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ABSTRACT. In this paper we modify the Whyburn construction for a continuous

function f X Y. If the range is first countable, we get a characterization of

closed maps- namely, the constructions are the same if and only if the map is closed.
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1. INTRODUCTION.

Let f X Y be continuous and let X and Y be Hausdorff. In [3] Whyburn

defined the unified space Z to be the disjoint union of X and Y with a set

open in Z if and only if Q X is open in X, Q Y is open in Y, and for any

compact Kc ( N Y, f-l(K) ( is compact. In this paper we modify the topology

on X U Y by defining to be open if and only if C) X is open in X, C) N Y is

open in Y, and for any point p ( Y, f-l{p) Q is compact. We denote the

modified Whyburn space by

It is obvious that any set open in Z is open in W. We will show that if f is

closed, the topologies are in fact the same and if Y is first countable, then Z and

W being the same implies that f is closed. This will yield the following corollary:

COROLLARY. Any continuous function from a Hausdorff space into the reals

{or any metric space) is closed if and only if the Whyburn space and the modified

Whyburn space are the same.

Z. PRELIMINARIES.

Arguments similar to those of Whyburn’s show that W is a T topological

space containing X as an open subspace and Y as a closed subspace. However,
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just as in the Whyburn space, W need not be Hausdorff. Whyburn showed that Z

is Hausdorff if X is locally compact. Asking when W is I-Iausdorff led to the

following definitions and propositions:

DEFINITION 2. 1. Let f X-- Y be continuous. Then A c- X is fiber

compact if and only if A is closed and for all y e f(A), f-l(y) A is compact.

Also, X is locally fiber compact if every point has a neighborhood whose closure

is fiber compact.

PROPOSITION 2.2. If A is fiber compact in X, then W A is open.

PROOF. Since A is closed in X, (W A) fl X is open in X; also

(W A) fl Y Y is open in Y. Now let p be any point in Y. Then

f-l(p) {W A) f-l(p) fl A which is compact since A is fiber compact.

PROPOSITION 2.3. If X is locally fiber compact, then W is Hausdorff.

PROOF. The only interesting case is when p is in X and f(p) q. Since

X is locally fiber compact, there exists a U open in X such that p is in U and

U is fiber compact. Hence U is open in W and W U is a neighborhood of q

by Proposition Z. 2.

We define, as did Whyburn, a retraction r W--Y to be f on X and the

identity on Y. The following results parallel those of Whyburn’s for r Z Y.

The proof is omitted.

PROPOSITION 2.4. The map r %%r y is continuous, has compact fibers

and is closed (open) if f is.

The next proposition shows that some of the properties mentioned above

actually characterize the modified Whyburn construction. This proposition is

similar to a theorem about the Whyburn construction proved by Dickrnan [I].

PROPOSITION 2.5. Let r S Y be a retraction with compact fibers from

a Hausdorff space onto a regular subspace. Let X S Y and f r IX" If fiber

compact subsets of X are closed in S, then the modified Whyburn space for

f X Y is homeomorphic to S.

PROOF. Let V be the modified Vhyburn space for f X Y. If V is open
-I -I

in S and p is any point in V 0 Y, then r (p) is compact. But r (p)- V
-I

f (p) V and therefore V is open in W.

Now let Q be open in W and let x Q. If x X, then Q X is an open

set in S and is contained in Q. Suppose x e Q fl Y. Then since Y is regular, we

can find a neighborhood V of x such that x Vc VcQ fl Y. Let f I(V) Q B.
-1

Then B is fiber compact and so S B is open in S. Let U (S B) fl r (V).

Then U contains x, is open in S, and is contained in

3. MAIN THEOREM.

We now state and prove the major theorem of this paper which allows us to

determine when W and Z are the same.
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THEOREM 3. I. Let f X Y be continuous, X and Y be Hausdorff, and

let Y be first countable. Then Z and W are equal if and only if f is a closed

mapping.

PROOF. Assume f is closed, Q is open in W and K is any compact sub-

set of Q N Y. Let f-l(K) Q A. Then A is closed and f(A) is a closed subset

of K and hence is compact. Then f[A A f(A) is a continuous, closed sur-

jection with compact fibers and therefore is a perfect map. By [2, Theorem 5.3]
A is compact. Hence Q is open in Z.

Now assume that Z and W are equal. Let A be a closed set in X.

Suppose that y is a limit point of f{A). Since Y is first countable and Hausdorff,

there exists a sequence of distinct points {yn} c f(A) which converges to y. So

we may choose a sequence {Xn} in A such that f(Xn) Yn"
Let B {Xn}. Now suppose B has no limit points. Then B is closed in

X. Since for any Yn e f(B), f-l(yn) N B {Xn} B is fiber compact and thus

W B is open in W by Proposition Z.Z. Since Z W, Z B is open in Z.

Now K {yn} U {y} is a compact subset of Y (Z B)" therefore,

-1(f K) (Z B) B is compact. Since B is also infinite it must have a limit

point, contradicting our assumption. Hence B has a limit point, say x.

Suppose that f(x) z % y. Then we can find disjoint neighborhoods V of z

and U of y. Since {yn} converges to y, there exists an N such that for every

n _> N, Yn e U. However, since x is a limit point of B, we have an integer
-1

m > N such that Xm e f (V). Hence f(Xm) Ym is in both U and V which is

impossible. Hence f(x) y. Since BoA and A is closed, x e A and there..

fore f(A) is closed.

Notice that Y being first countable is a necessary hypothesis for the prece-

ding theorem. The following is an example to illustrate this.

Let X. [0, 1) for all 1,2,3 Then let X be the disjoint union of

these X.’s. Let Y X U p where p is not in X. Define Vc Y to be open if

and only if

1) V is an open set contained in X or

2) If p e V, then there exists a finite set of indices such that if

e {i 1,..., in} then Xi V X.1 and if t {i 1, in} then X.1 V is compact.

The inclusion map from X to Y is not closed, Y is not first countable at

p and yet W and Z are the same.
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