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ABSTRACT. Let {Xnk _< k _< n, n _> 1} be a triangular array of row-wise exchangeable

-1/random elements in a separable Banach space. The almost sure convergenceof,
=1

Xnk, ! p < 2, is obtained under varying moment and distribution conditions on the

random elements. In particular, strong laws of large numbers follow for triangular

arrays of random elements in (Rademacher) type p separable Banach spaces. Consis-

tency of the kernel density estimates can be obtained in this setting.
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1. INTRODUCTION AND PRELIMINARIES.

Blum et al. [1] obtained central limit theorems for arrays of exchangeable

random variables using a version of de Finetti’s theorem which implied that an infi-

nite sequence of exchangeable random variables is a mixture of sequences of indepen-

dent, identically distributed random variables. Taylor [2] used similar techniques

in obtaining weak and strong convergence results for arrays of random elements which

are row-wise exchangeable. Using martingale methods, Weber [3] developed central

limit results for triangular arrays of random variables which were row-wise exchange-

able. tlis methods did not require infinite exchangeability or the de Finetti repre-

sentation. In this paper, almost sure convergence is obtained for --1Z= Xnk and
n

-1/p n
n Ek= Xnk in separable Banach spaces using martingale methods. These results
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are for triangular arrays, and hence only finite exchangeability in each row is re-

quired. By assuming convergence in mean for each column, the hypothesis of the pre-

viously cited limit theorems are substantially relaxed.

Let E denote a real separable Banach space with norm II II. Let (, A, P) denote

a probability space. A random element X in E is a function from into E which is

A-measurable with respect to the Borel subsets of E, 8(E). The pth absolute moment

of a random element X is EIIXII p
where E is the expected value of the (real-valued)

random variable IXI p. The expected value of X is defined to bc the Bochner integral

(when E 11XII < ) and is denoted by EX. The concepts of independence and identical

distributions (i.i.d.) have direct extensions to E. The random elements {X ...X

are said to be exchangeable if the joint probability law of (X Xn) is permu-

tation invariant, that is, for each permutation of {I n}

P[X c B 1, Xn Bn P[XI e B Xn c Bn (1.1)

for each B B
n

c B(R). Clearly i.i.d, random elements are exchangeable but

not conversely. Moreover, letting Bk+ B R for < k < n in (1.1) shows

that all joint probability laws are the same and that exchangeable random elements

are identically distributed. Finally, a subset B of E whose boundary DB satisfies

P(B) 0 is called a P-continuity set.

2. STRONG LAWS OF LARGE NUMBERS FOR TRIANGULAR ARRAYS.

The main result of this section is a strong law of large numbers. Moment con-

ditions and a measure of nonorthogonality condition will be assumed on the distribu-

tions of the random elements. Throughout this section {Xnk" _< k _< n, n _> i} will

denote an array of random elements in a separable Banach space E which are row-wise

exchangeable.

First, two preliminary results will be presented for later use in Sections 2 and

3. The first result shows that the infinite sequence, formed by the convergence in

rth mean of each column of the triangular array, is exchangeable when each row consists

of exchangeable random elements. This allows the application of a version of

de Finetti’s theorem to the limit sequence.

LEIA I. Let {Xnk _< k _< n, n _> i} be an array of random elements which are

row-wise exchangeable. If the random elements converge in the rth mean to Xook(r > O)

for each k, then the sequence {Xook" k > i} is exchangeable.
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PROOF" Consider the set {Xnl Xnk}C {Xnl nn} and the vector

X < < k, then (Xnl (XI Xk).(Xnl Xnk). If Xni i Xnk)
llence ( X X

.k
For each PX. continuity set A of !,

nl nk) (XI
5 i 5 k, ([4] pp. 26-27), P[Xnl A[ Xnk Ak] P[X A Xk Ak].

By exchangeability, P[Xnl e A Xnk e Ak] P[Xn A Xnk e Ak] for

each permutation of (1 k). Hence, P[Xn e A Xnk e Ak]

[X A Xk c Ak] as n for all A Ak which are PXl-continuity

sets. Since the limits are unique, and the PX -continuity sets form a determining

lass, it follows that

l’[Xl B \ook E- Bk] l’[Xoovl B Xn k
u Bk]

for all (B Bk) e 8(Ek). Thus, (Xoo Xok) and (XI Xok) have

identical joint distributions, tlence, the sequence (Xok" k >_ 1} is exchangeable. ///

REMARK. Note that the convergence of the joint distributions is sufficient in

the proof of Lemma 1. Unfortunately, this is not implied by convergence in distri-

bution in each column.

