to reducible FDE.

A necessary and sufficient condition for the reducibility of a FDE to a system of

ordinary differential equations is given by the author of [30]. His method is fre-
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quently used to study FDE arising in biological models. We omit these topics and

refer to a recent paper [31]. For the study of analytic solutions to FDE, which will

be the main topic in the next part of our paper, we also mention survey [32].
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