For arrays where each row is an infinite sequence of exchangeable random elements,

Olshen [5] showed that de Finetti’s theorem implied that for each n

P(Bn ; P(Bn)dn (Pv) (2.1)

where F denotes the collection of probabilities on the Borel subsets of E and P (B)
n

Emis the probability of Bn [g(Xnl Xnm) Bn] (where g E is a Borel function)

computed under the assumption that {Xnk" k >_ l} are independent, identically distri-

buted random elements and V is the mixing measure defined on 8(F). The next result
n

shows that if {Xnk" _< k _< n, n _> l} are row-wise exchangeable random elements which

converge in the second mean for each k and E[f(Xnl f(Xn2)] 0 as n then

E[f(Xl) f(X2) 0 and Ev(Xol) 0 where Ev is the expectation with respect to

P Moreover, it also follows that EX 0.

LEMMA 2. Let {Xnk" _< k _< n, n _> I} be an array of row-wise exchangeable

random elements in a separable Banach space such that {Xnk} converges in the second

mean to Xk for each k. If for each f E*

n (f) k[f(Xnl)f(Xn2) 0 as n ,
then

(i) E[f(Xool)f(X2)] 0
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(ii) Ev(XI) 0 for Pv with U-probability one, and

(iii) E(XI) O.

2
for each k it is clear thatPROOF. Since Xnk Xk

sup El]nkll 2 < and EIIXkl] 2 <

n

for each k. Using (2.2) and convergence in the 2nd mean, for each f g E*

(2.2)

]E[f(Xnl)e(Xn2) E[f(Xl)f(X2)]l
< [E[e(Xnl)f(Xn2) E[f(Xl)f(Xn2)]]

[E[f(Xool)f(Xn2)] E[f(Xool)f(X2)]]
< E(If(Xnl) f(X=ol) llf(Xn2)l)

E([f(Xn2) f(xoo2) llf(Xol)l)

_< Ilf112[E(I IXnl Xml IXn2 II) E(I IXn2
< Ilfll2[(Ellxnl Xoolll2)l/2(EllXn2ll2) 1/2

(EllXn2- xoo2ll2)l/2(EllXooll]2) 1/2]

which goes to 0 as n by hypothesis (i). Thus,

xallllxll)]

(2.3)

E[f(XI)f(X2)] 0.

Since convergence in the second mean implies convergence in mean, it follows from

Lemma that the sequence {Xk k > l} is exchangeable. Also it follows from (2 i)

that

0 E[f(Xol)f(Xo2)

;F E0[f(Xool )f(xoo2)]

f [E,f )]2
F (Xl d(Pv)

which implies that Evf(Xl) 0 p a.s. for each f E*. Since the Bochner integral

implies the Pettis integral in a separable space, f(Ev(Xool)) E(f(Xool) 0 oo a.s.

for each f which implies that Ev(Xool) 0 Voo a s by the Hahn-Banach theorem

and the separability of E. Also,

EXI fF Ev(XI) d(Pv) O. ///

REblARK. Note from (2.3) in the proof of Lemma 2 that for uniformly bounded

random elements, convergence in the mean suffices. It is also interesting to note
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that the conclusions of Lemma 2 do not necessarily imply that {Xk k > 1} is a

sequence of i.i.d, random elements.

The final result of this section is a strong law of large numbers for triangular

arrays of random elements which are row-wise exchangeable. Define

U O{Z n+l
andnn =l Xnk’ Zk=l X(n+l)k

U o{o{Z= Z+I [,I Un Xok Xmk nn (2.4)

It can be easily shown that if Ix.t xtll > Ix
2

Xnk Xk for each k, then

(n+l),l XI[ for each n and

g(I IXnk Xooklllu) 0 a.s. (2.5)

IIsing (2.4), a modification of Kingman’s [6] and Weber’s [3] results show that

n
Zk= Xnk E(Xnl[Unn) E(Xnl]Um) a.s. and

n
=E asZk=l Xook (Xcol Uon) (2.6)

THEOREM I. Let {Xnk" _< k _< n, n _> i} be an array of random elements in a

separable Banach space. Let {Xnk} be row-wise exchangeable fo- each n and let

Unn and Uoon be the o-fields defined in (2.4). Let {Xnk} converge in the second mean

for each k and [[Xnl Xl[[ _> [[X(n+l ),l Xl[[ for each n. If

Pn (f) E[f(Xnl)f(Xn2)] 0 as n for each f E*,

then

n II +0 a sI1 Zk= Xnk
2

PROOF" Let Xnk Xk. By Lemma I, {Xk k > i} is an exchangeable sequence of

random elements. Thus for > 0, and by (2.6)

n n np[supl I Zk= Xnkll > e] < p[supl l Zk= Xnk- Zk= Xook,,n>m n>m
Inp[supl I Ik= Xkn>m

EP[supl IE(XnllUoon) F.(Xoo lu)l > 1n>m

n cp[supl I Ek= Xookl > g]
n>m
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P[supl IE(Xnl Xoo lu)l > 1n>m

n gP[supl I Ek= Xmk[I > ].
n>m

(2.7}

Now by (2.1),

’[supllg Ek=1Xk 1 pv[supll Zk= 1Xmk 1 dBm(Pg),
n>m n>m

where {Xk k > 1} are independent, identically distributed random elements with

respect to P. By Lemma 2, E(XI) O, with -probability one and it follows from

Mourier’s strong law of large numbers for random elements that for almost each P

n c
Pv [sup] 1 Z

k=l Xk 11 > -] 0 as m oo.
n>m

ttence, by the bounded convergence theorem,

np[supl l :k=l Xookn>m
n;" p [supllg Zk= xkll > g]

F n>m
(2.8)

goes to 0 as m . By (2.s), E(I [Xnl xll lUnn) o a.s.

Thus,

p[supl IE(Xnl xollu)ll > 1n>m

< P[sup E( IXnl xtl lug) > 1 0 as m

n>m

(2.9)

Combining (2.7), (2.8) and (2.9), it follows that

n IIp[supl I Y’k= Xnk > C] 0 as 111 +oo,
n>m

or that

n 11 +OasI1 Zk= Xnk III

3. STRONG LAWS OF LARGE NUMBERS IN TYPE p SPACES

In this section, strong laws of large numbers for triangular arrays of row-wise

exchangeable random elements in type p 8 separable Banach spaces will be establish-

ed. Recall that a separable Banach space is said to be of type p, p 2, if
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there exists a constant C such that

n Xkl p < C
n El iXkl ipEl IEk: Ek=

for all independent random elements I’ Xn with zero means and finite pth

moments. Every separable Banach space is type I. The next result by Woyczynski [7]

for sequences of zero mean, independent random elements in E with uniformly bounded

tail probabilities is listed for future reference.

TtlEOREM 2. Let < p < 2. The following properties of a Banach space E are

equivalent"

(i) E is of type p 6

(ii) For any sequence {X.} of zero mean, independent random elements in E wtth

lipuniformly bounded tail probabilities the erie

verges a.s.

(iii) For any sequence {X.} as in (ii)

1/p n xll Oalln- Ek=

Since (Xk k > l} are exchangeable they are identically distributed tlence

they have uniformly bounded tail probabilities. That is, for all t g R and k 1,

llxll > t) < gllXlll > t). Tus a strong convergence result for row-wise

exchangeable in type p separable Banach spaces can be obtained using Theorem 2 and

the techniques of Theorem 1.

THEOREM 3. Let (Xnk" _< k _< n, n _> I} be an array of random elements in a

separable Banach space of type p 6, <_ p < 2. Let {Xnk} be exchangeable for each

n and let U and U be the o-fields defined in (2.4). If
nn on

(i) [IXnl Xl]l IX(n+l), Xooll for each n,

(ii) E IXnl Xok]l 2 o(n-2a), where a (p-1)/p, and

(iii) pn(f) E[f(Xnl)f(Xn2)] 0 as n for each f g E*, then

ii1/nl/p n II 0 a sEk=l Xnk

PROOF" Since Ell Xnl Xoo II 2
2

o(n-2e), then Xnk Xk. By Lemma 1,
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(Xk" k 1} is an infinite exchangeable sequence of random elements. Thus, for

> O, and by (2.6)

1/p n II > 1p[supl In- rk= Xnkn>m

1/p n n
Xk) >< l’[sup[ In- (Tk= Xnk gk= -]

n>m

-1/p ,nP[sup[ In 1k=1n>m

P[suPllna (1_ n
n gk=l Xnkn>m

1/p np[sup] ln-
n>m

g
P[supl Ina (Xnl Xln>m

1/p nP[sup[ n- Ek= Xook[ > 5].
n>m

By (2.1)

1/p n II >p[supl In- lk= Xk 1 Pv[supl n
n>m n>m

-1/p n i1>l:k= Xook ] d(P,v),

where {Xk k _> 1} are independent and identically distributed with respect to Pv.
1/PF.= 1XokBy Lemma 2, Ev(Xook) 0. Thus, by Theorem 2 (Theorem for p 1) In- 0

-1/p n [I >a.s. which implies that Pv[supl In r.k= Xk ] 0 as m . By the bounded
n>m

convergence theorem,

1/p n g

fF p[supl In- gk= xk
> 1 d(Pv) 0 as ra oo.

n>m

In a manner similar to (2.5), it can be shown that nal .IE(Xnl Xl...IUn) 0 a.s.

This implies that

p[supl Inc E(Xnl Xoo lu)ll > -I o as m
n>m

Hence, it follows that

or that

1/p n l[ > g] 0 as mP [sup[ In- Y.k= Xnkn>m

1/p n ii+OasIn- Ek= Xnk ///

REMARK. It should be noted that if lXnl xlll 0 a.s., then the condition
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I[Xnl col[ IIX(n+l), Xcol[ for all n is not needed in the proof of Theorem

3. That is lXnl Xml II 0 a.s. implies that IE(Xnl Xco IUoon) II 0 a.s. which

is crucial to the proof of Theorem 3. It is sometimes easier to show directly that

ICcxt- Xn) lUn)l 0 a.s. as will be demonstrated in the kernel density esti-

mation example to follow.

The following example considers the general density estimation problem where

X,, X are independent and identically distributed random variables with the

same density function f.

EYuMPLE. Let X X be independent identically distributed random varia-

bles with common density function f. The kernel estimate for f with constant

bandwidths h is given by
n

t-X
kf (t) n

K( ---n gk=l

where K is often chosen to be a bounded (integrable) kernel with compact support

[a,b] and h 0 an n co. For additional background material see l)eVrove
n

and Wagner [8] and Taylor [9]. Let

E {gig" R R and

Thus, E is a separable Banach space of type min{2,p}. Define

t-Xk t-Xl
Xnk -- (K(--ff---) E[K(--ff)]) (3.1)

n n n

It is clear that Xnk E and that {Xnk} is independent and henceexchangeable for

each n. The next proposition will prove directly that [IE(^nl [Umn)[ 0 a.s.

In this setting XI 0 a.s.

t-X
k

t-X
PROPOSITION 4. Let Xnk (K(--fi---) E[K(--ff---)]). Then, I(XnlU)ll 0

n n n

completely (and hence almost surely)

PROOF Let U {g g;1 X U U by (2 4) and sincenn =1 Xnk’ (n+l) ,k nn oon

Xk 0 a.s. for each k. For > O, q _> 1, by Markov’s inequality, Tonelli’s theorem

and (2.6)

P[llECXnllUnn) ll > ] < e-2q EllECXnllUnn) ll 2q

t-x t-x
In (K (-V---..) E (K (]---)

p
dt)g 2qE[( In--n k=l

n n
l/p]2q

n (1 t-Xl t-Xl< 2qE fl Zk=l h K(-----) E ( K(t-----))
2q dt]

n n n n
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<_ 2q /co n t-Xl t-Xl
E] Ek= K(--fi---) E( K(T))I 2q dt]

n n n n

(Using that R is of type 2 and (2.8) of Taylor [9])

-2q f 2q t-Xl t-Xl 21)< e nqn E(] K(-----)- E( K(-T-))] dt

n n n n

c -2q q foo t-X1 t-Xln- E I K(----) E( K(7))]2q dt

n n n n

-2qn-q E[2(bddk)2q(b a)hn(hn)-2q]

C h

(h2nn) q
exist such that Y. hn/( 2no(n-d) 0 < d < - there q _h n_q) <

Letting h
n n=l

which implies Zn=l P[[ [E(Xnl]Unn)[[ > ] < Hence, ]]E(nl[Unn)[[ converges

completely to O. II!

Depending on the choice of K, IlXnlll may not converge to 0 Xl in the

example). Also, Theorem 3 and the example emphasizes the importance of p being

as large as possible (< 2). Moreover, R, Rm, ltilbert spaces and all finite-dimen-

sional Banach spaces are of type 2, and consequently they are type p for each

p<2. Finally, it is important to observe that the resuIts are substantial new

results even for real-valued random variables.
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